1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
|
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Chapter 11: LASERS"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 11.1: Ratio_of_spontaneous_and_stimulated_emission.sci"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"// Scilab Code Ex11.1: Page-249 (2010)\n",
"h = 6.626e-034; // Planck's constant, Js\n",
"c = 3e+08; // Speed of light in free space, m/s\n",
"k = 1.38e-023; // Boltzmann constant, J/K\n",
"T = 300; // Temperature at absolute scale, K\n",
"lambda = 5500e-010; // Wavelength of visible light, m\n",
"rate_ratio = exp(h*c/(lambda*k*T))-1; // Ratio of spontaneous emission to stimulated emission\n",
"printf('\nThe ratio of spontaneous emission to stimulated emission for visible region = %1.0e', rate_ratio);\n",
"lambda = 1e-02; // Wavelength of microwave, m\n",
"rate_ratio = exp(h*c/(lambda*k*T))-1; // Ratio of spontaneous emission to stimulated emission\n",
"printf('\nThe ratio of spontaneous emission to stimulated emission for microwave region = %6.4f', rate_ratio);\n",
"\n",
"// Result\n",
"// The ratio of spontaneous emission to stimulated emission for visible region = 8e+037\n",
"// The ratio of spontaneous emission to stimulated emission for microwave region = 0.0048"
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 11.2: Energy_of_excited_state_of_laser_system.sci"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"// Scilab Code Ex11.2: Page-250 (2010)\n",
"e = 1.6e-019; // Energy equivalent of 1 eV, J/eV\n",
"h = 6.626e-034; // Planck's constant, Js\n",
"c = 3e+08; // Speed of light in free space, m/s\n",
"lambda = 690e-009; // Wavelength of laser light, m\n",
"E_lower = 30.5; // Energy of lower state, eV\n",
"E = h*c/(lambda*e); // Energy of the laser light, eV\n",
"E_ex = E_lower + E; // Energy of excited state of laser system, eV\n",
"printf('\nThe energy of excited state of laser system = %4.1f eV', E_ex);\n",
"\n",
"// Result\n",
"// The energy of excited state of laser system = 32.3 eV"
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 11.3: Condition_of_equivalence_of_stimulated_and_spontaneous_emission.sci"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"// Scilab Code Ex11.3: Page-250 (2010)\n",
"h = 6.626e-034; // Planck's constant, Js\n",
"k = 1.38e-023; // Boltzmann constant, J/K\n",
"// Stimulated Emission = Spontaneous Emission <=> exp(h*f/(k*T))-1 = 1 i.e.\n",
"// f/T = log(2)*k/h = A\n",
"A = log(2)*k/h; // Frequency per unit temperature, Hz/K\n",
"printf('\nThe stimulated emission equals spontaneous emission iff f/T = %4.2e Hz/K', A);\n",
"\n",
"// Result\n",
"// The stimulated emission equals spontaneous emission iff f/T = 1.44e+010 Hz/K "
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 11.4: Area_and_intensity_of_image_formed_by_laser.sci"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"// Scilab Code Ex11.4: Page-250 (2010)\n",
"lambda = 500e-009; // Wavelength of laser light, m\n",
"f = 15e-02; // Focal length of the lens, m\n",
"d = 2e-02; // Diameter of the aperture of source, m\n",
"a = d/2; // Radius of the aperture of source, m\n",
"P = 5e-003; // Power of the laser, W\n",
"A = %pi*lambda^2*f^2/a^2; // Area of the spot at the focal plane, metre square\n",
"I = P/A; // Intensity at the focus, W per metre square \n",
"printf('\nThe area of the spot at the focal plane = %4.2e metre square', A);\n",
"printf('\nThe intensity at the focus = %4.2e watt per metre square', I);\n",
"\n",
"// Result\n",
"// The area of the spot at the focal plane = 1.77e-010 metre square\n",
"// The intensity at the focus = 2.83e+007 watt per metre square "
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 11.5: Rate_of_energy_released_in_a_pulsed_laser.sci"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"// Scilab Code Ex11.5: Page-251 (2010)\n",
"h = 6.626e-034; // Planck's constant, Js\n",
"c = 3e+08; // Speed of light in free space, m/s\n",
"lambda = 1064e-009; // Wavelength of laser light, m\n",
"P = 0.8; // Average power output per laser pulse, W\n",
"dt = 25e-003; // Pulse width of laser, s\n",
"E = P*dt; // Energy released per pulse, J\n",
"N = E/(h*c/lambda); // Number of photons in a pulse\n",
"printf('\nThe energy released per pulse = %2.0e J', E);\n",
"printf('\nThe number of photons in a pulse = %4.2e', N);\n",
"\n",
"// Result\n",
"// The energy released per pulse = 2e-002 J\n",
"// The number of photons in a pulse = 1.07e+017 "
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 11.6: Angular_and_linear_spread_of_laser_beam.sci"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"// Scilab Code Ex11.6:Page-251 (2010)\n",
"lambda = 693e-009; // Wavelength of laser beam, m\n",
"D = 3e-003; // Diameter of laser beam, m\n",
"d_theta = 1.22*lambda/D; // Angular spread of laser beam, rad\n",
"d = 300e+003; // Height of a satellite above the surface of earth, m\n",
"a = d_theta*d; // Diameter of the beam on the satellite, m\n",
"printf('\nThe height of a satellite above the surface of earth = %4.2e rad', d_theta);\n",
"printf('\nThe diameter of the beam on the satellite = %4.1f m', a);\n",
"\n",
"// Result\n",
"// The height of a satellite above the surface of earth = 2.82e-004 rad\n",
"// The diameter of the beam on the satellite = 84.5 m "
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Scilab",
"language": "scilab",
"name": "scilab"
},
"language_info": {
"file_extension": ".sce",
"help_links": [
{
"text": "MetaKernel Magics",
"url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
}
],
"mimetype": "text/x-octave",
"name": "scilab",
"version": "0.7.1"
}
},
"nbformat": 4,
"nbformat_minor": 0
}
|