summaryrefslogtreecommitdiff
path: root/Engineering_Physics_by_H_K_Malik/4-LASERS_AND_HOLOGRAPHY.ipynb
blob: 048331ee50b8c824e36e16cff4f943d45483f753 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
{
"cells": [
 {
		   "cell_type": "markdown",
	   "metadata": {},
	   "source": [
       "# Chapter 4: LASERS AND HOLOGRAPHY"
	   ]
	},
{
		   "cell_type": "markdown",
		   "metadata": {},
		   "source": [
			"## Example 4.1: EX4_1.sce"
		   ]
		  },
  {
"cell_type": "code",
	   "execution_count": null,
	   "metadata": {
	    "collapsed": true
	   },
	   "outputs": [],
"source": [
"clc \n",
"// Given that\n",
"lambda = 5.5e-7 // wavelength of light in meter\n",
"c = 3e+8 // speed of light in m/sec\n",
"h = 6.63e-34 // Planck constant in j/sec\n",
"e = 1.6e-19 // charge on electron in coulomb \n",
"k = 8.62e-5 // Boltzmann constant in eV/K\n",
"T = 300 // temperature in kelvin\n",
"// Sample Problem 1 on page no. 4.24\n",
"printf('\n # PROBLEM 1 # \n')\n",
"delta_E = (h * c) / (lambda * e) // calculation for energy difference \n",
"r = exp(-delta_E / (k * T)) // calculation for ratio of population of upper level to the lower energy level\n",
"T_ = (delta_E / (k * 0.693)) // calculation for temperature for the second condition\n",
"printf('\n Standard formula used \n delta_E = (h * c) / (lambda * e). \n r = exp(-delta_E / (k * T)). \n T_ = (delta_E / (k * 0.693)). \n')\n",
"printf('\n Ratio of population of upper level to the lower energy level = %e. \n Temperature for the second condition = %f K. ',r,T_)\n",
"//Answer in the book: 1.3 X 10^-38 and 37800 K\n",
"//Answer in the program:1.100524 X 10^-38 and 37836.557301 K'"
   ]
   }
,
{
		   "cell_type": "markdown",
		   "metadata": {},
		   "source": [
			"## Example 4.2: Calculation_of_Beam_divergence_angle.sce"
		   ]
		  },
  {
"cell_type": "code",
	   "execution_count": null,
	   "metadata": {
	    "collapsed": true
	   },
	   "outputs": [],
"source": [
"clc \n",
"// Given that\n",
"lambda1 = 6.328e-7 // wavelength of light in first case in meter\n",
"lambda2 =2e-7 // wavelength of light in second case in meter\n",
"r1 = 2.3e-4 // the radius of internal beam of laser in first case in meter\n",
"r2 = 2.4e-3 // the radius of internal beam of laser in second case in meter\n",
"// Sample Problem 2 on page no. 4.24\n",
"printf('\n # PROBLEM 2 # \n')\n",
"theta1 = lambda1 / (%pi * r1) // calculation for beam divergence angle in first case\n",
"theta2 = lambda2 / (%pi * r2) // calculation for beam divergence angle in second case\n",
"printf('\n Standard formula used \n theta = lambda / (pi * r). \n')\n",
"printf('\n Beam divergence angle in first case = %e radian. \n Beam divergence angle in second case = %e radian. ',theta1,theta2)"
   ]
   }
,
{
		   "cell_type": "markdown",
		   "metadata": {},
		   "source": [
			"## Example 4.3: Calculation_of_Total_energy.sce"
		   ]
		  },
  {
"cell_type": "code",
	   "execution_count": null,
	   "metadata": {
	    "collapsed": true
	   },
	   "outputs": [],
"source": [
"clc \n",
"// Given that\n",
"l = 6e-2 // length of laser in meter\n",
"D = 1e-2 // diameter of laser in meter\n",
"lambda = 6.944e-7 // wavelength of light in meter\n",
"d = 3700 // density of aluminium oxide in kg/meter cube\n",
"Na = 6e+23 // Avogadro number\n",
"M = 0.102 // molar mass of aluminium oxide in kg/meter cube\n",
"h = 4.1e-15 // Planck constant in eV-sec\n",
"c = 3e+8 // speed of light in meter/sec\n",
"// Sample Problem 3 on page no. 4.25\n",
"printf('\n # PROBLEM 3 # \n')\n",
"v = (%pi * (D^2) * l) / 4 // calculation for volume \n",
"N = (2 * Na * d * v) / M // calculation for no. of aluminium ions\n",
"N_ = N / 3500 // calculation for the no. of chromium ions\n",
"E = (h * c) / lambda // calculation for the energy of stimulated emission photon \n",
"Et = N_ * E * (1.6e-19) // calculation for total energy\n",
"printf('\n Standard formula used \n v = (pi * (D^2) * l) / 4. \n N = (2 * Na * d * v) / M. \n N_ = N / 3500. \n E = (h * c) / lambda. \n Et = N_ * E * (1.6e-19). \n')\n",
"printf('\n Total energy = %f J',ceil(Et))"
   ]
   }
,
{
		   "cell_type": "markdown",
		   "metadata": {},
		   "source": [
			"## Example 4.4: Calculation_of_Power_per_unit_area_delivered_by_the_laser.sce"
		   ]
		  },
  {
"cell_type": "code",
	   "execution_count": null,
	   "metadata": {
	    "collapsed": true
	   },
	   "outputs": [],
"source": [
"clc \n",
"// Given that\n",
"p = 4e-3 // energy of laser pulse in meter\n",
"r = 1.5e-5 // radius of spot in meter\n",
"t = 1e-9 // pulse length in time in sec\n",
"// Sample Problem 4 on page no. 4.26\n",
"printf('\n # PROBLEM 4 # \n')\n",
"p_ = p / t// calculation for  power in watt\n",
"I = p_ / (%pi * r^2)// calculation for power per unit area delivered by the laser\n",
"printf('Standard formula used \n I=P/a\n')\n",
"printf('\nPower per unit area delivered by the laser = %e watt/square meter',I)"
   ]
   }
,
{
		   "cell_type": "markdown",
		   "metadata": {},
		   "source": [
			"## Example 4.5: Calculation_of_Power_per_unit_area_delivered_by_the_laser.sce"
		   ]
		  },
  {
"cell_type": "code",
	   "execution_count": null,
	   "metadata": {
	    "collapsed": true
	   },
	   "outputs": [],
"source": [
"clc \n",
"// Given that\n",
"D = 5e-3 // diameter of laser in meter\n",
"lambda = 7.2e-7 // wavelength of light in meter\n",
"d = 4e8 // distance at moon from earth in meter\n",
"// Sample Problem 5 on page no. 4.26\n",
"printf('\n # PROBLEM 5 # \n')\n",
"r = (D / 2) // calculation for radius\n",
"theta = (0.637 * lambda) / r // calculation for angular spread\n",
"areal_spread = (d * theta)^2 // calculation for areal spread\n",
"printf('\n Standard formula used \n theta = (0.637 * lambda) / r. \n areal_spread = (d * theta)^2. \n ')\n",
"printf('\n Angular spread = %e radian ,\n Areal spread = %e square meter',theta,areal_spread)"
   ]
   }
,
{
		   "cell_type": "markdown",
		   "metadata": {},
		   "source": [
			"## Example 4.6: Calculation_of_Areal_spread_and_Intensity.sce"
		   ]
		  },
  {
"cell_type": "code",
	   "execution_count": null,
	   "metadata": {
	    "collapsed": true
	   },
	   "outputs": [],
"source": [
"clc \n",
"// Given that\n",
"D = 5e-3 // diameter of laser in meter\n",
"lambda = 6.943e-7 // wavelength of light in meter\n",
"f =0.1 // focal length in meter\n",
"P = 0.1 // power of laser in watt\n",
"// Sample Problem 6 on page no. 4.27\n",
"printf('\n # PROBLEM 6 # \n')\n",
"r = (D / 2)// calculation for \n",
"theta = (0.637 * lambda) / r// calculation for angular spread\n",
"areal_spread = (f * theta)^2// calculation for areal spread\n",
"I = P / areal_spread// calculation for intensity\n",
"printf('Standard formula used \n theta=0.637*lambda/r,\n areal spread = (theta*D)^2,\n I=P/A\n')\n",
"printf('\n Areal spread = %e square meter,\n Intensity = %e watt/square meter',areal_spread,I)"
   ]
   }
,
{
		   "cell_type": "markdown",
		   "metadata": {},
		   "source": [
			"## Example 4.7: Calculation_of_Degree_of_non_monochromaticity.sce"
		   ]
		  },
  {
"cell_type": "code",
	   "execution_count": null,
	   "metadata": {
	    "collapsed": true
	   },
	   "outputs": [],
"source": [
"clc \n",
"// Given that\n",
"tou = 1e-10 // coherence time in sec\n",
"lambda = 5.4e-7 // wavelength of light in meter\n",
"// Sample Problem 7 on page no. 4.28\n",
"printf('\n # PROBLEM 7 # \n')\n",
"delta_v = 1 / tou \n",
"v_ = (3e+8) / lambda // calculation for frequency\n",
"d = delta_v / v_ // calculation for degree of non-monochromaticity\n",
"printf('\n Standard formula used \n delta_v = 1 / tou. \n v_ = (3e+8) / lambda. \n d = delta_v / v_. \n ')\n",
"printf('\n Degree of non-monochromaticity = %f ',d)"
   ]
   }
],
"metadata": {
		  "kernelspec": {
		   "display_name": "Scilab",
		   "language": "scilab",
		   "name": "scilab"
		  },
		  "language_info": {
		   "file_extension": ".sce",
		   "help_links": [
			{
			 "text": "MetaKernel Magics",
			 "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
			}
		   ],
		   "mimetype": "text/x-octave",
		   "name": "scilab",
		   "version": "0.7.1"
		  }
		 },
		 "nbformat": 4,
		 "nbformat_minor": 0
}