summaryrefslogtreecommitdiff
path: root/Electric_Machines_by_C_I_Hubert/8-Synchronous_Motors.ipynb
blob: 627fa7631f2596499110d21e5d419a7577bbbaa7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
{
"cells": [
 {
		   "cell_type": "markdown",
	   "metadata": {},
	   "source": [
       "# Chapter 8: Synchronous Motors"
	   ]
	},
{
		   "cell_type": "markdown",
		   "metadata": {},
		   "source": [
			"## Example 8.1: EX8_1.sce"
		   ]
		  },
  {
"cell_type": "code",
	   "execution_count": null,
	   "metadata": {
	    "collapsed": true
	   },
	   "outputs": [],
"source": [
"// Example 8.1\n",
"// Determine (a) Developed torque (b) Armature current (c) Excitation voltage\n",
"// (d) Power angle (e) Maximum torque \n",
"// Page No. 317\n",
"\n",
"clc;\n",
"clear;\n",
"close;\n",
"\n",
"// Given data\n",
"f=60;                       // Operating frequency\n",
"P=4;                        // Number of poles\n",
"Pmech=100;                  // Mechanical power\n",
"eta=0.96;                   // Efficiency\n",
"FP=0.80;                    // Power factor leading\n",
"V=460;                      // Motor voltage\n",
"Xs_Mag=2.72;                // Synchronous reactnace magnitude\n",
"Xs_Ang=90;                  // Synchronous reactnace magnitude\n",
"deltaPull=-90;               // Pullout power angle\n",
"// (a) Developed torque\n",
"ns=120*f/P;                 // Synchronous speed\n",
"Td=5252*Pmech/(ns*eta); \n",
"\n",
"\n",
"// (b) Armature current\n",
"S=Pmech*746/(eta*FP);\n",
"Theta=-acosd(FP);          // Power factor angle (negative as FP is leading)\n",
"V1phi=V/sqrt(3);           // Single line voltage\n",
"S1phi_Mag=S/3;             // Magnitude \n",
"S1phi_Ang=Theta;           // Angle\n",
"VT_Mag=V1phi;\n",
"VT_Ang=0;\n",
"Ia_Mag=S1phi_Mag/VT_Mag;   // Armature current magnitude\n",
"Ia_Ang=S1phi_Ang-VT_Ang;   // Armature current angle\n",
"Ia_Ang=-Ia_Ang;            // Complex conjugate of Ia\n",
"\n",
"// (c) Excitation voltage\n",
"Var1_Mag=Ia_Mag*Xs_Mag;\n",
"Var1_Ang=Ia_Ang+Xs_Ang;\n",
"\n",
"/////////\n",
"N01=VT_Mag+%i*VT_Ang;\n",
"N02=Var1_Mag+%i*Var1_Ang;\n",
"// Polar to Complex form\n",
"\n",
"N01_R=VT_Mag*cos(-VT_Ang*%pi/180); // Real part of complex number 1\n",
"N01_I=VT_Mag*sin(VT_Ang*%pi/180); //Imaginary part of complex number 1\n",
"\n",
"N02_R=Var1_Mag*cos(-Var1_Ang*%pi/180); // Real part of complex number 2\n",
"N02_I=Var1_Mag*sin(Var1_Ang*%pi/180); //Imaginary part of complex number 2\n",
"\n",
"FinalNo_R=N01_R-N02_R;\n",
"FinalNo_I=N01_I-N02_I;\n",
"FinNum=FinalNo_R+%i*FinalNo_I;\n",
"// Complex to Polar form...\n",
"\n",
"FN_M=sqrt(real(FinNum)^2+imag(FinNum)^2); // Magnitude part\n",
"FN_A = atan(imag(FinNum),real(FinNum))*180/%pi;// Angle part
\n",
"//////\n",
"Ef_Mag=FN_M;\n",
"Ef_Ang=FN_A;\n",
"// (d) Power angle\n",
"delta=Ef_Ang;\n",
"\n",
"// (e) Maximum torque \n",
"Pin=3*(-VT_Mag*Ef_Mag/Xs_Mag)*sind(deltaPull);   // Active power input\n",
"Tpull=5252*Pin/(746*ns);\n",
"\n",
"\n",
"\n",
"// Display result on command window\n",
"printf('\n Developed torque = %0.0f lb-ft ',Td);\n",
"printf('\n Armature current magnitude= %0.2f A ',Ia_Mag);\n",
"printf('\n Armature current angle= %0.2f deg ',Ia_Ang);\n",
"printf('\n Excitation voltage magnitude = %0.0f V ',Ef_Mag);\n",
"printf('\n Excitation voltage angle = %0.1f deg ',Ef_Ang);\n",
"printf('\n Power angle = %0.1f deg ',delta);\n",
"printf('\n Maximum torque = %0.0f lb-ft ',Tpull);\n",
"\n",
""
   ]
   }
,
{
		   "cell_type": "markdown",
		   "metadata": {},
		   "source": [
			"## Example 8.2: EX8_2.sce"
		   ]
		  },
  {
"cell_type": "code",
	   "execution_count": null,
	   "metadata": {
	    "collapsed": true
	   },
	   "outputs": [],
"source": [
"// Example 8.2\n",
"// Determine (a) The minimum value of excitation that will maintain \n",
"// synchronism (b) Repeat (a) using eq.(8.16) (c) Repeat (a) using eq.(8.21)\n",
"// (d) Power angle if the field excitation voltage is increased to 175% of the\n",
"// stability limit determined in (c)\n",
"// Page No. 322\n",
"\n",
"clc;\n",
"clear;\n",
"close;\n",
"\n",
"// Given data\n",
"Pin=40;                     // Input power\n",
"Pin1phase=40/3;             // Single phase power\n",
"Xs=1.27;                    // Synchronous reactnace \n",
"VT=220/sqrt(3);             // Voltage\n",
"delta=-90;                  // Power angle\n",
"\n",
"f=60;                       // Operating frequency\n",
"P=4;                        // Number of poles\n",
"Pmech=100;                  // Mechanical power\n",
"eta=0.96;                   // Efficiency\n",
"FP=0.80;                    // Power factor leading\n",
"V=460;                      // Motor voltage\n",
"Xs_Mag=2.72;                // Synchronous reactnace magnitude\n",
"Xs_Ang=90;                  // Synchronous reactnace magnitude\n",
"deltaPull=-90;               // Pullout power angle\n",
"\n",
"// (a) The minimum value of excitation that will maintain synchronism\n",
"Ef=98;                      // From the graph (Figure 8.13)\n",
"\n",
"// (b) The minimum value of excitation using eq.(8.16)\n",
"Ef816=-Pin*Xs*746/(3*VT*sind(delta));\n",
"\n",
"\n",
"// (c) The minimum value of excitation using eq.(8.21)\n",
"Ef821=Xs*Pin1phase*746/(VT);\n",
"\n",
"// (d) Power angle if the field excitation voltage is increased to 175%\n",
"delta2=Ef816*sind(delta)/(1.75*Ef816);\n",
"delta2=asind(delta2);\n",
"\n",
"// Display result on command window\n",
"printf('\n The minimum value of excitation = %0.0f V ',Ef);\n",
"printf('\n The minimum value of excitation using eq.(8.16) = %0.0f V ',Ef816);\n",
"printf('\n The minimum value of excitation using eq.(8.21) = %0.0f V ',Ef821);\n",
"printf('\n Power angle = %0.0f deg ',delta2);"
   ]
   }
,
{
		   "cell_type": "markdown",
		   "metadata": {},
		   "source": [
			"## Example 8.3: EX8_3.sce"
		   ]
		  },
  {
"cell_type": "code",
	   "execution_count": null,
	   "metadata": {
	    "collapsed": true
	   },
	   "outputs": [],
"source": [
"// Example 8.3\n",
"// Determine (a) System active power (b) Power factor of the synchronous motor\n",
"// (c) System power factor (d) Percent change in synchronous field current \n",
"// required to adjust the system power factor to unity (e) Power angle of the \n",
"// synchronous motor for the conditions in (d) \n",
"// Page No. 324\n",
"\n",
"clc; \n",
"clear;\n",
"close;\n",
"\n",
"// Given data\n",
"\n",
"Php=400;                    // Power in hp\n",
"eta=0.958;                  // Efficiency\n",
"Pheater=50000;              // Resistance heater power \n",
"Vs=300;                     // Synchronous motor voltage\n",
"eta2=0.96;                  // Synchronous motor efficiency\n",
"Xs=0.667;                   // Synchronous reactnace\n",
"VT=460;                     // 3-Phase supply voltage\n",
"delta=-16.4;                // Power angle\n",
"\n",
"// (a) System active power \n",
"Pindmot=Php*0.75*746/(eta);   // Motor operating at three quarter rated load\n",
"Psynmot=Vs*0.5*746/(eta2);    // Synchronous motor power  \n",
"Psys=Pindmot+Pheater+Psynmot;\n",
"Psysk=Psys/1000;\n",
"\n",
"// (b) Power factor of the synchronous motor\n",
"Pin=Psynmot;                 // Power input\n",
"Vtph=VT/sqrt(3);             // Voltage per phase\n",
"Ef=-(Pin*Xs)/(3*Vtph*sind(delta));\n",
"// Complex to Polar form...\n",
"\n",
"Ef_Mag=Ef;          // Magnitude part \n",
"Ef_Ang=delta;       // Angle part
\n",
"Vtph_Mag=Vtph;      \n",
"Vtph_Ang=0;\n",
"////////////\n",
"N01=Ef_Mag+%i*Ef_Ang;      // Ef in polar form \n",
"N02=Vtph_Mag+%i*Vtph_Ang;  // Vt in polar for\n",
"\n",
"N01_R=Ef_Mag*cos(-Ef_Ang*%pi/180); // Real part of complex number Ef\n",
"N01_I=Ef_Mag*sin(Ef_Ang*%pi/180); //Imaginary part of complex number Ef\n",
"\n",
"N02_R=Vtph_Mag*cos(-Vtph_Ang*%pi/180); // Real part of complex number Vt\n",
"N02_I=Vtph_Mag*sin(Vtph_Ang*%pi/180); //Imaginary part of complex number Vt\n",
"\n",
"FinalNo_R=N01_R-N02_R;\n",
"FinalNo_I=N01_I-N02_I;\n",
"FinNum=FinalNo_R+%i*FinalNo_I;\n",
"// Complex to Polar form...\n",
"\n",
"FN_M=sqrt(real(FinNum)^2+imag(FinNum)^2); // Magnitude part\n",
"FN_A = atan(imag(FinNum),real(FinNum))*180/%pi;// Angle part
\n",
"\n",
"Ia_Mag=FN_M/Xs;          // Magnitude of Ia\n",
"Ia_Ang=FN_A-(-90);       // Angle of Ia\n",
"Theta=0-Ia_Ang;\n",
"FP=cosd(Theta);          // Power factor\n",
"\n",
"\n",
"// (c) System power factor\n",
"ThetaIndMot=acosd(0.891);    // Induction motor power factor\n",
"Thetaheat=acosd(1);          // Heater power factor\n",
"ThetaSyncMot=-34.06;         // Synchronous motor power factor\n",
"Qindmot=tand(27)*Pindmot; \n",
"Qsynmot=tand(ThetaSyncMot)*Psynmot;\n",
"Qsys=Qindmot+Qsynmot;\n",
"Ssys=Psys+%i*Qsys;         // System variable in complex form\n",
"\n",
"// Complex to Polar form...\n",
"\n",
"Ssys_Mag=sqrt(real(Ssys)^2+imag(Ssys)^2);         // Magnitude part\n",
"Ssys_Ang = atan(imag(Ssys),real(Ssys))*180/%pi;   // Angle part
\n",
"\n",
"FPsys=cosd(Ssys_Ang);                             // System power factor \n",
"\n",
"// (d) Percent change in synchronous field current required to adjust the \n",
"// system power factor to unity\n",
"\n",
"Ssynmot=Psynmot-(%i*(-Qsynmot+Qsys));   // Synchronous motor system\n",
"\n",
"// Complex to Polar form...\n",
"\n",
"Ssynmot_Mag=sqrt(real(Ssynmot)^2+imag(Ssynmot)^2);     // Magnitude part\n",
"Ssynmot_Ang=atan(imag(Ssynmot),real(Ssynmot))*180/%pi; // Angle part
\n",
"\n",
"Ssynmot1ph_Mag=Ssynmot_Mag/3;            // For single phase magnitude\n",
"Ssynmot1ph_Ang=Ssynmot_Ang;              // For single phase angle\n",
"\n",
"Iastar_Mag=Ssynmot1ph_Mag/Vtph;          // Current magnitude\n",
"Iastar_Ang=Ssynmot1ph_Ang-0;             // Current angle\n",
"\n",
"IaNew_Mag=Iastar_Mag;\n",
"IaNew_Ang=-Iastar_Ang;\n",
"\n",
"IaXs_Mag=IaNew_Mag*Xs;\n",
"IaXs_Ang=IaNew_Ang-90;\n",
"\n",
"// Convert these number into complex and then perform addition\n",
"// Polar to Complex form\n",
"\n",
"// Y=29.416<-62.3043 //Polar form number\n",
"IaXs_R=IaXs_Mag*cos(-IaXs_Ang*%pi/180);  // Real part of complex number\n",
"IaXs_I=IaXs_Mag*sin(IaXs_Ang*%pi/180);   // Imaginary part of complex number\n",
"Efnew=Vtph+IaXs_R+%i*IaXs_I;\n",
"// Complex to Polar form...\n",
"\n",
"Efnew_Mag=sqrt(real(Efnew)^2+imag(Efnew)^2);     // Magnitude part\n",
"Efnew_Ang=atan(imag(Efnew),real(Efnew))*180/%pi; // Angle part
\n",
"\n",
"DeltaEf=(Efnew_Mag-Ef)/Ef; \n",
"\n",
"// (e) Power angle of the synchronous motor\n",
"deltasynmot=Efnew_Ang;\n",
"\n",
"// Display result on command window\n",
"printf('\n System active power  = %0.1f kW ',Psysk);\n",
"printf('\n Power factor of the synchronous motor = %0.3f leading ',FP);\n",
"printf('\n System power factor = %0.3f lagging ',FPsys);\n",
"printf('\n Percent change in synchronous field current = %0.2f Percent ',DeltaEf*100);\n",
"printf('\n Power angle of the synchronous motor = %0.2f deg ',deltasynmot);"
   ]
   }
,
{
		   "cell_type": "markdown",
		   "metadata": {},
		   "source": [
			"## Example 8.4: Determine_Developed_torque_and_Developed_torque_in_percent_of_rated_torque.sce"
		   ]
		  },
  {
"cell_type": "code",
	   "execution_count": null,
	   "metadata": {
	    "collapsed": true
	   },
	   "outputs": [],
"source": [
"// Example 8.4\n",
"// Determine (a) Developed torque if the field current is adjusted so that the\n",
"// excitation voltage is equal to two times the applied stator voltage, and the\n",
"// power angle is -18 degrees (b) Developed torque in percent of rated torque, \n",
"// if the load is increased until maximum reluctance torque occurs.\n",
"// Page No. 328\n",
"\n",
"clc; \n",
"clear;\n",
"close;\n",
"\n",
"// Given data\n",
"Vt1ph=2300/sqrt(3);         // Applied voltage/phase\n",
"Ef1ph=2300/sqrt(3);         // Excitation voltage/phase\n",
"Xd=36.66;                   // Direct axis reactance/phase\n",
"delta=-18;                  // Power angle\n",
"Xq=23.33;                   // Quadrature-axis reactance/phase\n",
"n=900;                      // Speed of motor\n",
"deltanew=-45;\n",
"RatTor=200;                 // Rated torque of motor\n",
"// (a)  Developed torque\n",
"Pmag1ph=-((Vt1ph*2*Ef1ph)/Xd)*sind(delta);  // Power \n",
"Prel1ph=-Vt1ph^2*( (Xd-Xq) / (2*Xd*Xq)) *sind(2*delta); // Reluctance power\n",
"Psal3ph=3*(Pmag1ph+Prel1ph);  // Salient power of motor\n",
"Psal3phHP=Psal3ph/746;\n",
"T=(5252*Psal3phHP)/n;         // Developed torque\n",
"\n",
"// (b) Developed torque in percent of rated torque\n",
"// The reluctance torque has its maximum value at delta= -45 degrees\n",
"Pmag1phnew=-((Vt1ph*2*Ef1ph)/Xd)*sind(deltanew); // Power\n",
"Prel1phnew=-Vt1ph^2*( (Xd-Xq) / (2*Xd*Xq)) *sind(2*deltanew); // Reluctance power\n",
"Psal3phnew=3*(Pmag1phnew+Prel1phnew);  // Salient power of motor\n",
"Psal3phHPnew=Psal3phnew/746;\n",
"PerRatTorq=Psal3phHPnew*100/RatTor;\n",
"\n",
"// Display result on command window\n",
"printf('\n Developed torque  = %0.0f lb-ft ',T);\n",
"printf('\n Developed torque in percent of rated torque = %0.0f Percent ',PerRatTorq);"
   ]
   }
],
"metadata": {
		  "kernelspec": {
		   "display_name": "Scilab",
		   "language": "scilab",
		   "name": "scilab"
		  },
		  "language_info": {
		   "file_extension": ".sce",
		   "help_links": [
			{
			 "text": "MetaKernel Magics",
			 "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
			}
		   ],
		   "mimetype": "text/x-octave",
		   "name": "scilab",
		   "version": "0.7.1"
		  }
		 },
		 "nbformat": 4,
		 "nbformat_minor": 0
}