summaryrefslogtreecommitdiff
path: root/Engineering_Physics_by_K_Rajagopal/10-Energy_Bands_in_Solids.ipynb
blob: cd45c1c6df5bd83720da1ff7626d60528dd858ee (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
{
"cells": [
 {
		   "cell_type": "markdown",
	   "metadata": {},
	   "source": [
       "# Chapter 10: Energy Bands in Solids"
	   ]
	},
{
		   "cell_type": "markdown",
		   "metadata": {},
		   "source": [
			"## Example 10.1: example_1.sce"
		   ]
		  },
  {
"cell_type": "code",
	   "execution_count": null,
	   "metadata": {
	    "collapsed": true
	   },
	   "outputs": [],
"source": [
"clc;\n",
"//E=Ef+1% of Ef\n",
"k=1.38*1e-23;//boltzman constant\n",
"e=1.6*1e-19;//charge of electron\n",
"E=0.0555;\n",
"//0.1=1/[(exp((E*e)/(k*T)))+1]\n",
"T=E*e/(k*log(9));//Temprature\n",
"disp(+'kelvin',T,'Temprature = ');\n",
"//there is slight variation than book's answer.. checked in calculator also.(book's mistake)"
   ]
   }
,
{
		   "cell_type": "markdown",
		   "metadata": {},
		   "source": [
			"## Example 10.2: example_2.sce"
		   ]
		  },
  {
"cell_type": "code",
	   "execution_count": null,
	   "metadata": {
	    "collapsed": true
	   },
	   "outputs": [],
"source": [
"clc;\n",
"sx=0.01 //in ev. where x=E-Ef\n",
"x1=sx*1.6*1e-19 //converting it in joule\n",
"T=200 //in kelvin\n",
"Fe=1/(1+exp(x1/(1.38*1e-23*T)));//The value of F(E) \n",
"disp(Fe,'The value of F(E) =')"
   ]
   }
,
{
		   "cell_type": "markdown",
		   "metadata": {},
		   "source": [
			"## Example 10.3: example_3.sce"
		   ]
		  },
  {
"cell_type": "code",
	   "execution_count": null,
	   "metadata": {
	    "collapsed": true
	   },
	   "outputs": [],
"source": [
"clc;\n",
"density=7.13*1e3  //in kg/m^3\n",
"M=65.4\n",
"N=6.023*1e26 //avogedro number\n",
"n=(2*density*N)/M\n",
"n1=n^(2/3);\n",
"Ef=3.65*1e-19*n1; //in eV\n",
"Ef1=(3/5)*Ef //in eV\n",
"disp(+'eV',Ef,'fermi energy =');\n",
"disp(+'eV',Ef1,'Mean energy at T=0K =');\n",
"//there is slight variation in answer than book's answer.. checked in calculator too..(book's mistake)"
   ]
   }
,
{
		   "cell_type": "markdown",
		   "metadata": {},
		   "source": [
			"## Example 10.4: example_4.sce"
		   ]
		  },
  {
"cell_type": "code",
	   "execution_count": null,
	   "metadata": {
	    "collapsed": true
	   },
	   "outputs": [],
"source": [
"clc;\n",
"clear all;\n",
"Ef=5.51 //in eV\n",
"E=(3/5)*Ef;//The average energy of a free electron in silver at 0k\n",
"disp(+'eV',E,'The average energy of a free electron in silver at 0k =')"
   ]
   }
],
"metadata": {
		  "kernelspec": {
		   "display_name": "Scilab",
		   "language": "scilab",
		   "name": "scilab"
		  },
		  "language_info": {
		   "file_extension": ".sce",
		   "help_links": [
			{
			 "text": "MetaKernel Magics",
			 "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
			}
		   ],
		   "mimetype": "text/x-octave",
		   "name": "scilab",
		   "version": "0.7.1"
		  }
		 },
		 "nbformat": 4,
		 "nbformat_minor": 0
}