1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
|
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Chapter 6: CORONA"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 6.1: EX6_1.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"//To determine the critical disruptive voltage and critical voltage for local and general corona.\n",
"clear\n",
"clc;\n",
"t=21;// air temperature\n",
"b=73.6;// air pressure\n",
"do=3.92*73.6/(273+t);\n",
"m=.85;\n",
"r=.52;\n",
"d=250;\n",
"Vd=21.1*m *do*r*log(250/.52);\n",
"vd=sqrt(3)*Vd;\n",
"m=.7;\n",
"vv=21.1*m*do*r*(1+ (.3/sqrt(r*do)))*log(250/.52);\n",
"Vv=vv*sqrt(3);\n",
"Vvg=Vv*.8/.7;\n",
"mprintf('critical disruptive line to line voltage=%.2f kV \n',vd);\n",
"mprintf('visual critical voltage for local corona=%.2f kV \n',vv);\n",
"mprintf('visual critical voltage for general corona=%.2f kV \n',Vvg);"
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 6.2: To_determine_whether_corona_will_be_present_in_the_air_space_round_the_conductor.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"// To determine whether corona will be present in the air space round the conductor\n",
"clear\n",
"clc;\n",
"d=2.5;\n",
"di=3;// internal diameter\n",
"do=9;// external diameter\n",
"ri=di/2;// internal radius\n",
"ro=do/2;// external diameter\n",
"g1max=20/(1.25*log(ri/(d/2))+ .208*1.5*log(ro/ri));\n",
"mprintf('g1max=%.0f kV/cm \n',g1max);\n",
"mprintf('Since the gradient exceeds 21.1/kV/cm , corona will be present.')"
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 6.3: To_determine_the_critical_disruptive_voltage_and_corona_loss.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"// To determine the critical disruptive voltage and corona loss \n",
"clear\n",
"clc;\n",
"m=1.07;\n",
"r=.625\n",
"V=21*m *r*log(305/.625);\n",
"Vl=V*sqrt(3);\n",
"mprintf('critical disruptive voltage=%.0f kV\n',V);\n",
"mprintf('since operating voltage is 110 kV , corona loss= 0 ');"
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 6.4: To_determine_the_voltage_for_which_corona_will_commence_on_the_line.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"//To determine the voltage for which corona will commence on the line\n",
"clear\n",
"clc;\n",
"r=.5;\n",
"V=21*r*log(100/.5);\n",
"mprintf('critical disruptive voltage=%.1f kV',V);"
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 6.5: To_determine_the_corona_characterstics.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"//To determine the corona characterstics\n",
"clear\n",
"clc;\n",
"D=1.036;// conductor diameter(cm)\n",
"d=2.44;//delta spacing(m)\n",
"r=D/2;//radius(cm)\n",
"Ratio=d*100/r;\n",
"j=r/(d*100);\n",
"Rat2=sqrt(j);\n",
"t=26.67;//temperature\n",
"b=73.15;// barometric pressure\n",
"mv=.72;\n",
"V=63.5;\n",
"f=50;//frequency\n",
"do=3.92*b/(273+t);//do=dell\n",
"vd=21.1*.85*do*r*log(Ratio);\n",
"mprintf('critical disruptive voltage=%.2f kV\n',vd);\n",
"Vv=21.1*mv*do*r*(1+ (.3/sqrt(r*do)))*log(Ratio);\n",
"Pl=241*(10^-5)*(f+25)*Rat2*((V-vd)^2)/do;//power loss\n",
"Vd=.8*vd;\n",
"Pl2=241*(10^-5)*(f+25)*Rat2*((V-Vd)^2)*160/do;//loss per phase /km\n",
"Total= 3*Pl2;\n",
"mprintf('visual critical voltage=%.0f kV\n',Vv);\n",
"mprintf('Power loss=%.3f kW/phase/km\n',Pl);\n",
"mprintf('under foul weather condition ,\n');\n",
"mprintf('critical disruptive voltage=%.2f kV\n',Vd);\n",
"mprintf('Total loss=%.0f kW\n',Total);"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Scilab",
"language": "scilab",
"name": "scilab"
},
"language_info": {
"file_extension": ".sce",
"help_links": [
{
"text": "MetaKernel Magics",
"url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
}
],
"mimetype": "text/x-octave",
"name": "scilab",
"version": "0.7.1"
}
},
"nbformat": 4,
"nbformat_minor": 0
}
|