1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
|
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Chapter 5: Electron Optics"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 5.1: Electron_refraction_calculation_of_potential_difference.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"clc;clear;\n",
"//Example 5.1\n",
"//Electron refraction, calculation of potential difference\n",
"\n",
"//given values\n",
" V1=250;//potential by which electrons are accelerated in Volts\n",
" alpha1=50*%pi/180;//in degree\n",
" alpha2=30*%pi/180;//in degree\n",
"b=sin(alpha1)/sin(alpha2);\n",
" //calculation\n",
"V2=(b^2)*V1;\n",
"a=V2-V1;\n",
"disp(a,'potential difference(in volts) is:');\n",
"\n",
""
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 5.2: Cyclotro.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"clc;clear;\n",
"//Example 5.2&5.3\n",
"//Cyclotron, calculation of magnetic induction,maximum energy\n",
"\n",
"//given values\n",
" f=12*(10^6);//oscillator frequency in Hertz\n",
" r=.53;//radius of the dee in metre\n",
" q=1.6*10^-19;//Deuteron charge in C\n",
" m=3.34*10^-27;//mass of deuteron in kg\n",
" //calculation\n",
"B=2*%pi*f*m/q;//\n",
"disp(B,'magnetic induction (in Tesla) is:');\n",
"E=B^2*q^2*r^2/(2*m);\n",
"disp(E,'maximum energy to which deuterons can be accelerated (in J) is')\n",
"E1=E*6.24*10^18/10^6;//conversion of energy into MeV\n",
"disp(E1,'maximum energy to which deuterons can be accelerated (in MeV) is');"
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 5.4: calculation_of_linear_separation_of_lines_formed_on_photographic_plates.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"clc;clear;\n",
"//Example 5.4\n",
"//Mass spectrograph, calculation of linear separation of lines formed on photographic plates\n",
"\n",
"//given values\n",
" E=8*10^4;//electric field in V/m\n",
" B=.55//magnetic induction in Wb/m*2\n",
" q=1.6*10^-19;//charge of ions\n",
" m1=20*1.67*10^-27;//atomic mass of an isotope of neon\n",
" m2=22*1.67*10^-27;//atomic mass of other isotope of neon\n",
" //calculation\n",
"x=2*E*(m2-m1)/(q*B^2);//\n",
"disp(x,'separation of lines (in metre) is:')"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Scilab",
"language": "scilab",
"name": "scilab"
},
"language_info": {
"file_extension": ".sce",
"help_links": [
{
"text": "MetaKernel Magics",
"url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
}
],
"mimetype": "text/x-octave",
"name": "scilab",
"version": "0.7.1"
}
},
"nbformat": 4,
"nbformat_minor": 0
}
|