summaryrefslogtreecommitdiff
path: root/Concise_Physics_by_H_Matyaka/9-The_Atom.ipynb
blob: a0e207ae301ed6150956e83001424b7784a88195 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
{
"cells": [
 {
		   "cell_type": "markdown",
	   "metadata": {},
	   "source": [
       "# Chapter 9: The Atom"
	   ]
	},
{
		   "cell_type": "markdown",
		   "metadata": {},
		   "source": [
			"## Example 9.10: count_rate_determination.sce"
		   ]
		  },
  {
"cell_type": "code",
	   "execution_count": null,
	   "metadata": {
	    "collapsed": true
	   },
	   "outputs": [],
"source": [
"clc\n",
"clear\n",
"//input\n",
"w=0.004//weight of manganese\n",
"a=6*10^23\n",
"t=303*24*3600//half time\n",
"//calculation\n",
"N=w*a/0.054//number of moles\n",
"x=0.693*N/(303*24*3600)//count rate from decay law\n",
"//output\n",
"printf('the count rate is %3.3e counts per second',x)"
   ]
   }
,
{
		   "cell_type": "markdown",
		   "metadata": {},
		   "source": [
			"## Example 9.11: determination_of_attributes.sce"
		   ]
		  },
  {
"cell_type": "code",
	   "execution_count": null,
	   "metadata": {
	    "collapsed": true
	   },
	   "outputs": [],
"source": [
"clc\n",
"clear\n",
"//input\n",
"v=400//pd\n",
"d=4*10^-3 //distance of seperation\n",
"B=0.52//flux density\n",
"na=6*10^23//avagadro number\n",
"//calcuation\n",
"E=v/d//electric field strength\n",
"v1=E/B// speed of ions \n",
"m=24*10^-3/na//mass of each ion\n",
"ke=m*v1*v1/2//kinetic energy \n",
"W=1.6*10^-19*1\n",
"KE=ke/W//kinetic energy in electron volts\n",
"//output\n",
"printf('the electric field strength is %3.3e Vm^-1',E)\n",
"printf('\n the speed of ions is %3.3e m/s',v1)\n",
"printf('\n the kinetic energy is %3.3e J',ke)\n",
"printf('\n the kinetic energy in electron volts is %3.3f ev',KE)"
   ]
   }
,
{
		   "cell_type": "markdown",
		   "metadata": {},
		   "source": [
			"## Example 9.12: velocity_selectio.sce"
		   ]
		  },
  {
"cell_type": "code",
	   "execution_count": null,
	   "metadata": {
	    "collapsed": true
	   },
	   "outputs": [],
"source": [
"clc\n",
"clear\n",
"//input\n",
"v=400//pd\n",
"d=4*10^-3 //distance of seperation\n",
"B=0.52//flux density\n",
"na=6*10^23//avagadro number\n",
"//calculation\n",
"x=2*1.6*10^-19/(4*10^-26)//specific charge of ions\n",
"r=1*10^5/(8*10^6*B*B)// path radius\n",
"//output\n",
"printf('the specific charge of ions is %3.0e C/kg',x)\n",
"printf('\n the path radius is %3.3e m',r)"
   ]
   }
,
{
		   "cell_type": "markdown",
		   "metadata": {},
		   "source": [
			"## Example 9.1: electric_field_effect.sce"
		   ]
		  },
  {
"cell_type": "code",
	   "execution_count": null,
	   "metadata": {
	    "collapsed": true
	   },
	   "outputs": [],
"source": [
"clc\n",
"clear\n",
"//input\n",
"v=400 //voltage\n",
"d=0.18 //distance of screen from centre\n",
"e=1.6*10^-19 //electronic charge\n",
"m=9.1*10^-31 //mass\n",
"l=0.03 //length of parallel plates\n",
"s=0.01 //air gap\n",
"//calculation\n",
"w=e*v//work done\n",
"v1=sqrt(2*e*v/m)//speed of electron \n",
"e1=v/s//electric field strength\n",
"d1=d*6*10^3*l/(2*v)//vertical displacement\n",
"//output\n",
"printf('the work done is %3.3e J',w)\n",
"printf('\n the speed of electron is %3.3e ms^-1',v1)\n",
"printf('\n the displacement is %3.3f m',d1)"
   ]
   }
,
{
		   "cell_type": "markdown",
		   "metadata": {},
		   "source": [
			"## Example 9.2: Millikan_experiment.sce"
		   ]
		  },
  {
"cell_type": "code",
	   "execution_count": null,
	   "metadata": {
	    "collapsed": true
	   },
	   "outputs": [],
"source": [
"clc\n",
"clear\n",
"//input\n",
"v=5.7*10^-4 //velocity\n",
"ro=830 //density\n",
"d=4*10^-3\n",
"V=3.2*10^3 //pd\n",
"g=9.8 //acceleration due to gravity\n",
"k=4.2*10^-4 //resistive force of air\n",
"//calculation\n",
"r=sqrt(3*k*v/(4*%pi*ro*g))//equating the forces on drop\n",
"q=4*%pi*r^3*ro*g/(3*V/d)//electric firld between plates\n",
"//output\n",
"printf('the radius of oil drop is %3.3e m',r)\n",
"printf('\n the value of electric firld between plates is %3.3e C',q)"
   ]
   }
,
{
		   "cell_type": "markdown",
		   "metadata": {},
		   "source": [
			"## Example 9.3: Stephan_Boltzmann_law.sce"
		   ]
		  },
  {
"cell_type": "code",
	   "execution_count": null,
	   "metadata": {
	    "collapsed": true
	   },
	   "outputs": [],
"source": [
"clc\n",
"clear\n",
"//input\n",
"sig=6//stephans constant\n",
"//calculation\n",
"x=3^4*6*2^2/6//ratio of rate of emission \n",
"//output\n",
"printf('the ratio of rate of emission is %d and hence larger cube emits faster than smaller',x)"
   ]
   }
,
{
		   "cell_type": "markdown",
		   "metadata": {},
		   "source": [
			"## Example 9.4: working_temperature.sce"
		   ]
		  },
  {
"cell_type": "code",
	   "execution_count": null,
	   "metadata": {
	    "collapsed": true
	   },
	   "outputs": [],
"source": [
"clc\n",
"clear\n",
"//input\n",
"p=900 //power\n",
"d=4*10^-3 //diameter\n",
"l=0.87//length\n",
"sig=5.7*10^-8 //stephans constant\n",
"//calculation\n",
"t=(p/(%pi*d*l*sig))^0.25//temperature\n",
"//output\n",
"printf('the working temperature is %d K',t)"
   ]
   }
,
{
		   "cell_type": "markdown",
		   "metadata": {},
		   "source": [
			"## Example 9.5: stephan_law.sce"
		   ]
		  },
  {
"cell_type": "code",
	   "execution_count": null,
	   "metadata": {
	    "collapsed": true
	   },
	   "outputs": [],
"source": [
"clc\n",
"clear\n",
"//input\n",
"e1=350//heat per second\n",
"t=7+273 //teperature\n",
"sig=5.7*10^-8//stephans constant\n",
"//calculation\n",
"e2=e1*4//stephans law\n",
"E=sig*(t^4-t^4)//stephans law\n",
"//output\n",
"printf('the rate of emission is %3.3f W',e2)\n",
"printf('\nthe rate of emission when outer temperature is increased is %d W',E)"
   ]
   }
,
{
		   "cell_type": "markdown",
		   "metadata": {},
		   "source": [
			"## Example 9.6: incereased_temperature_effect.sce"
		   ]
		  },
  {
"cell_type": "code",
	   "execution_count": null,
	   "metadata": {
	    "collapsed": true
	   },
	   "outputs": [],
"source": [
"clc\n",
"clear\n",
"//input\n",
"t1=280\n",
"t2=290//temperature of surroundings\n",
"sig=5.7*10^-8 //stephans constant\n",
"//calculation\n",
"e3=sig*(t1^4-t2^4)//stephans law\n",
"e1=6.2*10^9*sig \n",
"e3=0.15*e1\n",
"//output\n",
"printf('the absorbing rate is %d W',e3)"
   ]
   }
,
{
		   "cell_type": "markdown",
		   "metadata": {},
		   "source": [
			"## Example 9.7: plancks_theory.sce"
		   ]
		  },
  {
"cell_type": "code",
	   "execution_count": null,
	   "metadata": {
	    "collapsed": true
	   },
	   "outputs": [],
"source": [
"clc\n",
"clear\n",
"//input\n",
"c=3*10^8 //velocity of speed\n",
"w=5.1*10^-7 //wavelength of green light\n",
"w1=0.7 //wavelength of radio waves\n",
"w2=1.3*10^-13 //wavelength of gamma\n",
"h=6.6*10^-34\n",
"//calculation\n",
"e1=h*c/w//plancks theory for greeen light\n",
"e2=h*c/w1//plancks theory for radio waves\n",
"e3=h*c/w2//plancks theory for gamma waves\n",
"//output\n",
"printf('energy carried by green light is %3.3e J',e1)\n",
"printf('\nenergy carried by radio waves is %3.3e J',e2)\n",
"printf('\nenergy carried by gamma waves is %3.3e J',e3)"
   ]
   }
,
{
		   "cell_type": "markdown",
		   "metadata": {},
		   "source": [
			"## Example 9.8: quantities_of_metal.sce"
		   ]
		  },
  {
"cell_type": "code",
	   "execution_count": null,
	   "metadata": {
	    "collapsed": true
	   },
	   "outputs": [],
"source": [
"clc\n",
"clear\n",
"//input\n",
"c=3*10^8//speed of light\n",
"m=9.1*10^-31//mass of electron\n",
"tw=5.12*10^-7//threshhold wavelength\n",
"w1=4.52*10^-8 //radiation wavelength\n",
"h=6.6*10^-34//stephans constant\n",
"//calculation\n",
"f0=c/tw//threshhold frequency\n",
"w=h*f0//work function\n",
"a=h*c/w1//einsteins photo electric equation\n",
"v=sqrt((2*(a-w))/m)//photoelectric energy \n",
"emax=0.5*m*v*v\n",
"//output\n",
"printf('threshhold frequency is %3.3e Hz',f0)\n",
"printf('\n the work function is %3.3e J',w)\n",
"printf('\n the maximum photoelectric speed is %3.3e ms^-1',v)\n",
"printf('\n the maximum photoelectric energy is %3.3e J',emax)"
   ]
   }
,
{
		   "cell_type": "markdown",
		   "metadata": {},
		   "source": [
			"## Example 9.9: decay_law.sce"
		   ]
		  },
  {
"cell_type": "code",
	   "execution_count": null,
	   "metadata": {
	    "collapsed": true
	   },
	   "outputs": [],
"source": [
"clc\n",
"clear\n",
"//input\n",
"t=2.14*10^6*365*24*60*60//half time\n",
"//calculation\n",
"l=0.693/t//decay constant\n",
"t1=1.1097/l//decay law\n",
"t2=t1/(365*60*60*24)//time in yrs\n",
"//output\n",
"printf('time taken is %3.3e yrs',t2)"
   ]
   }
],
"metadata": {
		  "kernelspec": {
		   "display_name": "Scilab",
		   "language": "scilab",
		   "name": "scilab"
		  },
		  "language_info": {
		   "file_extension": ".sce",
		   "help_links": [
			{
			 "text": "MetaKernel Magics",
			 "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
			}
		   ],
		   "mimetype": "text/x-octave",
		   "name": "scilab",
		   "version": "0.7.1"
		  }
		 },
		 "nbformat": 4,
		 "nbformat_minor": 0
}