1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
|
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Chapter 5: FIBRE OPTICS"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 5.10: Calculation_of_Number_of_modes.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"clc \n",
"// Given that\n",
"mu1 = 3.6 // refractive index for core\n",
"mu2 = 3.55 // refractive index for cladding\n",
"// Sample Problem 10 on page no. 5.19\n",
"printf('\n # PROBLEM 10 # \n')\n",
"NA = sqrt(mu1^2 - mu2^2)//calculation for numerical aperture\n",
"Mm1 = 0.5 * (%pi * 5 * NA)^2//calculation for no. of modes in first case\n",
"Mm2 = 0.5 * (%pi * 50 * NA)^2//calculation for no. of modes in second case\n",
"printf('\n Standard formula used \n Mm=1/2(pi*d*NA/lambda)^2. NA=sqrt(mu1^2-mu2^2). \n')\n",
"printf('\n Number of modes in first case = %d. \n Number of modes in second case = %d.',Mm1,Mm2)"
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 5.11: Calculation_of_Maximum_diameter_of_core.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"clc \n",
"// Given that\n",
"lambda = 1.25e-6 //wavelength of light in meter\n",
"mu1 = 1.46 // refractive index for core\n",
"mu2 = 1.457 // refractive index for cladding\n",
"// Sample Problem 11 on page no. 5.20\n",
"printf('\n # PROBLEM 11 # \n')\n",
"NA = sqrt(mu1^2 - mu2^2)//calculation for numerical aperture\n",
"k = (2.4 * lambda) / ( %pi * NA)\n",
"printf('\n Standard formula used \n d<8*lambda/(pi*NA)\n')\n",
"printf('\n Maximum diameter of core = %f micro meter',k*1e6)"
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 5.12: Calculation_of_Absorption_coefficient.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"clc \n",
"// Given that\n",
"L = 0.1 // length of fiber in km\n",
"p = 5e-6 // power of signal in watt\n",
"p_ = 1e-6 // power of signal inside the fiber in watt\n",
"// Sample Problem 12 on page no. 5.20\n",
"printf('\n # PROBLEM 12 # \n')\n",
"alpha = (10 * log10(p / p_)) / L//calculation for absorption coefficient\n",
"printf('\n Standard formula used \n alpha=10/L*log(Pi/Po).\n')\n",
"printf('\n Absorption coefficient = %f dB/km. ',alpha)"
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 5.13: Calculation_of_Output_power.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"clc \n",
"// Given that\n",
"L = 3 // length of optical fiber in km\n",
"l = 6 // losses in dB\n",
"p = 5e-3 // input power in watt \n",
"// Sample Problem 13 on page no. 5.20\n",
"printf('\n # PROBLEM 13 # \n')\n",
"alpha = (l * 3) / L\n",
"p_ = p / (exp((2.303 * alpha * L) / 10))\n",
"printf('\n Standard formula used \n alpha = (l * 3) / L. \n p_ = p / (exp((2.303 * alpha * L) / 10)). \n')\n",
"printf('\n Output power = %f mW. ',p_*1e3)"
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 5.1: Calculation_of_Critical_angle_and_Numerical_aperture_and_Maximum_incidence_angle.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"clc \n",
"// Given that\n",
"mu1 = 1.52 // refractive index for core\n",
"mu2 = 1.41 // refractive index for cladding\n",
"// Sample Problem 1 on page no. 5.15\n",
"printf('\n # PROBLEM 1 # \n')\n",
"theta_c = asin(mu2 / mu1) * (180 / %pi)\n",
"NA = sqrt(mu1^2 - mu2^2)\n",
"theta_0 = asin(NA) * (180 / %pi)\n",
"printf('\n Standard formula used \n theta_c = asin(mu2 / mu1) * (180 / pi). \n NA = sqrt(mu1^2 - mu2^2). \n theta_0 = asin(NA) * (180 / pi). \n')\n",
"printf('\n Critical angle = %f degree. \n Numerical aperture = %f,\n Maximum incidence angle = %f degree.',theta_c,NA,theta_0)"
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 5.2: Calculation_of_Numerical_aperture_and_Maximum_incidence_angle.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"clc \n",
"// Given that\n",
"mu1 = 1.6 // refractive index for core\n",
"mu2 = 1.5 // refractive index for cladding\n",
"// Sample Problem 2 on page no. 5.16\n",
"printf('\n # PROBLEM 2 # \n')\n",
"NA = sqrt(mu1^2 - mu2^2)//calculation for numerical aperture\n",
"theta_0 = asin(NA) * (180 / %pi)//calculation for maximum incidence angle\n",
"printf('Standard formula used \n NA=aqrt(mu1^2-mu2^2),\n sin(theta_)=NA. \n')\n",
"printf('\n Numerical aperture = %f.\n Maximum incidence angle = %f degree.',NA,theta_0)"
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 5.3: EX5_3.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"clc \n",
"// Given that\n",
"mu_0 = 1 // refractive index of air\n",
"mu1 = 1.5 // refractive index for core\n",
"mu2 = 1.48 // refractive index for cladding\n",
"// Sample Problem 3 on page no. 5.16\n",
"printf('\n # PROBLEM 3 # \n')\n",
"theta_c = asin(mu2 / mu1) * (180 / %pi)\n",
"delta_mu = (mu1 - mu2) / mu1\n",
"NA = sqrt(mu1^2 - mu2^2)\n",
"theta_0 = asin(NA) * (180 / %pi)\n",
"printf('\n Standard formula used \n theta_c = asin(mu2 / mu1) * (180 / pi). \n delta_mu = (mu1 - mu2) / mu1. \n NA = sqrt(mu1^2 - mu2^2). \n theta_0 = asin(NA) * (180 / pi). \n ')\n",
"printf('\n Critical angle = %f degree. \n Numerical aperture = %f. \n Acceptance angle = %f degree.\n Fractional refractive index = %f.',theta_c,NA,theta_0,delta_mu)"
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 5.4: Calculation_of_Numerical_aperture_and_Maximum_incidence_angle.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"clc \n",
"// Given that\n",
"mu1 = 1.62 // refractive index for core\n",
"mu2 = 1.52 // refractive index for cladding\n",
"// Sample Problem 4 on page no. 5.17\n",
"printf('\n # PROBLEM 4 # \n')\n",
"NA = sqrt(mu1^2 - mu2^2)\n",
"theta_0 = asin(NA) * (180 / %pi)\n",
"printf('\n Standard formula used \n NA = sqrt(mu1^2 - mu2^2). \n theta_0 = asin(NA) * (180 / pi). \n')\n",
"printf('\n Numerical aperture = %f. \n Maximum incidence angle = %f degree.',NA,theta_0)"
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 5.5: Calculation_of_Refractive_index_for_core_Refractive_index_for_cladding.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"clc \n",
"// Given that\n",
"NA = 0.22 // numerical aperture\n",
"delta_mu = 0.012 // fractional refractive index\n",
"// Sample Problem 5 on page no. 5.17\n",
"printf('\n # PROBLEM 5 # \n')\n",
"mu1 = sqrt(NA^2 / (1 - (1 - delta_mu)^2))\n",
"mu2 = (1 - delta_mu) * mu1\n",
"printf('\n Standard formula used \n mu1 = sqrt(NA^2 / (1 - (1 - delta_mu)^2)). \n mu2 = (1 - delta_mu) * mu1. \n')\n",
"printf('\n Refractive index for core = %f.\n Refractive index for cladding = %f.',mu1,mu2)"
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 5.6: EX5_6.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"clc \n",
"// Given that\n",
"d = 0.0064 // diameter of fiber in cm\n",
"mu1 = 1.53 // refractive index for core\n",
"mu2 = 1.39 // refractive index for clad\n",
"L = 90 // length of fiber in cm\n",
"mu_0 = 1 // refractive index of air\n",
"// Sample Problem 6 on page no. 5.17\n",
"printf('\n # PROBLEM 6 # \n')\n",
"NA = sqrt(mu1^2 - mu2^2)\n",
"theta_0 = asin(NA) * (180 / %pi)\n",
"N1 = L / (d * sqrt((mu1 / (mu_0 * sin(theta_0 * (%pi / 180))))^2 - 1))\n",
"N2 = L / (d * sqrt((mu1 / (mu_0 * sin(theta_0 * (%pi / 360))))^2 - 1))\n",
"printf('\n Standard formula used \n NA = sqrt(mu1^2 - mu2^2). \n theta_0 = asin(NA) * (180 / pi). \n N = L / (d * sqrt((mu / (mu_0 * sin(theta_0 * (pi / 180))))^2 - 1)). \n ')\n",
"printf('\n Numerical aperture = %f.\n Acceptance angle = %f degree. \n Number of reflections at maximum incidence = %f. \n Number of reflections in second case = %f. ',NA,theta_0,N1,N2)"
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 5.7: Calculation_of_The_normalized_frequency_and_number_of_guided_in_the_core.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"clc \n",
"// Given that\n",
"d = 0.05 // diameter of fiber in mm\n",
"NA = 0.22 // numerical aperture\n",
"lambda = 8.5e-4 // wavelength of light in mm\n",
"// Sample Problem 7 on page no. 5.18\n",
"printf('\n # PROBLEM 7 # \n')\n",
"Vn = (%pi * d * NA) / lambda\n",
"Mm = 0.5 * (Vn)^2\n",
"printf('\n Standard formula used \n Vn = (pi * d * NA) / lambda. \n Mm = 0.5 * (Vn)^2. \n')\n",
"printf('\n The normalized frequency = %f,\n number of guided in the core = %f',Vn,Mm)"
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 5.8: Calculation_of_Diameter_of_core_and_number_of_modes.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"clc \n",
"// Given that\n",
"lambda = 1.25e-6 //wavelength of light in meter\n",
"mu1 = 1.465 // refractive index for core\n",
"mu2 = 1.460 // refractive index for cladding\n",
"// Sample Problem 8 on page no. 5.18\n",
"printf('\n # PROBLEM 8 # \n')\n",
"NA = sqrt(mu1^2 - mu2^2)\n",
"k = (2.4 * lambda) / ( %pi * NA)\n",
"Mm = 0.5 * ((%pi * 50e-6 * NA) / lambda)^2\n",
"printf('\n Standard formula used \n NA = sqrt(mu1^2 - mu2^2). \n k = (2.4 * lambda) / ( pi * NA). \n Mm = 0.5 * ((pi * 50e-6 * NA) / lambda)^2. \n ')\n",
"printf('\n Diameter of core < %e meter,\n number of modes = %d',k,Mm)"
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 5.9: Calculation_of_Numerical_aperture_and_Number_of_modes.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"clc \n",
"// Given that\n",
"lambda = 0.85e-6 //wavelength of light in meter\n",
"mu1 = 1.461 // refractive index for core\n",
"mu2 = 1.456 // refractive index for clad\n",
"d = 4e-5 // diameter of core in meter\n",
"// Sample Problem 9 on page no. 5.19\n",
"printf('\n # PROBLEM 9 # \n')\n",
"NA = sqrt(mu1^2 - mu2^2)\n",
"Mm = 0.5 * ((%pi * d * NA) / lambda)^2\n",
"printf('\n Standard formula used \n NA = sqrt(mu1^2 - mu2^2). \n Mm = 0.5 * ((pi * d * NA) / lambda)^2. \n ')\n",
"printf('\n Numerical aperture = %f.\n Number of modes = %d. ',NA,Mm)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Scilab",
"language": "scilab",
"name": "scilab"
},
"language_info": {
"file_extension": ".sce",
"help_links": [
{
"text": "MetaKernel Magics",
"url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
}
],
"mimetype": "text/x-octave",
"name": "scilab",
"version": "0.7.1"
}
},
"nbformat": 4,
"nbformat_minor": 0
}
|