summaryrefslogtreecommitdiff
path: root/Engineering_Physics_by_G_Aruldhas/8-SPECIAL_THEORY_OF_RELATIVITY.ipynb
blob: 07c28ec29e7daa7acf2c20a84d69290196f0c02b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
{
"cells": [
 {
		   "cell_type": "markdown",
	   "metadata": {},
	   "source": [
       "# Chapter 8: SPECIAL THEORY OF RELATIVITY"
	   ]
	},
{
		   "cell_type": "markdown",
		   "metadata": {},
		   "source": [
			"## Example 8.10: Rate_of_decreasing_mass_of_sun.sci"
		   ]
		  },
  {
"cell_type": "code",
	   "execution_count": null,
	   "metadata": {
	    "collapsed": true
	   },
	   "outputs": [],
"source": [
"// Scilab Code Ex8.10: Page-175 (2010)\n",
"c = 3e+008;    // Speed of light in vacuum, m/s\n",
"dE = 4e+026;    // Energy radiated per second my the sun, J/s\n",
"dm = dE/c^2;    // Rate of decrease of mass of sun, kg/s\n",
"printf('\nThe rate of decrease of mass of sun = %4.2e kg/s', dm);\n",
"\n",
"// Result\n",
"// The rate of decrease of mass of sun = 4.44e+009 kg/s"
   ]
   }
,
{
		   "cell_type": "markdown",
		   "metadata": {},
		   "source": [
			"## Example 8.11: Relativistic_mass_energy_relation.sci"
		   ]
		  },
  {
"cell_type": "code",
	   "execution_count": null,
	   "metadata": {
	    "collapsed": true
	   },
	   "outputs": [],
"source": [
"// Scilab Code Ex8.11: Page-175 (2010)\n",
"c = 1;    // For simplicity assume speed of light to be unity, m/s\n",
"m0 = 9.1e-031;  // Mass of the electron, kg\n",
"E0 = 0.512;    // Rest energy of electron, MeV\n",
"T = 10;    // Kinetic energy of electron, MeV\n",
"E = T + E0;    // Total energy of electron, MeV\n",
"// From Relativistic mass-energy relation\n",
"// E^2 = c^2*p^2 + m0^2*c^4, solving for p\n",
"p = sqrt(E^2-m0^2*c^4)/c;    // Momentum of the electron, MeV\n",
"// As E = E0/sqrt(1-(u/c)^2), solving for u\n",
"u = sqrt(1-(E0/E)^2)*c;    // Velocity of the electron, m/s\n",
"printf('\nThe momentum of the electron = %4.1f/c MeV', p);\n",
"printf('\nThe velocity of the electron = %6.4fc', u);\n",
"\n",
"// Result\n",
"// The momentum of the electron = 10.5/c MeV\n",
"// The velocity of the electron = 0.9988c "
   ]
   }
,
{
		   "cell_type": "markdown",
		   "metadata": {},
		   "source": [
			"## Example 8.13: Mass_from_relativistic_energy.sci"
		   ]
		  },
  {
"cell_type": "code",
	   "execution_count": null,
	   "metadata": {
	    "collapsed": true
	   },
	   "outputs": [],
"source": [
"// Scilab Code Ex8.13: Page-176 (2010)\n",
"c = 3e+008;    // Speed of light in vacuum, m/s\n",
"E = 4.5e+017;    // Total energy of object, J\n",
"px = 3.8e+008;    // X-component of momentum, kg-m/s\n",
"py = 3e+008;    // Y-component of momentum, kg-m/s\n",
"pz = 3e+008;    // Z-component of momentum, kg-m/s\n",
"p = sqrt(px^2+py^2+px^2);    // Total momentum of the object, kg-m/s\n",
"// From Relativistic mass-energy relation\n",
"// E^2 = c^2*p^2 + m0^2*c^4, solving for m0\n",
"m0 = sqrt(E^2/c^4 - p^2/c^2);    // Rest mass of the body, kg\n",
"printf('\nThe rest mass of the body = %4.2f kg', m0);\n",
"\n",
"// Result\n",
"// The rest mass of the body = 4.56 kg "
   ]
   }
,
{
		   "cell_type": "markdown",
		   "metadata": {},
		   "source": [
			"## Example 8.14: Relativistic_momentum_of_high_speed_probe.sci"
		   ]
		  },
  {
"cell_type": "code",
	   "execution_count": null,
	   "metadata": {
	    "collapsed": true
	   },
	   "outputs": [],
"source": [
"// Scilab Code Ex8.14: Page-176 (2010)\n",
"c = 3e+008;    // Speed of light in vacuum, m/s\n",
"m = 50000;    // Mass of high speed probe, kg\n",
"u = 0.8*c;    // Speed of the probe, m/s\n",
"p = m*u/sqrt(1-(u/c)^2);    // Momentum of the probe, kg-m/s\n",
"printf('\nThe momentum of the high speed probe = %1g kg-m/s', p);\n",
"\n",
"// Result\n",
"// The momentum of the high speed probe = 2e+013 kg-m/s "
   ]
   }
,
{
		   "cell_type": "markdown",
		   "metadata": {},
		   "source": [
			"## Example 8.15: Moving_electron_subjected_to_the_electric_field.sci"
		   ]
		  },
  {
"cell_type": "code",
	   "execution_count": null,
	   "metadata": {
	    "collapsed": true
	   },
	   "outputs": [],
"source": [
"// Scilab Code Ex8.15: Page-177 (2010)\n",
"e = 1.6e-019;    // Electronic charge, C = Energy equivalent of 1 eV, J/eV\n",
"m0 = 9.11e-031;    // Rest mass of electron, kg\n",
"c = 3e+008;    // Speed of light in vacuum, m/s\n",
"u1 = 0.98*c;    // Inital speed of electron, m/s\n",
"u2 = 0.99*c;    // Final speed of electron, m/s\n",
"m1 = m0/sqrt(1-(u1/c)^2);    // Initial relativistic mass of electron, kg\n",
"m2 = m0/sqrt(1-(u2/c)^2);    // Final relativistic mass of electron, kg\n",
"dm = m2 - m1;    // Change in relativistic mass of the electron, kg\n",
"W = dm*c^2;    // Work done on the electron to change its velocity, J\n",
"// As W = eV, V = accelerating potential, solving for V\n",
"V = W/e;    // Accelerating potential, volt\n",
"printf('\nThe change in relativistic mass of the electron = %4.1e kg', dm);\n",
"printf('\nThe work done on the electron to change its velocity = %4.2f MeV', W/(e*1e+006));\n",
"printf('\nThe accelerating potential = %4.2e volt', V);\n",
"\n",
"// Result\n",
"// The change in relativistic mass of the electron = 1.9e-030 kg\n",
"// The work done on the electron to change its velocity = 1.06 MeV\n",
"// The accelerating potential = 1.06e+006 volt"
   ]
   }
,
{
		   "cell_type": "markdown",
		   "metadata": {},
		   "source": [
			"## Example 8.1: Relativistic_length_contraction.sci"
		   ]
		  },
  {
"cell_type": "code",
	   "execution_count": null,
	   "metadata": {
	    "collapsed": true
	   },
	   "outputs": [],
"source": [
"// Scilab Code Ex8.1: Page-171 (2010)\n",
"L_0 = 1;    // For simplicity, we assume classical length to be unity, m\n",
"c = 1;    // For simplicity assume speed of light to be unity, m/s\n",
"L = (1-1/100)*L_0;    // Relativistic length, m\n",
"// Relativistic length contraction gives\n",
"// L = L_0*sqrt(1-v^2/c^2), solving for v\n",
"v = sqrt(1-(L/L_0)^2)*c;    // Speed at which relativistic length is 1 percent of the classical length, m/s\n",
"printf('\nThe speed at which relativistic length is 1 percent of the classical length = %5.3fc', v);\n",
"\n",
"// Result\n",
"// The speed at which relativistic length is 1 percent of the classical length = 0.141c "
   ]
   }
,
{
		   "cell_type": "markdown",
		   "metadata": {},
		   "source": [
			"## Example 8.2: Time_Dilatio.sci"
		   ]
		  },
  {
"cell_type": "code",
	   "execution_count": null,
	   "metadata": {
	    "collapsed": true
	   },
	   "outputs": [],
"source": [
"// Scilab Code Ex8.2: Page-171 (2010)\n",
"c = 1;    // For simplicity assume speed of light to be unity, m/s\n",
"v = 0.9*c;    // Speed at which beam of particles travel, m/s\n",
"delta_t = 5e-006;    // Mean lifetime of particles as observed in the Lab. frame, s\n",
"delta_tau = delta_t*sqrt(1-(v/c)^2);    // Proper lifetime of particle as per Time Dilation rule, s\n",
"printf('\nThe proper lifetime of particle = %4.2e s', delta_tau);\n",
"\n",
"// Result\n",
"// The proper lifetime of particle = 2.18e-006 s\n",
""
   ]
   }
,
{
		   "cell_type": "markdown",
		   "metadata": {},
		   "source": [
			"## Example 8.4: Relativistic_velocity_additio.sci"
		   ]
		  },
  {
"cell_type": "code",
	   "execution_count": null,
	   "metadata": {
	    "collapsed": true
	   },
	   "outputs": [],
"source": [
"// Scilab Code Ex8.4: Page-172 (2010)\n",
"c = 1;    // For simplicity assume speed of light to be unity, m/s\n",
"v = 0.6*c;    // Speed with which the rocket leaves the earth, m/s\n",
"u_prime = 0.9*c;    // Relative speed of second rocket w.r.t. the first rocket, m/s\n",
"u = (u_prime+v)/(1+(u_prime*v)/c^2);    // Speed of second rocket for same direction of firing as per Velocity Addition Rule, m/s\n",
"printf('\nThe speed of second rocket for same direction of firing = %5.3fc', u);\n",
"u = (-u_prime+v)/(1-(u_prime*v)/c^2);    // Speed of second rocket for opposite direction of firing as per Velocity Addition Rule, m/s\n",
"printf('\nThe speed of second rocket for opposite direction of firing = %5.3fc', u);\n",
"\n",
"// Result\n",
"// The speed of second rocket for same direction of firing = 0.974c\n",
"// The speed of second rocket for opposite direction of firing = -0.652c"
   ]
   }
,
{
		   "cell_type": "markdown",
		   "metadata": {},
		   "source": [
			"## Example 8.5: Relativistic_effects_as_observed_for_spaceship.sci"
		   ]
		  },
  {
"cell_type": "code",
	   "execution_count": null,
	   "metadata": {
	    "collapsed": true
	   },
	   "outputs": [],
"source": [
"// Scilab Code Ex8.5: Page-172 (2010)\n",
"c = 1;    // For simplicity assume speed of light to be unity, m/s\n",
"L0 = 1;    // For simplicity assume length in spaceship's frame to be unity, m\n",
"L = 1/2*L0;    // Length as observed on earth, m\n",
"// Relativistic length contraction gives\n",
"// L = L_0*sqrt(1-v^2/c^2), solving for v\n",
"v = sqrt(1-(L/L0)^2)*c;    // Speed at which length of spaceship is observed as half from the earth frame, m/s\n",
"tau = 1;    // Unit time in the spaceship's frame, s\n",
"t = tau/sqrt(1-(v/c)^2);    // Time dilation of the spaceship's unit time, s\n",
"printf('\nThe speed at which length of spaceship is observed as half from the earth frame = %5.3fc', v);\n",
"printf('\nThe time dilation of the spaceship unit time = %1g*tau', t);\n",
"\n",
"// Result\n",
"// The speed at which length of spaceship is observed as half from the earth frame = 0.866c\n",
"// The time dilation of the spaceship unit time = 2*tau"
   ]
   }
,
{
		   "cell_type": "markdown",
		   "metadata": {},
		   "source": [
			"## Example 8.6: Time_difference_and_distance_between_the_events.sci"
		   ]
		  },
  {
"cell_type": "code",
	   "execution_count": null,
	   "metadata": {
	    "collapsed": true
	   },
	   "outputs": [],
"source": [
"// Scilab Code Ex8.6: Page-172 (2010)\n",
"c = 3e+008;    // Speed of light in vacuum, m/s\n",
"v = 0.6*c;    // Velocity with which S2 frame moves relative to S1 frame, m/s\n",
"L_factor = 1/sqrt(1-(v/c)^2);    // Lorentz factor\n",
"t1 = 2e-007;    // Time for which first event occurs, s\n",
"t2 = 3e-007;    // Time for which second event occurs, s\n",
"x1 = 10;    // Position at which first event occurs, m\n",
"x2 = 40;    // Position at which second event occurs, m\n",
"delta_t = L_factor*(t2 - t1)+L_factor*v/c^2*(x1 - x2);    // Time difference between the events, s\n",
"delta_x = L_factor*(x2 - x1)-L_factor*v*(t2 - t1);    // Distance between the events, m\n",
"printf('\nThe time difference between the events = %3.1e s', delta_t);\n",
"printf('\nThe distance between the events = %2d m', delta_x);\n",
"\n",
"// Result\n",
"// The time difference between the events = 5.0e-008 s\n",
"// The distance between the events = 15 m"
   ]
   }
,
{
		   "cell_type": "markdown",
		   "metadata": {},
		   "source": [
			"## Example 8.7: Speed_of_unstable_particle_in_the_Laboratory_frame.sci"
		   ]
		  },
  {
"cell_type": "code",
	   "execution_count": null,
	   "metadata": {
	    "collapsed": true
	   },
	   "outputs": [],
"source": [
"// Scilab Code Ex8.7: Page-173 (2010)\n",
"c = 3e+008;    // Speed of light in vacuum, m/s\n",
"tau = 2.6e-008;    // Mean lifetime the particle in its own frame, s\n",
"d = 20;    // Distance which the unstable particle travels before decaying, m\n",
"// As t = d/v and also t = tau/sqrt(1-(v/c)^2), so that\n",
"// d/v = tau/sqrt(1-(v/c)^2), solving for v\n",
"v = sqrt(d^2/(tau^2+(d/c)^2));    // Speed of the unstable particle in Lab. frame, m/s\n",
"printf('\nThe speed of the unstable particle in Lab. frame = %3.1e m/s', v)\n",
"\n",
"// Result\n",
"// The speed of the unstable particle in Lab. frame = 2.8e+008 m/s"
   ]
   }
,
{
		   "cell_type": "markdown",
		   "metadata": {},
		   "source": [
			"## Example 8.8: Relativistic_effects_applied_to_mu_meso.sci"
		   ]
		  },
  {
"cell_type": "code",
	   "execution_count": null,
	   "metadata": {
	    "collapsed": true
	   },
	   "outputs": [],
"source": [
"// Scilab Code Ex8.8: Page-174 (2010)\n",
"c = 1;    // For simplicity assume speed of light to be unity, m/s\n",
"me = 1;    // For simplicity assume mass of electron to be unity, kg\n",
"tau = 2.3e-006;    // Average lifetime of mu-meson in rest frame, s\n",
"t = 6.9e-006;    // Average lifetime of mu-meson in laboratory frame, s\n",
"// Fromm Time Dilation Rule, tau = t*sqrt(1-(v/c)^2), solving for v\n",
"v = sqrt(1-(tau/t)^2)*c;    // Speed of mu-meson in the laboratory frame, m/s\n",
"c\n",
"m0 = 207*me;    // Rest mass of mu-meson, kg\n",
"m = m0/sqrt(1-(v/c)^2);    // Relativistic variation of mass with velocity, kg\n",
"me = 9.1e-031;    // Mass of an electron, kg\n",
"c = 3e+008;    // Speed of light in vacuum, m/s\n",
"e = 1.6e-019;    // Energy equivalent of 1 eV, J/eV\n",
"T = (m*me*c^2 - m0*me*c^2)/e;    // Kinetic energy of mu-meson, J    \n",
"printf('\nThe speed of mu-meson in the laboratory frame = %6.4fc', v);\n",
"printf('\nThe effective mass of mu-meson = %3d me', m);\n",
"printf('\nThe kinetic energy of mu-meson = %5.1f MeV', T/1e+006);\n",
"\n",
"// Result\n",
"// The speed of mu-meson in the laboratory frame = 0.9428c\n",
"// The effective mass of mu-meson = 620 me\n",
"// The kinetic energy of mu-meson = 211.9 MeV "
   ]
   }
,
{
		   "cell_type": "markdown",
		   "metadata": {},
		   "source": [
			"## Example 8.9: Speed_of_moving_mass.sci"
		   ]
		  },
  {
"cell_type": "code",
	   "execution_count": null,
	   "metadata": {
	    "collapsed": true
	   },
	   "outputs": [],
"source": [
"// Scilab Code Ex8.9: Page-174 (2010)\n",
"c = 1;    // For simplicity assume speed of light to be unity, m/s\n",
"m0 = 1;    // For simplicity assume rest mass to be unity, kg\n",
"m = (20/100+1)*m0;    // Mass in motion, kg\n",
"// As m = m0/sqrt(1-(u/c)^2), solving for u\n",
"u = sqrt(1-(m0/m)^2)*c;    // Speed of moving mass, m/s \n",
"printf('\nThe speed of moving body, u = %5.3fc', u);\n",
"\n",
"// Result\n",
"// The speed of moving body, u = 0.553c "
   ]
   }
],
"metadata": {
		  "kernelspec": {
		   "display_name": "Scilab",
		   "language": "scilab",
		   "name": "scilab"
		  },
		  "language_info": {
		   "file_extension": ".sce",
		   "help_links": [
			{
			 "text": "MetaKernel Magics",
			 "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
			}
		   ],
		   "mimetype": "text/x-octave",
		   "name": "scilab",
		   "version": "0.7.1"
		  }
		 },
		 "nbformat": 4,
		 "nbformat_minor": 0
}