1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
|
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Chapter 8: Laser and Fibre Optics"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 8.1: Image_produced_by_laser_beam.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"// Scilab Code Ex8.1: Page-397 (2008)\n",
"clc; clear;\n",
"lambda = 6000e-008; // Wavelength of the lase beam, cm\n",
"P = 10e-003; // Power of the laser beam, W\n",
"theta = 1.5e-004; // Angular spread of laser beam, rad\n",
"f = 10; // Focal length of the lens, cm\n",
"r = f*theta; // Radius of the image, cm\n",
"rho = P/(%pi*r^2*1e+003); // Power density of the image, kW/Sq.cm\n",
"L_w = lambda/(theta/10); // Coherence width, mm\n",
"printf('\nThe radius of the image = %3.1e cm', r);\n",
"printf('\nThe power density of the image = %3.1f kW/Sq.cm', rho);\n",
"printf('\nThe coherence width = %d mm', L_w);\n",
"// Result \n",
"// The radius of the image = 1.5e-03 cm\n",
"// The power density of the image = 1.4 kW/Sq.cm\n",
"// The coherence width = 4 mm "
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 8.2: Pumping_energy_required_for_He_Ne_laser_transition.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"// Scilab Code Ex8.2: Page-398 (2008)\n",
"clc; clear;\n",
"lambda = 632.8e-009; // Wavelength of the lase beam, cm\n",
"E_2P = 15.2e-019; // Energy of 2P level, J\n",
"h = 6.626e-034; // Planck's constant, Js\n",
"c = 3e+008; // Speed of light, m/s\n",
"e = 1.6e-019; // Energy equivalent of 1 eV, J/eV\n",
"E_Pump = E_2P + h*c/lambda; // The required pumping energy, J\n",
"printf('\nThe pumping energy required for He Ne laser transition = %5.2f eV', E_Pump/e);\n",
"// Result \n",
"// The pumping energy required for He Ne laser transition = 11.46 eV "
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 8.3: Wavelength_of_radiation_emitted_at_room_temperature.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"// Scilab Code Ex8.3: Page-398 (2008)\n",
"clc; clear;\n",
"h = 6.626e-034; // Planck's constant, Js\n",
"c = 3e+008; // Speed of light, m/s\n",
"T = 27+273; // Room temperature, K\n",
"k = 1.38e-023; // Boltzmann constant, J/mol/K\n",
"lambda = h*c/(k*T); // Wavelength of radiation mitted at room temperature, m\n",
"printf('\nThe wavelength of radiation mitted at room temperature = %3.1e m', lambda);\n",
"// Result \n",
"// The wavelength of radiation mitted at room temperature = 4.8e-05 m"
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 8.4: Refractive_index_of_the_cladding_in_an_optical_fibre.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"// Scilab Code Ex8.4: Page-398 (2008)\n",
"clc; clear;\n",
"NA = 0.5; // Numerical aperture of the optical fibre\n",
"n1 = 1.54; // Refractive index of the core material\n",
"n2 = sqrt(n1^2-NA^2); // Refractive index of the cladding in an optical fibre\n",
"printf('\nThe refractive index of the cladding in the optical fibre = %4.2f', n2);\n",
"// Result \n",
"// The refractive index of the cladding in the optical fibre = 1.46 "
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 8.5: Numerical_aperture_and_acceptance_angle_of_the_optical_fibre.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"// Scilab Code Ex8.5: Page-398 (2008)\n",
"clc; clear;\n",
"n1 = 1.51; // Refractive index of the core material\n",
"n2 = 1.47; // Refractive index of the cladding \n",
"NA = sqrt(n1^2-n2^2); // Numerical aperture of the optical fibre\n",
"n0 = 1; // Refractive index of air\n",
"theta_a = asin(NA/n0); // Acceptance angle of the optical fibre, rad\n",
"printf('\nThe numerical aperture of the optical fibre = %6.4f', NA);\n",
"printf('\nThe acceptance angle of the optical fibre = %4.2f degrees', theta_a*180/3.14);\n",
"// Result \n",
"// The numerical aperture of the optical fibre = 0.3453\n",
"// The acceptance angle of the optical fibre = 20.21 degrees "
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Scilab",
"language": "scilab",
"name": "scilab"
},
"language_info": {
"file_extension": ".sce",
"help_links": [
{
"text": "MetaKernel Magics",
"url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
}
],
"mimetype": "text/x-octave",
"name": "scilab",
"version": "0.7.1"
}
},
"nbformat": 4,
"nbformat_minor": 0
}
|