1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
|
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Chapter 3: POLARISATION"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 3.10: Calculation_of_Percentage_reduction_in_intensity_of_light.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"clc \n",
"// Given that\n",
"theta1 = %pi / 6 // angle between Nicole prisms in first case in radian\n",
"theta2 = %pi / 4 // angle between Nicole prisms in second case in radian\n",
"theta3 = %pi / 3 // angle between Nicole prisms in third case in radian\n",
"theta4 = %pi / 2 // angle between Nicole prisms in fourth case in radian\n",
"// Sample Problem 10 on page no. 3.26\n",
"printf('\n # PROBLEM 10 # \n')\n",
"I1 = (1 - (cos(theta1))^2) * 100\n",
"I2 = (1 - (cos(theta2))^2) * 100\n",
"I3 = (1 - (cos(theta3))^2) * 100\n",
"I4 = (1 - (cos(theta4))^2) * 100\n",
" // calculation for percentage reduction in intensity of ligth\n",
" printf('\n Standard formula used \n I = (1 - (cos(theta))^2) * 100. \n')\n",
"printf('\n Percentage reduction in intensity of ligth-\n(i)%f per\n(ii)%f per\n(iii)%f per\n(iv)%f per',I1,I2,I3,I4)"
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 3.11: Calculation_of_Angle_between_the_Nicols.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"clc \n",
"// Given that\n",
"i1 = 1 / 2 // reduced intensity ratio in first case\n",
"i2 = 1 / 4 // reduced intensity ratio in second case\n",
"// Sample Problem 11 on page no. 3.27\n",
"printf('\n # PROBLEM 11 # \n')\n",
"theta1 = acos(sqrt(i1)) * (180 / %pi)// calculation for angle between nicols in first case \n",
"theta2 = acos(sqrt(i2)) * (180 / %pi)// calculation for angle between nicols in second case\n",
"printf('Standard formula used \n I=I_cos(theta)^2\n')\n",
"printf('\n Angle between the Nicols in first case = %f degree\n And in second case = %f degree',theta1,theta2)"
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 3.12: Calculation_of_Thickness_of_half_wave_plate_of_quartz.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"clc \n",
"// Given that\n",
"lambda = 5e-7 // wavelength of light in meter\n",
"mu_e = 1.553 // refractive index for extraordinary light\n",
"mu_o = 1.544 // refractive index for ordinary light\n",
"// Sample Problem 12 on page no. 3.27\n",
"printf('\n # PROBLEM 12 # \n')\n",
"t = lambda / (2 * (mu_e - mu_o)) // calculation for thickness of half-wave plate of quartz\n",
"printf('\n Standard formula used \n t = lambda / (2 * (mu_e - mu_o)). \n')\n",
"printf('\n Thickness of half-wave plate of quartz = %e meter',t)"
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 3.13: Calculation_of_Thickness_of_quartz_plate.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"clc \n",
"// Given that\n",
"lambda = 5.893e-7 // wavelength of light in meter\n",
"mu_e = 1.533 // refractive index for extraordinary light\n",
"mu_o = 1.554 // refractive index for ordinary light\n",
"// Sample Problem 13 on page no. 3.27\n",
"printf('\n # PROBLEM 13 # \n')\n",
"t = lambda / (4 * (mu_o - mu_e)) // calculation for thickness of quartz plate\n",
"printf('\n Standard formula used \n t = lambda / (4 * (mu_o - mu_e)). \n ')\n",
"printf('\n Thickness of quartz plate = %e meter',t)"
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 3.14: Calculation_of_Thickness_quartz_plate.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"clc \n",
"// Given that\n",
"lambda = 5.89e-7 // wavelength of light in meter\n",
"mu_e1 = 1.5 // refractive index for extraordinary light in first case\n",
"mu_o1 = 1.55 // refractive index for ordinary light in first case\n",
"mu_e2 = 1.57 // refractive index for extraordinary light in second case\n",
"mu_o2 = 1.55 // refractive index for ordinary light in second case\n",
"// Sample Problem 14 on page no. 3.28\n",
"printf('\n # PROBLEM 14 # \n')\n",
"t1 = lambda / (4 * (mu_o1 - mu_e1))\n",
"t2 = lambda / (4 * (mu_e2 - mu_o2))\n",
" // calculation for thickness of plate of quartz\n",
" printf('\n Standard formula used \n t = lambda / (4 * (mu_o - mu_e)) ')\n",
"printf('\n Thickness of plate of quartz in first case = %e meter,\n And thickness of plate of quartz in second case = %e meter',t1,t2)"
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 3.15: Calculation_of_Thickness_of_calcite_plate.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"clc \n",
"// Given that\n",
"lambda = 5.89e-7 // wavelength of light in meter\n",
"mu_e = 1.486 // refractive index for extraordinary light\n",
"mu_o = 1.658 // refractive index for ordinary light\n",
"// Sample Problem 15 on page no. 3.28\n",
"printf('\n # PROBLEM 15 # \n')\n",
"t = lambda / (4 * (mu_o - mu_e)) // calculation for thickness of calcite plate \n",
"printf('\n Standard formula used \n t = lambda / (4 * (mu_o - mu_e)). \n')\n",
"printf('\n Thickness of calcite plate = %e meter',t)"
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 3.16: Calculation_of_Thickness_of_quartz_plate.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"clc \n",
"// Given that\n",
"lambda = 5e-7 // wavelength of light in meter\n",
"mu_e = 1.5533 // refractive index for extraordinary light\n",
"mu_o = 1.5442 // refractive index for ordinary light\n",
"// Sample Problem 16 on page no. 3.28\n",
"printf('\n # PROBLEM 16 # \n')\n",
"t = lambda / (4 * (mu_e - mu_o)) // calculation for thickness of quartz plate\n",
"printf('\n Standard formula used \n t = lambda / (4 * (mu_e - mu_o)). \n')\n",
"printf('\n Thickness of quartz plate = %e meter',t)"
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 3.17: Calculation_of_Thickness_of_quartz_plate.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"clc \n",
"// Given that\n",
"lambda = 5.89e-7 // wavelength of light in meter\n",
"mu_e = 1.54 // refractive index for extraordinary light\n",
"mu_o = 1.55 // refractive index for ordinary light\n",
"// Sample Problem 17 on page no. 3.28\n",
"printf('\n # PROBLEM 17 # \n')\n",
"t = lambda / (4 * (mu_o - mu_e)) // calculation for thickness of quartz plate\n",
"printf('\n Standard formula used \n t = lambda / (4 * (mu_o - mu_e))')\n",
"printf('\n Thickness of quartz plate = %e meter',t)"
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 3.18: Calculation_of_Thickness_of_quartz_plate.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"clc \n",
"// Given that\n",
"lambda = 5.89e-7 // wavelength of light in meter\n",
"mu_e = 1.553 // refractive index for extraordinary light\n",
"mu_o = 1.544 // refractive index for ordinary light\n",
"// Sample Problem 18 on page no. 3.28\n",
"printf('\n # PROBLEM 18 # \n')\n",
"t = lambda / (4 * (mu_e - mu_o)) // calculation for thickness of quartz plate\n",
"printf('\n Standard formula used \n t = lambda / (4 * (mu_e - mu_o)).\n')\n",
"printf('\n Thickness of quartz plate = %e meter',t)"
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 3.19: Calculation_of_Thickness_of_quartz_plate.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"clc \n",
"// Given that\n",
"mu_e = 1.5442 // refractive index for extraordinary light\n",
"mu_o = 1.5533 // refractive index for ordinary light\n",
"lambda = 5e-7 // wavelength of plane polarized light in meter\n",
"// Sample Problem 19 on page no. 3.29\n",
"printf('\n # PROBLEM 19 # \n')\n",
"t = lambda / (2 * (mu_o - mu_e))// calculation for thickness of quartz plate\n",
"printf('Standard formula used \n t=lambda/4(mu_o-mu_e)\n')\n",
"printf('\n Thickness of quartz plate = %e meter',t)"
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 3.1: Calculation_of_Brewster_angle_and_Angle_of_refraction.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"clc \n",
"// Given that\n",
"mu = 1.5 // refractive index of glass\n",
"// Sample Problem 1 on page no. 3.23\n",
"printf('\n # PROBLEM 1 # \n')\n",
"Ip = atan(mu) * (180 / %pi) // by brewster's law\n",
"r = 90 - Ip // calculation for angle of refraction\n",
"printf('Standard formula used \n mu=tan(Ip)\n')\n",
"printf('\n Brewster angle = %f degree\n Angle of refraction = %f degree',Ip,r)"
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 3.20: Calculation_of_Concentration_of_sugar_solution.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"clc \n",
"// Given that\n",
"theta = 10 // rotation of plane of polarization in degree\n",
"s = 60 // specific rotation of sugar solution in degree per decimeter per unit concentration\n",
"l = 2.5 // length of Polari meter in decimeter\n",
"// Sample Problem 20 on page no. 3.29\n",
"printf('\n # PROBLEM 20 # \n')\n",
"c = theta / (s * l) // calculation for concentration of sugar solution\n",
"printf('\n Standard formula used \n c = theta / (s * l). \n')\n",
"printf('\n Concentration of sugar solution = %f gm/cc',c)"
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 3.21: Calculation_of_Specific_rotation_of_sugar_solution.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"clc \n",
"// Given that\n",
"theta = 26.4 // rotation of plane of polarization in degree\n",
"c = 0.2 // concentration of sugar solution in gm/cc\n",
"l = 2 // length of polarizing tube in decimeter\n",
"// Sample Problem 21 on page no. 3.29\n",
"printf('\n # PROBLEM 21 # \n')\n",
"s = theta / (l * c)// calculation for specific rotation of sugar solution\n",
"printf('Standard formula used \n s = (10*theta)/(l*c)\n')\n",
"printf('\n Specific rotation of sugar solution = %f degree/(dm-cc)',s)"
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 3.22: Calculation_of_Specific_rotation_of_sugar_solution.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"clc \n",
"// Given that\n",
"theta = 6.5 // rotation of plane of polarization in degree\n",
"c = 0.05 // concentration of sugar solution in gm/cc\n",
"l = 2 // length of polarizing tube in decimeter\n",
"// Sample Problem 22 on page no. 3.29\n",
"printf('\n # PROBLEM 22 # \n')\n",
"s = theta / (l * c) // calculation for specific rotation of sugar solution\n",
"printf('\n Standard formula used \n s = theta / (l * c). \n ')\n",
"printf('\n Specific rotation of sugar solution = %f degree/(dm-cc)',s)"
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 3.23: Calculation_of_Concentration_of_sugar_solution.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"clc \n",
"// Given that\n",
"w = 80 // weight of impure sugar in gm\n",
"theta = 9.9 // rotation of plane of polarization in degree\n",
"s = 66 // specific rotation of sugar solution in degree per decimeter per unit concentration\n",
"l = 2 // length of Polari meter in decimeter\n",
"// Sample Problem 23 on page no. 3.30\n",
"printf('\n # PROBLEM 23 # \n')\n",
"c = theta / (s * l) * (1000) // in gm/l\n",
"per_c = (c * 100) / w // calculation for concentration of sugar solution\n",
"printf('\n Standard formula used \n c = theta / (s * l) * (1000). \n per_c = (c * 100) / w. \n')\n",
"printf('\n Concentration of sugar solution = %f percent',per_c)"
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 3.24: Calculation_of_Concentration_of_sugar_solution.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"clc \n",
"// Given that\n",
"theta = 11 // rotation of plane of polarization in degree\n",
"s = 66 // specific rotation of sugar solution in degree per decimeter per unit concentration\n",
"l = 2 // length of Polari meter in decimeter\n",
"// Sample Problem 24 on page no. 3.29\n",
"printf('\n # PROBLEM 24 # \n')\n",
"c = theta / (s * l) // calculation for concentration of sugar solution\n",
"printf('\n Standard formula used \n c = theta / (s * l). \n ')\n",
"printf('\n Concentration of sugar solution = %f gm/cc',c)"
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 3.25: Calculation_of_Specific_rotation_of_sugar_solution.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"clc \n",
"// Given that\n",
"theta = 26.4 // rotation of plane of polarization in degree\n",
"c = 0.2 // concentration of sugar solution in gm/cc\n",
"l = 2 // length of polarizing tube in decimeter\n",
"// Sample Problem 25 on page no. 3.30\n",
"printf('\n # PROBLEM 25 # \n')\n",
"s = theta / (l * c) // calculation for specific rotation of sugar solution\n",
"printf('\n Standard formula used \n s = theta / (l * c). \n')\n",
"printf('\n Specific rotation of sugar solution = %f degree/(dm-cc)',s)"
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 3.26: Calculation_of_Optical_rotation_of_diluted_solution.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"clc \n",
"// Given that\n",
"theta = 13 // rotation of plane of polarization in degree\n",
"r = (1 / 3) // ratio of the final concentration to the initial solution\n",
"l = 2 // length of Polari meter in decimeter\n",
"l_ = 3 // length of second polarizing tube in decimeter \n",
"// Sample Problem 26 on page no. 3.30\n",
"printf('\n # PROBLEM 26 # \n')\n",
"theta_ = (l_ * r * theta) / l// calculation for optical rotation of diluted solution\n",
"printf('Standard formula used \n s=theta/(l*c)\n')\n",
"printf('\nOptical rotation of diluted solution = %f degree',theta_)"
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 3.2: Calculation_of_Angle_of_Brewster.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"clc \n",
"// Given that\n",
"mu = 1.33 // refractive index of glass\n",
"// Sample Problem 2 on page no. 3.24\n",
"printf('\n # PROBLEM 2 # \n')\n",
"Ip = atan(mu) * (180 / %pi) // by Brewster's law\n",
"printf('Standard formula used \n mu=tan(Ip)\n')\n",
"printf('\n Angle of brewster = %f degree',Ip)"
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 3.3: Calculation_of_difference_between_polarization_angle.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"clc \n",
"// Given that\n",
"mu_w = 1.33 // refractive index of water\n",
"mu_g = 1.54 // refractive index of glass\n",
"// Sample Problem 3 on page no. 3.24\n",
"printf('\n # PROBLEM 3 # \n')\n",
"Ip_1 = atan(mu_g / mu_w) * (180 / %pi)//calculation for polarizing angle for water\n",
"Ip_2 = atan(mu_w / mu_g) * (180 / %pi) // calculation for polarizing angle for glass\n",
"printf('Standard formula used \n mu=tan(Ip)\n')\n",
"printf('\n Polarizing angle for water to glass = %f degree,\n Polarizing angle for glass to water = %f degree',Ip_1,Ip_2)\n",
"printf('\n So polarizing angle is greater for a beam incident from water to glass')"
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 3.4: Calculation_of_Angle_of_minimum_deviation.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"clc \n",
"// Given that\n",
"Ip = %pi / 3 // polarizing angle of piece of glass for green light in radian\n",
"a = %pi / 3 // angle of prism in radian \n",
"// Sample Problem 4 on page no. 3.24\n",
"printf('\n # PROBLEM 4 # \n')\n",
"mu = tan(Ip) // calculation for refractive index\n",
"delta_m = 2 * (asin(mu * sin(a / 2)) - (a / 2)) * (180 / %pi) // calculation for angle of minimum deviation\n",
"printf('\n Standard formula used \n mu = tan(Ip). \n delta_m = 2 * (asin(mu * sin(a / 2)) - (a / 2)) * (180 / pi). \n')\n",
"printf('\n Angle of minimum deviation = %f degree',delta_m)"
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 3.5: Calculation_of_Brewster_angle.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"clc \n",
"// Given that\n",
"mu_w = 1.33 // refractive index of water\n",
"mu_g = 1.5 // refractive index of glass\n",
"// Sample Problem 5 on page no. 3.25\n",
"printf('\n # PROBLEM 5 # \n')\n",
"Ip = atan(mu_g / mu_w) * (180 / %pi) // calculation for Brewster angle\n",
"printf('\n Standard formula used \n Ip = atan(mu_g / mu_w) * (180 / pi). \n')\n",
"printf('\n Brewster angle = %f degree',Ip)"
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 3.6: Calculation_of_Angle_of_incidence_and_angle_of_refraction.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"clc \n",
"// Given that\n",
"mu = 1.732 // refractive index of glass\n",
"// Sample Problem 6 on page no. 3.25\n",
"printf('\n # PROBLEM 6 # \n')\n",
"Ip = atan(mu) * (180 / %pi) // by Brewster's law\n",
"r = 90 - Ip// calculation for angle of refraction\n",
"printf('Standard formula used \n mu=tan(Ip)\n')\n",
"printf('\n Angle of incidence = %f degree\n Angle of refraction = %f degree',Ip,r)"
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 3.7: Calculation_of_Ratio_between_transmitted_intensity_to_incident_intensity.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"clc \n",
"// Given that\n",
"alpha = %pi / 3 // angle between polarizer and analyzer\n",
"// Sample Problem 7 on page no. 3.25\n",
"printf('\n # PROBLEM 7 # \n')\n",
"r = (cos(alpha))^2 // where r = transmitted intensity / incident intensity\n",
"printf('\n Standard formula used \n r = (cos(alpha))^2. \n')\n",
"printf('\n Ratio between transmitted intensity to incident intensity = %f ',r)"
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 3.8: Calculation_of_The_angle_between_characteristics_directions_of_the_sheet.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"clc \n",
"// Given that\n",
"r1 = 1/3 // ratio of intensity of transmitted light to the intensity of transmitted beam in first case\n",
"r2 = 1/3 // ratio of intensity of transmitted light to the intensity of incident beam in second case\n",
"p = 50 // percentage reduction in intensity of unpolarized light by the sheet \n",
"// Sample Problem 8 on page no. 3.25\n",
"printf('\n # PROBLEM 8 # \n')\n",
"theta1 = acosd(sqrt(r1)) // calculation for the angle between characteristics directions of the sheet in first case\n",
"theta2 = acosd(sqrt(2*r2)) // calculation for the angle between characteristics directions of the sheet in second case\n",
"printf('\n Standard formula used \n theta = acosd(sqrt(r)). \n')\n",
"printf('\n The angle between characteristics directions of the sheet in first case = %f degree. \n the angle between characteristics directions of the sheet in second case = %f degree.',theta1,theta2)"
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 3.9: Calculation_of_Angle_between_the_nicol_prisms.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"clc \n",
"// Given that\n",
"r = 3 / 4 // ratio of intensity of transmitted light to the intensity of incident light\n",
"// Sample Problem 9 on page no. 3.26\n",
"printf('\n # PROBLEM 9 # \n')\n",
"theta = acos(sqrt(r)) * (180 / %pi) // calculation for angle between the nicol prisms\n",
"printf('\n Standard formula used \n theta = acos(sqrt(r)) * (180 / pi). \n') \n",
"printf('\n Angle between the nicol prisms = %f degree',theta)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Scilab",
"language": "scilab",
"name": "scilab"
},
"language_info": {
"file_extension": ".sce",
"help_links": [
{
"text": "MetaKernel Magics",
"url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
}
],
"mimetype": "text/x-octave",
"name": "scilab",
"version": "0.7.1"
}
},
"nbformat": 4,
"nbformat_minor": 0
}
|