summaryrefslogtreecommitdiff
path: root/Engineering_Physics_by_H_K_Malik/6-ELECTRON_OPTICS.ipynb
blob: 09599bf47d39c316d6b66b64b6879eb30dfe4804 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
{
"cells": [
 {
		   "cell_type": "markdown",
	   "metadata": {},
	   "source": [
       "# Chapter 6: ELECTRON OPTICS"
	   ]
	},
{
		   "cell_type": "markdown",
		   "metadata": {},
		   "source": [
			"## Example 6.10: Calculation_of_Internal_electric_field.sce"
		   ]
		  },
  {
"cell_type": "code",
	   "execution_count": null,
	   "metadata": {
	    "collapsed": true
	   },
	   "outputs": [],
"source": [
"clc \n",
"// Given that\n",
"v = 1e6 // velocity of ion beam in m/sec\n",
"B = 1 // magnetic field in tesla\n",
"// Sample Problem 10 on page no. 6.24\n",
"printf('\n # PROBLEM 10 # \n')\n",
"E = B * v\n",
"printf('\n Standard formula used \n E = B * v. \n')\n",
"printf('\n Internal electric field = %e V/m',E)"
   ]
   }
,
{
		   "cell_type": "markdown",
		   "metadata": {},
		   "source": [
			"## Example 6.12: Calculation_of_Ratio_of_the_new_focus_length_to_the_initial_focus_length.sce"
		   ]
		  },
  {
"cell_type": "code",
	   "execution_count": null,
	   "metadata": {
	    "collapsed": true
	   },
	   "outputs": [],
"source": [
"clc \n",
"// Given that\n",
"r = 1.1 // ratio of new number of turns to the initial number of turns\n",
"// Sample Problem 12 on page no. 6.24\n",
"printf('\n # PROBLEM 12 # \n')\n",
"r_ = (1 / r)^2\n",
"printf('\n Standard formula used \n r_ = (1 / r)^2. \n')\n",
"printf('\n Ratio of the new focus length to the initial focus length = %f ',r_)"
   ]
   }
,
{
		   "cell_type": "markdown",
		   "metadata": {},
		   "source": [
			"## Example 6.1: EX6_1.sce"
		   ]
		  },
  {
"cell_type": "code",
	   "execution_count": null,
	   "metadata": {
	    "collapsed": true
	   },
	   "outputs": [],
"source": [
"clc \n",
"// Given that\n",
"V = 500 // voltage across the electrode in eV\n",
"m = 9e-31 // mass of electron in kg\n",
"e = 1.6e-19 // charge on an electron in coulomb\n",
"// Sample Problem 1 on page no. 6.20\n",
"printf('\n # PROBLEM 1 # \n')\n",
"E = e * V\n",
"v = sqrt((2 * e * V) / m)\n",
"p = m * v\n",
"printf('\n Standard formula used \n E = e * V. \n v = sqrt((2 * e * V) / m). \n p = m * v. \n ')\n",
"printf('\n Energy gained by electron = %e J,\n Speed of electron = %e meter/sec,\n Momentum of electron = %e kg-meter/sec',E,v,p)"
   ]
   }
,
{
		   "cell_type": "markdown",
		   "metadata": {},
		   "source": [
			"## Example 6.2: Calculation_of_Momentum_of_acceleration.sce"
		   ]
		  },
  {
"cell_type": "code",
	   "execution_count": null,
	   "metadata": {
	    "collapsed": true
	   },
	   "outputs": [],
"source": [
"clc \n",
"// Given that\n",
"v = 2.5e6 // speed of electron in meter/sec\n",
"B = 2e-4 // magnetic field in tesla\n",
"r = 1.76e11 // ratio of charge on electron to the mass of electron in C/kg\n",
"// Sample Problem 2 on page no. 6.20\n",
"printf('\n # PROBLEM 2 # \n')\n",
"a = (B * r * v)\n",
"printf('\n Standard formula used \n a = (B * r * v). \n ')\n",
"printf('\n Momentum of acceleration = %e meter/square sec.',a)"
   ]
   }
,
{
		   "cell_type": "markdown",
		   "metadata": {},
		   "source": [
			"## Example 6.4: Calculation_of_Radius_of_circle_traced_by_the_beam_and_Speed_of_beam.sce"
		   ]
		  },
  {
"cell_type": "code",
	   "execution_count": null,
	   "metadata": {
	    "collapsed": true
	   },
	   "outputs": [],
"source": [
"clc \n",
"// Given that\n",
"v = 5.2e6 // speed of electron in meter/sec\n",
"B = 1.3e-4 // magnetic field in tesla\n",
"r = 1.76e11 // ratio of charge on electron to the mass of electron in C/kg\n",
"E = 3.2e-12 // energy of the electron beam in J\n",
"M = 9e-31 // mass of an electron in kg\n",
"// Sample Problem 4 on page no. 6.22\n",
"printf('\n # PROBLEM 4 # \n')\n",
"R = v / (r * B)\n",
"v_ = sqrt((2 * E) / M )\n",
"printf('\n Standard formula used \n R = v / (r * B). \n v_ = sqrt((2 * E) / M ). \n')\n",
"printf('\n Radius of circle traced by the beam = %f cm. \n Speed of beam in second case = %e meter/sec.\n Speed of beam in second case is greater than speed of light so we cannot use above formula.',R*100,v_)"
   ]
   }
,
{
		   "cell_type": "markdown",
		   "metadata": {},
		   "source": [
			"## Example 6.5: Calculation_of_Ratio_of_the_charge_on_an_electron_to_the_mass_of_an_electron.sce"
		   ]
		  },
  {
"cell_type": "code",
	   "execution_count": null,
	   "metadata": {
	    "collapsed": true
	   },
	   "outputs": [],
"source": [
"clc \n",
"// Given that\n",
"V = 2.500e3 // voltage across the electrode in V\n",
"E = 3.6e4 // strength of electric field in V/m\n",
"B = 1.2e-3 // magnetic field in tesla\n",
"// Sample Problem 5 on page no. 6.22\n",
"printf('\n # PROBLEM 5 # \n')\n",
"r = (E / B)^2 / (2 * V)//calculation for ratio of the charge on an electron to the mass of an electron\n",
"printf('\n Standard formula used \n e/m=(E/B)^2 / (2V). \n')\n",
"printf('\n Ratio of the charge on an electron to the mass of an electron = %e C/kg.',r)"
   ]
   }
,
{
		   "cell_type": "markdown",
		   "metadata": {},
		   "source": [
			"## Example 6.6: Calculation_of_Lamoure_radius.sce"
		   ]
		  },
  {
"cell_type": "code",
	   "execution_count": null,
	   "metadata": {
	    "collapsed": true
	   },
	   "outputs": [],
"source": [
"clc \n",
"// Given that\n",
"M = 9.1e-31 // mass of electron in kg\n",
"E = 1.6e-15 // energy of electron in J\n",
"B = 5e-5 // magnetic field in tesla\n",
"e = 1.6e-19 // charge on an electron in coulomb\n",
"// Sample Problem 6 on page no. 6.23\n",
"printf('\n # PROBLEM 6 # \n')\n",
"v = sqrt((2 * E) / M)\n",
"r = (M * v) / (e * B)\n",
"printf('\n Standard formula used \n v = sqrt((2 * E) / M). \n r = (M * v) / (e * B). \n')\n",
"printf('\n Larmoure radius = %f meter',r)"
   ]
   }
,
{
		   "cell_type": "markdown",
		   "metadata": {},
		   "source": [
			"## Example 6.7: Calculation_of_Lamoure_radius.sce"
		   ]
		  },
  {
"cell_type": "code",
	   "execution_count": null,
	   "metadata": {
	    "collapsed": true
	   },
	   "outputs": [],
"source": [
"clc \n",
"// Given that\n",
"Mp = 1.67e-27 // mass of proton in kg\n",
"v = 3e5 // speed of proton in meter/sec\n",
"B = 5e-9 // magnetic field in tesla\n",
"e = 1.6e-19 // charge on a proton in coulomb\n",
"// Sample Problem 7 on page no. 6.23\n",
"printf('\n # PROBLEM 7 # \n')\n",
"r = (Mp * v) / (e * B)//calculation for Larmour radius\n",
"printf('\n Standard formula used \n r=m*v/(e*B). \n')\n",
"printf('\n Larmour radius = %e meter',r)"
   ]
   }
,
{
		   "cell_type": "markdown",
		   "metadata": {},
		   "source": [
			"## Example 6.8: Calculation_of_Area_traced_by_the_trajectory_of_helium_ion.sce"
		   ]
		  },
  {
"cell_type": "code",
	   "execution_count": null,
	   "metadata": {
	    "collapsed": true
	   },
	   "outputs": [],
"source": [
"clc \n",
"// Given that\n",
"M = 6.68e-27 // mass of helium ion in kg\n",
"E = 1.6e-16 // energy of helium ion in J\n",
"B = 5e-2 // magnetic field in tesla\n",
"e = 1.6e-19 // charge on helium ion in coulomb\n",
"// Sample Problem 8 on page no. 6.23\n",
"printf('\n # PROBLEM 8 # \n')\n",
"v = sqrt((2 * E) / M)//calculation for velocity\n",
"r = (M * v) / (e * B)//calculation for Larmour radius\n",
"A = %pi * r^2//calculation for area traced by the trajectory of helium ion\n",
"printf('Standard formula used \n E=1/2*m*v^2,\n Rl=m*v/(e*B),\n A=pi*r^2\n')\n",
"printf('\n Area traced by the trajectory of helium ion = %f square meter',A)"
   ]
   }
,
{
		   "cell_type": "markdown",
		   "metadata": {},
		   "source": [
			"## Example 6.9: Calculation_of_The_drift_of_the_guiding_center.sce"
		   ]
		  },
  {
"cell_type": "code",
	   "execution_count": null,
	   "metadata": {
	    "collapsed": true
	   },
	   "outputs": [],
"source": [
"clc \n",
"// Given that\n",
"E = 100 // strength of electric field in V/m\n",
"B = 1e-3 // magnetic field in tesla\n",
"// Sample Problem 9 on page no. 6.24\n",
"printf('\n # PROBLEM 9 # \n')\n",
"v = E / B\n",
"printf('\n Standard formula used \n v = E / B. ')\n",
"printf('\n The drift of the guiding center = %e m/sec',v)"
   ]
   }
],
"metadata": {
		  "kernelspec": {
		   "display_name": "Scilab",
		   "language": "scilab",
		   "name": "scilab"
		  },
		  "language_info": {
		   "file_extension": ".sce",
		   "help_links": [
			{
			 "text": "MetaKernel Magics",
			 "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
			}
		   ],
		   "mimetype": "text/x-octave",
		   "name": "scilab",
		   "version": "0.7.1"
		  }
		 },
		 "nbformat": 4,
		 "nbformat_minor": 0
}