summaryrefslogtreecommitdiff
path: root/Electrical_Power_Systems_by_C_L_Wadhwa/15-CIRCUIT_BREAKERS.ipynb
blob: 132878fc5ee4ca5dd5c37e31712422a57da150b9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
{
"cells": [
 {
		   "cell_type": "markdown",
	   "metadata": {},
	   "source": [
       "# Chapter 15: CIRCUIT BREAKERS"
	   ]
	},
{
		   "cell_type": "markdown",
		   "metadata": {},
		   "source": [
			"## Example 15.1: EX15_1.sce"
		   ]
		  },
  {
"cell_type": "code",
	   "execution_count": null,
	   "metadata": {
	    "collapsed": true
	   },
	   "outputs": [],
"source": [
"// To determine the voltage appearing across the pole of C.B. also determine the value of resistance to be used across contacts\n",
"clear \n",
"clc;\n",
"i=5;\n",
"L=5*(10^6);\n",
"C=.01;\n",
"e=i*sqrt(L/C);\n",
"mprintf('the voltage appearing across the pole of C.B.=%.0f V\n',e);\n",
"R=.5*sqrt(L/C);\n",
"mprintf('the value of resistance to be used across contacts, R=%.0f ohms\n',R);"
   ]
   }
,
{
		   "cell_type": "markdown",
		   "metadata": {},
		   "source": [
			"## Example 15.2: To_determine_the_rate_of_rise_of_restriking_voltage.sce"
		   ]
		  },
  {
"cell_type": "code",
	   "execution_count": null,
	   "metadata": {
	    "collapsed": true
	   },
	   "outputs": [],
"source": [
"// To determine the rate of rise of restriking voltage\n",
"clear \n",
"clc;\n",
"Vnl=132*sqrt(2)/sqrt(3);//peak value of peak to neutral voltage(kV)\n",
"Vr1=Vnl*.95;//recovery voltage (kV)\n",
"Vr=102.4*.916;// active recovery voltage(kV)\n",
"Vrmax=2*Vr;\n",
"fn=16*(10^3);\n",
"t=1/(2*fn);\n",
"RRRV=Vrmax*(10^-6)/t;\n",
"mprintf('rate of rise of restriking voltage, RRRV=%.0f kV/micro-sec',RRRV);"
   ]
   }
,
{
		   "cell_type": "markdown",
		   "metadata": {},
		   "source": [
			"## Example 15.3: To_Determine_the_average_rate_of_rise_of_restriking_voltage.sce"
		   ]
		  },
  {
"cell_type": "code",
	   "execution_count": null,
	   "metadata": {
	    "collapsed": true
	   },
	   "outputs": [],
"source": [
"// To Determine the average rate of rise of restriking voltage\n",
"clear \n",
"clc;\n",
"Vm=132*sqrt(2)/sqrt(3);\n",
"K1=.9;\n",
"K2=1.5\n",
"K=K1*K2;\n",
"sinq=.92;\n",
"Vr=K*Vm*sinq;\n",
"fn=16*(10^3);\n",
"RRRV=2*Vr*(10^-6)*fn*2;\n",
"mprintf('average rate of rise of restriking voltage,RRRV=%.3f kV/micro-sec\n',RRRV);"
   ]
   }
,
{
		   "cell_type": "markdown",
		   "metadata": {},
		   "source": [
			"## Example 15.4: EX15_4.sce"
		   ]
		  },
  {
"cell_type": "code",
	   "execution_count": null,
	   "metadata": {
	    "collapsed": true
	   },
	   "outputs": [],
"source": [
"// To determine the rated normal current , breaking current , making current and short time rating (current)\n",
"clear \n",
"clc;\n",
"In=1500;\n",
"mprintf('rated normal current=%.0f amps\n',In);\n",
"Ib=2000/(sqrt(3)*33);\n",
"mprintf('breaking current=%.2f KA\n',Ib);\n",
"Im=2.55*Ib;\n",
"mprintf('making current =%.2f kA\n',Im);\n",
"Is=Ib;\n",
"mprintf('short time rating  for 3 sec=%.2f kA\n',Is);"
   ]
   }
,
{
		   "cell_type": "markdown",
		   "metadata": {},
		   "source": [
			"## Example 15.5: EX15_5.sce"
		   ]
		  },
  {
"cell_type": "code",
	   "execution_count": null,
	   "metadata": {
	    "collapsed": true
	   },
	   "outputs": [],
"source": [
"//TO Determine (i)sustained short circuit current in the breaker (ii)initial symmetrical r.m.s current in the breaker (iii)maximum possible d.c component of the short circuit current in the breaker (iv)momentary current rating of the breaker (v)the current to be interrupted by the breaker (vi)the interupting kVA.\n",
"clear\n",
"clc;\n",
"MVA=10;\n",
"Is=MVA*1000/(sqrt(3)*13.8);\n",
"mprintf('(i)sustained short circuit current in the breaker =%.0f amps\n',Is);\n",
"MVA1=100;\n",
"Isc=MVA1*1000/(sqrt(3)*13.8);\n",
"mprintf('(ii)initial symmetrical r.m.s current in the breaker r.m.s=%.0f amps\n',Isc);\n",
"Im=sqrt(2)*Isc;\n",
"mprintf('(iii)maximum possible d.c component of the short circuit current in the breaker =%.0f amps\n',Im);\n",
"Im2=1.6*Isc;\n",
"mprintf('(iv)momentary current rating of the breaker=%.0f amps\n',Im2);\n",
"Ib=1.2*Isc;\n",
"mprintf('(v)the current to be interrupted by the breaker =%.0f amps\n',Ib);\n",
"KVA=sqrt(3)*13.8*5016;\n",
"mprintf('(vi)the interupting =%.0f KVA\n',KVA);\n",
"//Answers don't match due to difference in rounding off of digits"
   ]
   }
],
"metadata": {
		  "kernelspec": {
		   "display_name": "Scilab",
		   "language": "scilab",
		   "name": "scilab"
		  },
		  "language_info": {
		   "file_extension": ".sce",
		   "help_links": [
			{
			 "text": "MetaKernel Magics",
			 "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
			}
		   ],
		   "mimetype": "text/x-octave",
		   "name": "scilab",
		   "version": "0.7.1"
		  }
		 },
		 "nbformat": 4,
		 "nbformat_minor": 0
}