1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
|
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Chapter 2: P V T Relations"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 2.10: EX2_10.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"//Chemical Engineering Thermodynamics\n",
"//Chapter 2\n",
"//P-V-T Relations\n",
"\n",
"//Example 2.10\n",
"clear;\n",
"clc;\n",
"\n",
"//Given\n",
"yN2 = 1/4;//mole faction of N2 in the mixture\n",
"yH2 = 3/4;//mole fraction of H2 in the mixture\n",
"V = 5.7;//V is the rate at which mixture enters in m^3 in 1 hour\n",
"P = 600;//P is in atm\n",
"T = 298;//T is in K\n",
"TcN2 = 126;//critical temp of N2 in K\n",
"TcH2 = 33.3;//critical temp of H2 in K\n",
"TcNh3 = 406.0;//critical temp of NH3 in K\n",
"PcN2 = 33.5;//critical pressure of N2 in atm\n",
"PcH2 = 12.8;//critical pressure of H2 in atm\n",
"PcNH3 = 111.0;//critical pressure of NH3 in atm\n",
"R = 0.082;//gas constant\n",
"\n",
"//To calculate the amount of ammonia leaving the reactor and the velocity of gaseous product leaving the reactor\n",
"//(i)Calculation of amount of NH3 leaving the reactor\n",
"Tcm = (TcN2*yN2)+(TcH2*yH2);//critical temperature of the mixture\n",
"Pcm = (PcN2*yN2)+(PcH2*yH2);//critical pressure of the mixture\n",
"Trm = T/Tcm;\n",
"Prm = P/Pcm;\n",
"//From figure A.2.3\n",
"Zm = 1.57;//compressibility factor of the mixture\n",
"N = (P*V)/(Zm*R*T);//Kg mole of the mixture \n",
"N1 = 0.25*N;//Kg mole of N2 in feed\n",
"//N2+3H2 - 2NH3\n",
"W = 2*0.15*N1*17;\n",
"mprintf('(i)Ammonia formed per hour is %f Kg',W);\n",
"\n",
"//(ii)Calculation of velocity\n",
"N1 = 0.25*N-(0.25*N*0.15);//Kg mole of N2 after reactor\n",
"N2 = 0.75*N-(0.75*N*0.15);//Kg mole of H2 after reactor\n",
"N3 = 0.25*N*2*0.15;//Kg mole of NH3 after reactor\n",
"Nt = N1+N2+N3;//total Kg moles after reactor\n",
"y1NH3 = N3/Nt;//mole fraction of NH3 after reactor\n",
"y1N2 = N1/Nt;//mole fraction of N2 after reactor\n",
"y1H2 = N2/Nt;//mole fraction of H2 after reactor\n",
"T1cm = (TcN2*y1N2)+(TcH2*y1H2);\n",
"P1cm = (PcN2*y1N2)+(PcH2*y1H2);\n",
"T1 = 448;//in K\n",
"P1 = 550;//in atm\n",
"T1rm = T1/T1cm;\n",
"P1rm = P1/P1cm;\n",
"//From Figure A.2.2\n",
"Zm1 = 1.38;\n",
"V1 = (Zm1*Nt*R*T1)/P1;\n",
"d = 5*(10^-2);//diameter of pipe\n",
"v = V1/((%pi/4)*(d^2)*3600);\n",
"mprintf('\n (ii)Velocity in pipe is %f m/sec',v);\n",
"//end"
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 2.1: To_determine_the_temperature_required.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"//Chemical Engineering Thermodynamics\n",
"//Chapter 2\n",
"//P-V-T Relations\n",
"\n",
"//Example 2.1\n",
"clear;\n",
"clc;\n",
"\n",
"//Given\n",
"m = 140;//m is the mass of N2 in Kg\n",
"P = 4.052*(10^5);//P is the pressure of the system in Pa\n",
"V = 30;//V is the volume of the system in m^3\n",
"R = 8314.4;// R is the gas constant\n",
"\n",
"//To determine temperature required\n",
"T = P*V/((m/28)*R);//T is the temperature of the system in K\n",
"mprintf('Temperature of the system is %f K',T);\n",
"//end"
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 2.2: Theoretical_problem.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"//Chemical Engineering Thermodynamics\n",
"//Chapter 2\n",
"//P-V-T Relations\n",
"\n",
"//Example 2.2\n",
"clear;\n",
"clc;\n",
"\n",
"//Given\n",
"//This example is a theoretical problem and does not involve any numerical computation\n",
"//end"
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 2.3: Theoretical_problem.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"//Chemical Engineering Thermodynamics\n",
"//Chapter 2\n",
"//P-V-T Relations\n",
"\n",
"//Example 2.3\n",
"clear;\n",
"clc;\n",
"\n",
"//Given\n",
"//This example is a theoretical problem and does not involve any numerical computation\n",
"//end"
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 2.4: Theoretical_problem.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"//Chemical Engineering Thermodynamics\n",
"//Chapter 2\n",
"//P-V-T Relations\n",
"\n",
"//Example 2.4\n",
"clear;\n",
"clc;\n",
"\n",
"//Given\n",
"//This example is a theoretical problem and does not involve any numerical computation\n",
"//end"
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 2.5: To_calculate_the_volume_of_Methane.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"//Chemical Engineering Thermodynamics\n",
"//Chapter 2\n",
"//P-V-T Relations\n",
"\n",
"//Example 2.5\n",
"clear;\n",
"clc;\n",
"\n",
"//Given\n",
"n = 1;//n is Kg moles of methane\n",
"T = 423;//T is the temperatue of the system in kelvin\n",
"P = 100;//P is the pressure of the system in atm\n",
"Tc = 191;//Tc is the critical temperature of the system in K\n",
"Pc = 45.8;//Pc is the critical pressure of the system in atm\n",
"R = 0.08206;//R is the gas constant in (m^3 atm/Kg mole K)\n",
"\n",
"//To calculate the volume of methane\n",
"//(i)Using ideal gas equation\n",
"V1 = (n*R*T)/P;//V1 is the volume of the gas in m^3\n",
"mprintf('(i)Volume of the gas using ideal gas equation is %f cubic meter',V1);\n",
"\n",
"//(ii)Using Vander Waals' equation\n",
"a = (27*(R^2)*(Tc^2))/(64*Pc);//Vander Waais constant\n",
"b = (R*Tc)/(8*Pc);//Vander Waais constant\n",
"v = poly(0, 'v');\n",
"q = -((a*b)/P)+(a/P)*v-(((R*T)+(b*P))/P)*v^2+(v^3);//According to Vander Waals equation\n",
"r = roots(q);\n",
"mprintf('\n (ii)Volume of the gas using Vander Waals equation is %f cubic meter',r(1));\n",
"\n",
"//(iii)Using generalized Z chart\n",
"Tr = T/Tc;//Tr is the reduced temperatue\n",
"Pr = P/Pc;//Pr is the reduced pressure\n",
"//From the figure A.2.2,\n",
"Z = 0.97;//Z is the compressibility factor\n",
"V = (Z*R*T)/P;\n",
"mprintf('\n (iii)Volume of the gas using Z chart is %f cubic meter',V);\n",
"\n",
"//(iv)Using molar polarisation method\n",
"//From Table 2.2\n",
"Pmc = 6.82;//Pmc is the molar polarisation for methane\n",
"//From figure A.2.4\n",
"Z0 = .965;\n",
"Z1 = 14.8*(10^-4);\n",
"Z = Z0+(Z1*Pmc);\n",
"V = (Z*R*T)/P;\n",
"mprintf('\n (iv)Volume of the gas using molar polarisation method is %f cubic meter',V);\n",
"\n",
"//(v)From experiment\n",
"//Given\n",
"Z = 0.9848;\n",
"V = (0.9848*n*R*T)/P;\n",
"mprintf('\n (v)Volume of the gas calculated by experimental Z value is %f cubic meter',V);\n",
"//end"
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 2.6: To_calculate_the_final_pressure_acheived.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"//Chemical Engineering Thermodynamics\n",
"//Chapter 2\n",
"//P-V-T Relations\n",
"\n",
"//Example 2.6\n",
"clear;\n",
"clc;\n",
"\n",
"//Given\n",
"P1 = 266;\n",
"T1 = 473.16;//Initial temperature in Kelvin\n",
"T2 = 273.16;//Final temperature in Kelvin\n",
"V1 = 80; V2 = 80;//Initial & final volume in litres\n",
"N1 = (14.28/28); N2 = (14.28/28);//Initial and final Kg moles are equal\n",
"Tc = 126;//Critical temperature of N2 in K\n",
"Pc = 33.5;//Critical pressure of N2 in atm\n",
"\n",
"//To calculate the final pressure achieved\n",
"//(i)Using ideal gas law\n",
"p2 = (P1*V1*N2*T2)/(V2*N1*T1);\n",
"mprintf('(i)Final pressure of N2 using ideal gas law is %f atm',p2);\n",
"\n",
"//(ii)Using generalized Z chart\n",
"Tr1 = T1/Tc;//reduced initial temp in k\n",
"Pr1 = P1/Pc;//reduced initial press in K\n",
"//From the Z-chart compressibility factor coressponding to the above Tr1 &Pr1 is\n",
"Z1 = 1.07;\n",
"P2 = [125,135,150];\n",
"Z2 = [0.95, 0.96, 0.98];\n",
"F = [0,0,0];\n",
"for i = 1:3\n",
" F(i) = (P2(i)/(Z2(i)*T2))-(P1/(Z1*T1));\n",
"end\n",
"clf;\n",
"plot(P2,F);\n",
"xtitle('P2 vs F','P2','F');\n",
"P3 = interpln([F;P2],0);\n",
"mprintf('\n (ii)Final pressure of N2 from Z chart is %f atm',P3);\n",
"\n",
"//(iii)Using Pseudo reduced density chart\n",
"R = 0.082;//gas constant\n",
"v = V1/N1;//Volume per moles of nitrogen in m^3/Kg mole\n",
"Dr = (R*Tc)/(Pc*v);\n",
"Tr2 = T2/Tc;//final reduced temp in K\n",
"//From figure A.2.1, reduced pressure coressponding to this Dr and Tr2 is\n",
"Pr2 = 4.1//final reduced pressure in atm\n",
"p2_ = Pr2*Pc;\n",
"mprintf('\n (iii)Final pressure achieved using Dr chart is %f atm',p2_);\n",
"//end"
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 2.7: To_compute_the_work_required.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"//Chemical Engineering Thermodynamics\n",
"//Chapter 2\n",
"//P-V-T Relations\n",
"\n",
"//Example 2.7\n",
"clear;\n",
"clc;\n",
"\n",
"//Given\n",
"n = 1;//n is the Kg mole of methane gas\n",
"T = 298;//T is the constant temperature in K\n",
"P1 = 1;//P1 is the initial pressure of the system\n",
"P2 = 100;//P2 is the final pressure of the system\n",
"R = 8314.4;//R is the gas constant in Nm/Kgmole deg K\n",
"\n",
"//To compute the work required\n",
"//(i)Using ideal gas law\n",
"W = R*T*log(P1/P2);\n",
"mprintf('(i)Work done by the system if the gas obeys ideal gas law is %4.2e Nm',W);\n",
"\n",
"//(ii)Using Vander Waals' equation\n",
"//Given\n",
"//For methane\n",
"a = 2.32*(10^5);//Vander Wals' constant a in N/m^2\n",
"b = 0.0428;//Vanderwaals' constant b in m^3\n",
"//V1 and V2 are evaluated by trial and error using Vanderwaals' equation as P1 and P2 are known\n",
"V1 = 11.1;//initial volume of the gas in m^3\n",
"V2 = 0.089;//final volume of the gas in m^3\n",
"W = (R*T*log((V2-b)/(V1-b)))+(a*((1/V2)-(1/V1)))\n",
"mprintf('\n (ii)Work done by the system if the gas obeys Vander Waals equation is %4.2e Nm',W);\n",
"//end"
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 2.8: To_determine_the_vapour_pressure_of_Chlorine.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"//Chemical Engineering Thermodynamics\n",
"//Chapter 2\n",
"//P-V-T Relations\n",
"\n",
"//Example 2.8\n",
"clear;\n",
"clc;\n",
"\n",
"//Given\n",
"V = 27*(10^-3);//Volume of the container in m^3\n",
"n = (15/70.91);//n is the Kg moles of chlorine\n",
"T = 293;//T is the temperature in K\n",
"R = 0.08206;\n",
"P = 10^(4.39-(1045/293));//P is the vapour pressure of chlorine\n",
"Pc = 76.1;//Critical pressure of Chlorine\n",
"Tc = 417;//Critical temperature of Chlorine \n",
"Pr = P/Pc;//Reduced pressure of Chlorine\n",
"Tr = T/Tc;//Critical temperature of Chlorine\n",
"M = 70.91;//Molecular weight of the Chlorine\n",
"\n",
"//To determine the vapour pressure of chlorine, amount of liquid Cl2 and temperature required\n",
"//(i)Specific volume of liquid Chlorine\n",
"//From figure A.2.2\n",
"Zg = 0.93;\n",
"//From figure A.2.6\n",
"Zl = 0.013;\n",
"vl = ((Zl*R*T)/P);\n",
"mprintf('(i)Specific volume of liquid Chlorine from compressibility chart is %f cubic meter /Kgmole',vl);\n",
"\n",
"//From Francis relation, taking the constants from Table 2.3\n",
"D = (1.606-(216*(10^-5)*20)-(28/(200-20)))*10^3;//Density of liq Cl2 in Kg/m^3\n",
"Vl = M/D;\n",
"mprintf('\n Specific volume of liquid Chlorine from Francis relation is %f cubic meter /Kgmole',Vl);\n",
"\n",
"//(ii)Amount of liquid Cl2 present in the cylinder\n",
"vg = ((Zg*R*T)/P);\n",
"V1 = V-vg;//V1 is the volume of liquid Chlorine\n",
"Vct = 0.027;//volume of the container\n",
"Vg = (0.212-(Vct/vl))/((1/vg)-(1/vl));//By material balance\n",
"W = ((V-Vg)*70.9)/vl;\n",
"mprintf('\n\n (ii)Weight of Chlorine at 20deg cel is %f Kg',W);\n",
"\n",
"//(iii)Calculation of temperature required to evaporate all the liquid chlorine\n",
"//log P' = 4.39 - 1045/T (given)\n",
"//Assume the various temperature\n",
"Ng = 0.212;//total Kg moles of gas\n",
"Ta = [413 415 417];\n",
"N = [0,0,0];\n",
"for i = 1:3\n",
" Tr(i) = Ta(i)/Tc;//reduced temperature in K\n",
" P(i) = 10^(4.39-(1045/Ta(i)));\n",
" Pr(i) = P(i)/Pc;//reduced pressure in K\n",
"//From the compressibility factor chart,Z values coressponding to the above Tr &Pr are given as\n",
"Z = [0.4 0.328 0.208];\n",
"N(i) = (P(i)*Vct)/(Z(i)*R*Ta(i));\n",
"end\n",
"\n",
"clf;\n",
"plot(N,Ta);\n",
"xtitle('Ta vs N','N','Ta');\n",
"T1 = interpln([N;Ta],0.212);//in K\n",
"mprintf('\n (iii)The temperature required to evaporate all the liquid chlorine is %f deg celsius',T1-273);\n",
"//end"
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 2.9: To_calculate_the_pressure_exerted_by_the_gas_mixture.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"//Chemical Engineering Thermodynamics\n",
"//Chapter 2\n",
"//P-V-T Relations\n",
"\n",
"//Example 2.9\n",
"clear;\n",
"clc;\n",
"\n",
"//Given\n",
"N1 = 0.7;//Kg mole of CH4\n",
"N2 = 0.3;//Kg mole of N2\n",
"R = 0.08206;//Gas constant\n",
"T = 323;//Temperature in Kelvin\n",
"V = 0.04;//Volume in m^3\n",
"a1 = 2.280; b1 = 0.0428;//Vanderwaals constants for CH4\n",
"a2 = 1.345;b2 = 0.0386;//Vanderwaals constants for N2\n",
"Tc1 = 191; Pc1 = 45.8;//Critical temperature in K and pressure of CH4 in atm\n",
"Tc2 = 126;Pc2 = 33.5;//Critical temperature in K and pressure of N2 in atm\n",
"\n",
"//To find Approx Value\n",
"function[A]=approx(V,n)\n",
" A=round(V*10^n)/10^n;//V-Value n-To what place\n",
" funcprot(0)\n",
"endfunction \n",
"\n",
"//To calculate the pressure exerted by the gas mixture\n",
"//(i)Using ideal gas law\n",
"P = (N1+N2)*((R*T)/V);\n",
"mprintf('(i) Pressure exerted by the gas mixture using ideal gas law is %d atm',P);\n",
"\n",
"//(ii)Using Vander waal equation\n",
"P1 = ((N1*R*T)/(V-(N1*b1)))-((a1*(N1^2))/(V^2));//Partial pressure of CH4\n",
"P2 = ((N2*R*T)/(V-(N2*b2)))-((a2*(N2^2))/(V^2));//Partial pressure of N2\n",
"Pt = P1+P2;\n",
"mprintf('\n(ii) Pressure exerted by the gas mixture using Vander waal equation is %f atm', Pt);\n",
"\n",
"//(iii)Using Zchart and Dalton's law\n",
"Tra = T/Tc1;//reduced temperature of CH4\n",
"Trb = T/Tc2;//reduced temperature of N2\n",
"//Asssume the pressure\n",
"P = [660 732 793 815 831];\n",
"for i = 1:5\n",
" Pa(i) = N1*P(i);// partial pressure of CH4 for the ith total pressure\n",
" Pb(i) = N2*P(i);// partial pressure of N2 for the ith total pressure\n",
" Pra(i) = Pa(i)/Pc1;//reduced pressure of CH4 for the ith total pressure\n",
" Prb(i) = Pb(i)/Pc2;//reduced pressure of N2 for the ith total pressure\n",
"end\n",
"\n",
"//For the above Pr and Tr values compressibility factors from the figure A.2.3 are given as\n",
"Za = [1.154 1.280 1.331 1.370 1.390];//Z values of CH4 \n",
"Zb = [1 1 1 1 1];//Z values of N2\n",
"V3 = 0.0421;\n",
"for i = 1:5\n",
" Pa(i) = Za(i)*N1*((R*T)/V);//partial pressure of CH4 coressponding to the ith total presure\n",
" Pb(i) = Zb(i)*N2*((R*T)/V);//partial pressure of N2 coressponding to the ith total pressure\n",
" Pt(i) = Pa(i)+Pb(i);//total pressure of the gas mixture\n",
" if Pt(i)-P(i) < 15 \n",
" mprintf('\n(iii) pressure exerted by the gas mixture using Z chart and Dalton Law is %d atm',Pt(i));\n",
" else\n",
" end\n",
"end\n",
"\n",
"//(iv)Using Amagat's law and Z chart\n",
"P = [1000 1200 1500 1700];\n",
"for i=1:4\n",
" Pra(i) = P(i)/Pc1;\n",
" Prb(i) = P(i)/Pc2;\n",
"end\n",
"//For the above Pr and Tr values compressibility factors from the figure A.2.3 are given as\n",
"Za = [1.87 2.14 2.52 2.77];\n",
"Zb = [1.80 2.10 2.37 2.54];\n",
"for i = 1:4\n",
" Va(i) = approx((N1*Za(i)*((R*T)/P(i))),4);\n",
" Vb(i) = approx((N2*Zb(i)*((R*T)/P(i))),4);\n",
" V1(i) = approx((Va(i)+Vb(i)),4);\n",
" if V1(i)-V <= 0.003\n",
" mprintf('\n(iv) Pressure exerted by the gas mixture using Amagat law and Zchart is %d atm ',P(i));\n",
" else\n",
"end\n",
"end\n",
"//end"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Scilab",
"language": "scilab",
"name": "scilab"
},
"language_info": {
"file_extension": ".sce",
"help_links": [
{
"text": "MetaKernel Magics",
"url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
}
],
"mimetype": "text/x-octave",
"name": "scilab",
"version": "0.7.1"
}
},
"nbformat": 4,
"nbformat_minor": 0
}
|