1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
|
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Chapter 5: Quantum Mechanics"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 5.10: Planck_constant_and_threshold_wavelength_of_metal.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"// Scilab Code Ex5.10: Page-288 (2008)\n",
"clc; clear;\n",
"c = 3e+008; // Speed of light, m/s\n",
"KE1 = 3.62e-019; // Maximum kinetic energy of photoelectrons with first wavelength, eV\n",
"lambda1 = 3000; // First wavelength of incident radiation, angstrom\n",
"KE2 = 0.972e-019; // Maximum kinetic energy of photoelectrons with second wavelength, eV\n",
"lambda2 = 5000; // Second wavelength of incident radiation, angstrom\n",
"A = [c/lambda1, -1; c/lambda2, -1]; // Declare a square matrix as per Einstein's Photoelectric relation, KE = h*c/lambda - phi\n",
"B = [KE1; KE2]; // Put KEs in a column matrix\n",
"X = inv(A)*B; // Apply inverse multiplication of a matrix to fing h and phi\n",
"lambda0 = X(1)*1e-010*c/X(2); // Threshold wavelength of metal, m\n",
"printf('\nh = %4.2e Js\nphi = %1.0e J', X(1)*1e-010, X(2));\n",
"printf('\nThe threshold wavelength of metal = %d angstrom', ceil(lambda0/1e-010));\n",
"\n",
"// Result\n",
"// h = 6.62e-034 Js\n",
"// phi = 3e-019 J\n",
"// The threshold wavelength of metal = 6620 angstrom "
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 5.11: Energy_and_wavelength_of_incident_photon.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"// Scilab Code Ex5.11: Page-288 (2008)\n",
"clc; clear;\n",
"c = 3e+008; // Speed of light, m/s\n",
"e = 1.6e-019; // Energy equivalent of 1 eV, J\n",
"h = 6.62e-034; // Planck's constant, Js\n",
"m0 = 9.1e-031; // Rest mass of an electron, kg\n",
"alpha = 90; // Scattering angle for X-ray photon, degree\n",
"d_lambda = h/(m0*c)*(1-cosd(alpha)); // Wavelength shift after collision, m\n",
"lambda = d_lambda; // Wavelength of the incident photon according to the condition, m\n",
"E = h*c/(lambda*e*1e+006); // Energy of the incident photon, MeV\n",
"printf('\nThe wavelength of the incident photon = %6.4e m', lambda);\n",
"printf('\nThe energy of the incident photon = %4.2f MeV', E);\n",
"\n",
"// Result\n",
"// The wavelength of the incident photon = 2.4249e-012 m\n",
"// The energy of the incident photon = 0.51 MeV "
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 5.12: Energy_lost_by_an_X_ray_photon_in_collsion_with_an_electron.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"// Scilab Code Ex5.12: Page-289 (2008)\n",
"clc; clear;\n",
"c = 3e+008; // Speed of light, m/s\n",
"e = 1.602e-019; // Energy equivalent of 1 eV, J\n",
"h = 6.6e-034; // Planck's constant, Js\n",
"lambda = 0.1; // Wavelength of X ray photon, angstrom\n",
"m0 = 9.1e-031; // Rest mass of an electron, kg\n",
"alpha = 90; // Scattering angle for X-ray photon, degree\n",
"d_lambda = h/(m0*c*1e-010)*(1-cosd(alpha)); // Wavelength shift after collision, angstrom\n",
"lambda_prime = lambda + d_lambda; // Wavelength of the scattered photon, angstrom\n",
"dE = h*c*1e+010/e*(1/lambda - 1/lambda_prime); // Energy lost by the X ray photon by collision, eV\n",
"printf('\nThe energy lost by the X ray photon by collision = %4.1f KeV', dE/1e+003);\n",
"\n",
"// Result\n",
"// The energy lost by the X ray photon by collision = 24.1 KeV "
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 5.13: The_Compton_effect_stidied_at_different_scattering_angles.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"// Scilab Code Ex5.13: Page-289 (2008)\n",
"clc; clear;\n",
"c = 3e+008; // Speed of light, m/s\n",
"e = 1.602e-019; // Energy equivalent of 1 eV, J\n",
"h = 6.6e-034; // Planck's constant, Js\n",
"m0 = 9.1e-031; // Rest mass of an electron, kg\n",
"alpha = [90 60 45 180]; // Different scattering angle for X-ray photon, degrees\n",
"d_lambda = zeros(4);\n",
"for i = 1:1:4\n",
" d_lambda(i) = h/(m0*c*1e-010)*(1-cosd(alpha(i))); // Wavelength shift after collision, angstrom\n",
" printf('\nFor alpha = %d degree, d_lambda = %6.4f angstrom', alpha(i), d_lambda(i));\n",
"end\n",
"lambda = 0.2; // Given wavelength of incident X-ray photon, angstrom\n",
"lambda_prime = lambda + d_lambda(3); // Wavelength of the scattered photon at 45 degree, angstrom\n",
"printf('\nThe wavelength of the photon scattered at 45 degree = %5.3f angstrom', lambda_prime);\n",
"lambda_prime = lambda + d_lambda(4); // Maximum wavelength of the photon scattered at 180 degree, angstrom\n",
"KE_max = h*c*1e+010*(1/lambda - 1/lambda_prime); // Maximum kinetic energy of the recoil electron, J\n",
"printf('\nThe maximum kinetic energy of the recoil electron = %4.2e J', KE_max);\n",
"\n",
"// Result\n",
"// For alpha = 90 degree, d_lambda = 0.0242 angstrom\n",
"// For alpha = 60 degree, d_lambda = 0.0121 angstrom\n",
"// For alpha = 45 degree, d_lambda = 0.0071 angstrom\n",
"// For alpha = 180 degree, d_lambda = 0.0484 angstrom\n",
"// The wavelength of the photon scattered at 45 degree = 0.207 angstrom\n",
"// The maximum kinetic energy of the recoil electron = 1.93e-015 J "
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 5.15: de_Broglie_wavelength_associated_with_moving_masses.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"// Scilab Code Ex5.15: Page-292 (2008)\n",
"clc; clear;\n",
"h = 6.6e-034; // Planck's constant, Js\n",
"// For golf ball\n",
"m = 0.046; // Mass of the golf ball, kg\n",
"v = 36; // Velocity of the golf ball, m/s\n",
"lambda = h/(m*v); // de-Broglie wavelength associated with the moving golf ball, m\n",
"printf('\nThe de-Broglie wavelength associated with the moving golf ball = %1.0e m', lambda);\n",
"if lambda/1e-010 > 0.1 then\n",
" printf('\nThe moving golf ball may exhibit wave character.');\n",
"end\n",
"// For an electron\n",
"m = 9.11e-031; // Mass of the electron, kg\n",
"v = 1e+007; // Velocity of the electron, m/s\n",
"lambda = h/(m*v); // de-Broglie wavelength associated with the moving electron, m\n",
"printf('\nThe de-Broglie wavelength associated with the moving electron = %3.1e m', lambda);\n",
"if lambda/1e-010 > 0.1 then\n",
" printf('\nThe moving electron may exhibit wave character.');\n",
"end\n",
"\n",
"// Result\n",
"// The de-Broglie wavelength associated with the moving golf ball = 4e-034 m\n",
"// The de-Broglie wavelength associated with the moving electron = 7.2e-011 m\n",
"// The moving electron may exhibit wave character. "
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 5.16: Voltage_applied_to_the_electron_microscope_to_produce_the_required_wavelength.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"// Scilab Code Ex5.16: Page-292 (2008)\n",
"clc; clear;\n",
"h = 6.62e-034; // Planck's constant, Js\n",
"e = 1.602e-019; // Energy equivalent of 1 eV, J\n",
"lambda = 0.40e-010; // de-Broglie wavelength associated with the moving electron, m\n",
"m = 9.11e-031; // Rest mass of an electron, kg\n",
"V = (h/lambda)^2/(2*m*e); // Voltage applied to the electron microscope to produce the required wavelength, volt\n",
"printf('\nThe voltage applied to the electron microscope to produce the required de-Broglie wavelength = %5.1f volt', V);\n",
"\n",
"// Result\n",
"// The voltage applied to the electron microscope to produce the required de-Broglie wavelength = 938.4 volt "
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 5.18: de_Broglie_wavelength_of_a_neutron_of_given_energy.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"// Scilab Code Ex5.18: Page-293 (2008)\n",
"clc; clear;\n",
"h = 6.62e-034; // Planck's constant, Js\n",
"e = 1.602e-019; // Energy equivalent of 1 eV, J\n",
"E_k = 12.8e+006; // Energy of the moving neutron, eV\n",
"m0 = 1.675e-027; // Rest mass of a neutron, kg\n",
"lambda = h/sqrt(2*m0*E_k*e) // de-Broglie wavelength associated with the moving neutron, m\n",
"printf('\nThe de-Broglie wavelength of the moving neutron = %3.1e angstrom', lambda/1e-010);\n",
"\n",
"// Result\n",
"// The de-Broglie wavelength of the moving neutron = 8.0e-005 angstrom "
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 5.19: EX5_19.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"// Scilab Code Ex5.19: Page-294 (2008)\n",
"clc; clear;\n",
"h = 6.62e-034; // Planck's constant, Js\n",
"e = 1.602e-019; // Energy equivalent of 1 eV, J\n",
"m = 1.67e-027; // Rest mass of a proton, kg\n",
"r = 5e-015; // Radius of the nucleus, m\n",
"delta_x = 2*r; // Minimum uncertainty in position of the proton, m\n",
"delta_p = h/(2*%pi*delta_x); // Minimum uncertainty in proton's momentum, kg-m/s\n",
"KE = delta_p^2/(2*m); // Minimum kinetic emergy of the proton, J\n",
"printf('\nThe minimum uncertainty in momentum of the proton = %4.2e kg-m/s', delta_p);\n",
"printf('\nThe minimum kinetic emergy of the proton = %5.3f MeV', KE/(e*1e+006));\n",
"\n",
"// Result\n",
"// The minimum uncertainty in momentum of the proton = 1.05e-020 kg-m/s\n",
"// The minimum kinetic emergy of the proton = 0.207 MeV "
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 5.20: Minimum_uncertainty_in_the_measurement_of_velocity_of_the_electron.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"// Scilab Code Ex5.20: Page-294 (2008)\n",
"clc; clear;\n",
"h = 6.62e-034; // Planck's constant, Js\n",
"m = 9.11e-031; // Rest mass of a electron, kg\n",
"delta_x = 1e-009; // Minimum uncertainty in position of the electron, m\n",
"delta_p_min = h/delta_x; // Minimum uncertainty in electron's momentum, kg-m/s\n",
"delta_v = delta_p_min/m; // Minimum uncertainty in the measurement of velocity of the electron, m/s\n",
"printf('\nThe minimum uncertainty in the measurement of velocity of the electron = %4.2e m/s', delta_v);\n",
"\n",
"// Result\n",
"// The minimum uncertainty in the measurement of velocity of the electron = 7.27e+005 m/s "
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 5.22: Minimum_uncertainty_in_the_position_of_the_particle.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"// Scilab Code Ex5.22: Page-295 (2008)\n",
"clc; clear;\n",
"h = 6.62e-034; // Planck's constant, Js\n",
"m = 1e-009; // Mass of the particle, kg\n",
"v = 1; // Velocity of the particle, m/s\n",
"delta_v = v*0.01/100; // Minimum uncertainty in the velocity of the particle, m/s\n",
"delta_x = h/(m*delta_v); // Minimum uncertainty in the position of the particle, m \n",
"printf('\nThe minimum uncertainty in the position of the particle = %4.2e m', delta_x);\n",
"\n",
"// Result\n",
"// The minimum uncertainty in the position of the particle = 6.62e-021 m "
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 5.23: Uncertainty_with_which_position_of_the_electron_can_be_located.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"// Scilab Code Ex5.23: Page-295 (2008)\n",
"clc; clear;\n",
"h = 6.62e-034; // Planck's constant, Js\n",
"m = 9.1e-031; // Mass of the electron, kg\n",
"v = 1e+003; // Velocity of the electron, m/s\n",
"delta_v = v*0.05/100; // Minimum uncertainty in the velocity of the electron, m/s\n",
"delta_x = h/(m*delta_v); // Minimum uncertainty in the position of the electron, m \n",
"printf('\nThe minimum uncertainty in the position of the electron = %4.2e m', delta_x);\n",
"\n",
"// Result\n",
"// The minimum uncertainty in the position of the electron = 1.45e-003 m "
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 5.24: Minimum_uncertainty_in_energy_of_the_excited_state_of_an_atom.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"// Scilab Code Ex5.24: Page-295 (2008)\n",
"clc; clear;\n",
"h = 6.62e-034; // Planck's constant, Js\n",
"e = 1.602e-019; // Energy equivalent of 1 eV, J\n",
"delta_t = 1e-008; // Life time of excited state of an atom, s\n",
"delta_E = h/(2*%pi*delta_t); // Minimum uncertainty in the energy of the excited state of the atom, J \n",
"printf('\nThe minimum uncertainty in the energy of the excited state of the atom = %3.1e eV', delta_E/e);\n",
"\n",
"// Result\n",
"// The minimum uncertainty in the energy of the excited state of the atom = 6.6e-008 eV "
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 5.25: Probable_uncertainty_in_energy_and_frequency_of_gamma_ray_photon.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"// Scilab Code Ex5.25: Page-296 (2008)\n",
"clc; clear;\n",
"h = 6.62e-034; // Planck's constant, Js\n",
"delta_t = 1e-012; // Life time of a nucleus in the excited state, s\n",
"delta_E = h/(2*%pi*delta_t); // Minimum uncertainty in the energy of the excited state of the nucleus, J \n",
"// As E = h*nu, solving for delta_nu\n",
"delta_nu = delta_E/h; // Minimum uncertainty in the frequency of the excited state of the nucleus, Hz\n",
"printf('\nThe minimum uncertainty in the energy of the excited state of the nucleus = %5.3e J', delta_E);\n",
"printf('\nThe minimum uncertainty in the frequency of the excited state of the nucleus = %4.2e MHz', delta_nu/1e+006);\n",
"\n",
"// Result\n",
"// The minimum uncertainty in the energy of the excited state of the nucleus = 1.054e-022 J\n",
"// The minimum uncertainty in the frequency of the excited state of the nucleus = 1.59e+005 MHz "
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 5.29: Lowest_energy_of_an_electron_in_one_dimensional_force_free_region.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"// Scilab Code Ex5.29: Page-300 (2008)\n",
"clc; clear;\n",
"h = 6.62e-034; // Planck's constant, Js\n",
"e = 1.602e-019; // Energy equivalent of 1 eV, J\n",
"m = 9.11e-031; // Rest mass of the electron, kg\n",
"l = 4e-010; // Length of the force free region, m\n",
"n = 1; // Principal quantum number for lowest energy state\n",
"E1 = n^2*h^2/(8*m*l^2); // Lowest energy of an electron in one dimensional force free region, J\n",
"printf('\nThe lowest energy of an electron in one dimensional force free region = %4.2f eV', E1/e);\n",
"\n",
"// Result\n",
"// The lowest energy of an electron in one dimensional force free region = 2.35 eV "
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 5.2: Temperature_of_the_surface_of_su.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"// Scilab Code Ex5.2: Page-284 (2008)\n",
"clc; clear;\n",
"lambda_m = 4753e-010; // Wavelength from the sun at which maximum energy is emitted, m\n",
"b = 2.88e-003; // Wein's constant, m-K\n",
"T = b/lambda_m; // Temperature of the surface of sun\n",
"printf('\nThe temperature of the surface of sun = %d K', ceil(T));\n",
"\n",
"// Result\n",
"// The temperature of the surface of sun = 6060 K "
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 5.30: The_excited_state_energies_of_the_particle_entrapped_in_a_one_dimensional_box.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"// Scilab Code Ex5.30: Page-300 (2008)\n",
"clc; clear;\n",
"e = 1.602e-019; // Energy equivalent of 1 eV, J\n",
"E1 = 3.2e-018/e; // Minimum energy possible for a particle entrapped in a one dimensional box, eV\n",
"n = [1 2 3 4]; // Principal quantum number for K, L, M and N states\n",
"printf('\nThe next three energies which the particle can have are:');\n",
"for i = 2:1:4\n",
" printf('\nE%d = %d eV', i, ceil(i^2*E1));\n",
"end\n",
"\n",
"// Result\n",
"// The next three energies which the particle can have are:\n",
"// E2 = 80 eV\n",
"// E3 = 180 eV\n",
"// E4 = 320 eV "
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 5.31: Probability_of_finding_the_particle_within_a_given_interval.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"// Scilab Code Ex5.31: Page-301 (2008)\n",
"clc; clear;\n",
"delta_x = 4; // Interval at the centre of the box at which the probability is to be found out, angstrom\n",
"l = 10; // Width of one dimensional infinite height box, angstrom\n",
"P = 2*delta_x/l; // Probability of finding the particle within 4 angstrom interval\n",
"printf('\nThe probability of finding the particle within the %d angstrom interval at the centre of the box = %3.1f', delta_x, P);\n",
"\n",
"// Result\n",
"// The probability of finding the particle within the 4 angstrom interval at the centre of the box = 0.8 "
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 5.32: EX5_32.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"// Scilab Code Ex5.32: Page-301 (2008)\n",
"clc; clear;\n",
"L = 1; // Assume the length of the box to be unity, m\n",
"L1 = 0.4*L; // Lower limit, m\n",
"L2 = 0.6*L; // Upper limit, m\n",
"x = (L1+L2)/2; // Mean position of particle, m\n",
"delta_x = L2 - L1; // Uncertainty in position of the particle, m\n",
"for n = 1:1:3\n",
" P = 2/L*sin(n*%pi*x/L)^2; // Probability density, per m\n",
" printf('\nFor n = %d, the probability, P = %3.1f', n, P*delta_x);\n",
"end\n",
"\n",
"// Result\n",
"// For n = 1, the probability, P = 0.4\n",
"// For n = 2, the probability, P = 0.0\n",
"// For n = 3, the probability, P = 0.4 "
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 5.3: Wavelength_of_maximum_intensity_of_radiation.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"// Scilab Code Ex5.3: Page-284 (2008)\n",
"clc; clear;\n",
"b = 2.898e-003; // Wein's constant, m-K\n",
"T = 3000 + 273; // Temperature of the source, K\n",
"lambda_m = b/T; // Wavelength of maximum intensity of radiation emitted from the source, m\n",
"printf('\nThe wavelength of maximum intensity of radiation emitted from the source = %d angstrom', lambda_m/1e-010);\n",
"\n",
"// Result\n",
"// The wavelength of maximum intensity of radiation emitted from the source = 8854 angstrom "
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 5.4: Kinetic_energy_of_the_ejected_photoelectrons.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"// Scilab Code Ex5.4: Page-285 (2008)\n",
"clc; clear;\n",
"h = 6.62e-034; // Planck's constant, Js\n",
"c = 3e+008; // Speed of light, m/s\n",
"lambda = 2300e-010; // Thereshold wavelength for tungsten, m\n",
"phi = h*c/lambda; // Work function for tungsten, J\n",
"lambda = 1800e-010; // Wavelength of incident radiation, m\n",
"E = h*c/lambda; // Energy of the incidnt radiation, J\n",
"KE = E - phi; // Kinetic energy of the ejected photoelectrons, J\n",
"printf('\nThe kinetic energy of the ejected photoelectrons = %3.1f eV', KE/1.6e-019);\n",
"\n",
"// Result\n",
"// The kinetic energy of the ejected photoelectrons = 1.5 eV "
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 5.5: Possibility_of_electron_emission_with_the_given_incident_wavelengths.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"// Scilab Code Ex5.5: Page-285 (2008)\n",
"clc; clear;\n",
"function [] = check_energy(E, L)\n",
"phi = 4.8; // Work function for tungsten, eV\n",
" if E > phi then\n",
" printf('\nThe wavelength %d angstrom will be able to liberate an electron.', ceil(L/1e-010));\n",
" else\n",
" printf('\nThe wavelength %d angstrom will not be able to liberate an electron.', ceil(L/1e-010)); \n",
" end\n",
"endfunction\n",
"h = 6.62e-034; // Planck's constant, Js\n",
"c = 3e+008; // Speed of light, m/s\n",
"// Case 1\n",
"lambda = 2000e-010; // Wavelength of incident radiation, m\n",
"E = h*c/(lambda*1.6e-019); // Energy of the incidnt radiation, eV\n",
"check_energy(E, lambda); // Check for the wavelength\n",
"// Case 2\n",
"lambda = 5000e-010; // Wavelength of incident radiation, m\n",
"E = h*c/(lambda*1.6e-019); // Energy of the incidnt radiation, eV\n",
"check_energy(E, lambda); // Check for the wavelength\n",
"\n",
"// Result\n",
"// The wavelength 2000 angstrom will be able to liberate an electron.\n",
"// The wavelength 5000 angstrom will not be able to liberate an electron. "
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 5.6: Velocity_of_emitted_photoelectrons.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"// Scilab Code Ex5.6: Page-286 (2008)\n",
"clc; clear;\n",
"h = 6.62e-034; // Planck's constant, Js\n",
"c = 3e+008; // Speed of light, m/s\n",
"e = 1.6e-019; // Energy quivalent of 1 eV, J\n",
"phi = 2.28*e; // Work function for material, J\n",
"m = 9.1e-031; // Mass of an electron, kg\n",
"lambda = 3000e-010; // Wavelength of incident radiation, m\n",
"E = h*c/lambda; // Energy of the incidnt radiation, J\n",
"KE = E - phi; // Kinetic energy of the ejected photoelectrons, J\n",
"v = sqrt(2*KE/m); // Velocity of emitted electron, m/s\n",
"printf('\nThe velocity of the emitted electron = %4.2e m/s', v);\n",
"\n",
"// Result\n",
"// The velocity of the emitted electron = 8.08e+005 m/s "
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 5.7: A_photosensitive_material_emitting_photoelectrons.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"// Scilab Code Ex5.7: Page-286 (2008)\n",
"clc; clear;\n",
"h = 6.62e-034; // Planck's constant, Js\n",
"c = 3e+008; // Speed of light, m/s\n",
"e = 1.6e-019; // Energy quivalent of 1 eV, J\n",
"phi = 4.2*e; // Work function for material, J\n",
"lambda = 2000e-010; // Wavelength of incident radiation, m\n",
"E = h*c/lambda; // Energy of the incidnt radiation, J\n",
"KE_fast = (E - phi)/e; // Kinetic energy of the fastest photoelectron, eV\n",
"KE_slow = 0; // Kinetic energy of the slowest photoelectron, eV\n",
"printf('\nThe kinetic energy of the fastest photoelectron = %d eV', KE_fast);\n",
"printf('\nThe kinetic energy of the slowest photoelectron = %d eV', KE_slow);\n",
"V = (E - phi)/e; // Stopping potential, V\n",
"printf('\nThe stopping potential = %d volt', V);\n",
"\n",
"// Result\n",
"// The kinetic energy of the fastest photoelectron = 2 eV\n",
"// The kinetic energy of the slowest photoelectron = 0 eV\n",
"// The stopping potential = 2 volt "
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 5.8: Maximum_wavelength_of_radiation_which_would_start_the_emission_of_photoelectrons.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"// Scilab Code Ex5.8: Page-287 (2008)\n",
"clc; clear;\n",
"h = 6.62e-027; // Planck's constant, erg-s\n",
"c = 3e+010; // Speed of light, cm/s\n",
"phi = 3.31e-012; // Work function for material, erg\n",
"lambda0 = h*c/phi; // Wavelength of incident radiation, cm\n",
"printf('\nThe maximum wavelength of radiation which would start the emission of photoelectrons = %d angstrom', lambda0/1e-008);\n",
"\n",
"// Result\n",
"// The maximum wavelength of radiation which would start the emission of photoelectrons = 6000 angstrom "
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 5.9: Potassium_surface_exposed_to_UV_radiatio.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"// Scilab Code Ex5.9: Page-287 (2008)\n",
"clc; clear;\n",
"h = 6.62e-034; // Planck's constant, Js\n",
"c = 3e+008; // Speed of light, m/s\n",
"e = 1.6e-019; // Energy quivalent of 1 eV, J\n",
"phi = 2.1*e; // Work function for material, J\n",
"lambda = 3500e-010; // Wavelength of incident UV radiation, m\n",
"E = 1e-004; // Energy incident per sec on 1 Sq. cm of potassium surface, J\n",
"eta = 0.5/100; // Efficiency of potassium surface\n",
"KE = (h*c/lambda-phi)/e; // Maximum kinetic energy of the ejected photoelectrons, eV\n",
"N = eta*E/(KE*e); // Number of photoelectrons emitted per second per Sq. cm of potassium surface\n",
"printf('\nThe maximum kinetic energy of the incidnt radiation = %4.2f eV', KE);\n",
"printf('\nThe number of photoelectrons emitted per second per Sq. cm of potassium surface = %4.2e', N);\n",
"\n",
"// Result\n",
"// The maximum kinetic energy of the incidnt radiation = 1.45 eV\n",
"// The number of photoelectrons emitted per second per Sq. cm of potassium surface = 2.16e+012 "
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Scilab",
"language": "scilab",
"name": "scilab"
},
"language_info": {
"file_extension": ".sce",
"help_links": [
{
"text": "MetaKernel Magics",
"url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
}
],
"mimetype": "text/x-octave",
"name": "scilab",
"version": "0.7.1"
}
},
"nbformat": 4,
"nbformat_minor": 0
}
|