diff options
Diffstat (limited to 'Thermodynamics_by_Gaggioli_and_Obert/14-Psychrometrics.ipynb')
-rw-r--r-- | Thermodynamics_by_Gaggioli_and_Obert/14-Psychrometrics.ipynb | 476 |
1 files changed, 476 insertions, 0 deletions
diff --git a/Thermodynamics_by_Gaggioli_and_Obert/14-Psychrometrics.ipynb b/Thermodynamics_by_Gaggioli_and_Obert/14-Psychrometrics.ipynb new file mode 100644 index 0000000..51e5eb6 --- /dev/null +++ b/Thermodynamics_by_Gaggioli_and_Obert/14-Psychrometrics.ipynb @@ -0,0 +1,476 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 14: Psychrometrics" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 14.10: Approach_calculations.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"clear\n", +"//Initialization of variables\n", +"m=1 //lbm\n", +"t1=100 //F\n", +"t2=75 //F\n", +"db=65 //F\n", +"disp('From psychrometric charts,')\n", +"t11=82 //F\n", +"phi1=0.4\n", +"H1=30 //Btu/lbm dry air\n", +"w1=65 //grains/lbm dry air\n", +"w2=250 //grains/lbm dry air\n", +"//calculations\n", +"cr=t1-t2\n", +"appr=t2-db\n", +"dmf3=(w2-w1)*0.0001427\n", +"hf3=68\n", +"hf4=43\n", +"H2=62.2\n", +"H1=30\n", +"mf4= (H1-H2+ dmf3*hf3)/(hf4-hf3)\n", +"per=dmf3/(dmf3+mf4)\n", +"//results\n", +"printf('cooling range = %d F',cr)\n", +"printf('\n Approach = %d F',appr)\n", +"printf('\n amount of water cooled per pound of dry air = %.3f lbm dry air/lbm dry air',mf4)\n", +"printf('\n percentage of water lost by evaporation = %.2f percent',per*100)\n", +"" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 14.11: Heat_calculations.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"clear\n", +"//Initialization of variables\n", +"mfr=1\n", +"water=900 //gallons\n", +"t2=110 //F\n", +"t1=80 //F\n", +"cp1=1\n", +"//calculations\n", +"mfa=mfr*water*8.33*60\n", +"mfc=mfa/(60*0.075)\n", +"qa=mfa*(t2-t1)\n", +"dH=qa/(mfc*4.5)\n", +"dH2=mfr*cp1*(t2-t1)\n", +"H1=23.73\n", +"H2=5.08\n", +"f=3.309\n", +"lnmean=(H1-H2)/log(H1/H2)\n", +"dtt=(t2-t1)/lnmean\n", +"per=25\n", +"//results\n", +"printf('flow rate of air = %d lbm/hr.It is equal to %d cfm',mfa,mfc)\n", +"printf('\n Total heat transferred = %d Btu/hr',qa)\n", +"printf('\n Enthalpy = %.1f Btu/lbm dry air',dH)\n", +"printf('\n Using second method, Enthalpy = %.1f Btu/lbm',dH2)\n", +"printf('\n Performance factor = %.3f ',f)\n", +"printf('\n logrithamic mean enthalpy difference = %.2f . Estimated low percentage = %d low',dtt,per)\n", +"disp('The answers are a bit different due to rounding off error in textbook.')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 14.1: Pressure_and_density_calculations.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"clear\n", +"//Initialization of variables\n", +"t1=80+460 //R\n", +"ps=0.5069 //psia\n", +"disp('from steam tables,')\n", +"vs=633.1 //ft^3/lbm\n", +"phi=0.3\n", +"R=85.6\n", +"Ra=53.3\n", +"p=14.696\n", +"//calculations\n", +"tdew=46 //F\n", +"pw=phi*ps\n", +"rhos=1/vs\n", +"rhow=phi*rhos\n", +"rhow2= pw*144/(R*t1)\n", +"pa=p-pw\n", +"rhoa= pa*144/(Ra*t1)\n", +"w=rhow/rhoa\n", +"mu=phi*(p-ps)/(p-pw)\n", +"Ws=0.622*(ps/(p-ps))\n", +"mu2=w/Ws\n", +"//results\n", +"disp('part a')\n", +"printf('partial pressure of water = %.5f psia',pw)\n", +"printf('\n dew temperature = %d F',tdew)\n", +"disp('part b')\n", +"printf('density of water = %.6f lbm/ft^3',rhow)\n", +"printf('\n in case 2, density of water = %.6f lbm/ft^3',rhow2)\n", +"printf('\n density of air = %.6f lbm/ft^3',rhoa)\n", +"disp('part c')\n", +"printf('specific humidity = %.4f lbm steam/lbm air',w)\n", +"disp('part d')\n", +"printf('In method 1, Degree of saturation = %.3f',mu)\n", +"printf('\n In method 2, Degree of saturation = %.3f',mu2)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 14.2: Moisture_content_calculation.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"clear\n", +"//Initialization of variables\n", +"p=14.696 //psia\n", +"ps=0.0808 //psia\n", +"ps2=0.5069 //psia\n", +"phi2=0.5\n", +"phi=0.6\n", +"grain=7000\n", +"//calculations\n", +"pw=phi*ps\n", +"w1=0.622*pw/(p-pw)\n", +"pw2=phi2*ps2\n", +"w2=0.622*pw2/(p-pw2)\n", +"dw=w2-w1\n", +"dwg=dw*grain\n", +"//results\n", +"printf('change in moisture content = %.6f lbm water/lbm dry air',dw)\n", +"printf('\n in grains, change = %.2f grains water/lbm dry air',dwg)\n", +"disp('The answers are a bit different due to rounding off error in textbook')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 14.3: Humidity_calculations.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"clear\n", +"//Initialization of variables\n", +"t1=80 //F\n", +"t2=60 //F\n", +"p=14.696 //psia\n", +"ps=0.507 //psia\n", +"pss=0.256 //psia\n", +"cp=0.24\n", +"disp('From steam tables,')\n", +"//calculations\n", +"ws=0.622*pss/(p-pss)\n", +"w=(cp*(t2-t1) + ws*1060)/(1060+ 0.45*(t1-t2))\n", +"pw=w*p/(0.622+w)\n", +"phi=pw/ps\n", +"td=46 //F\n", +"//results\n", +"printf('\n humidity ratio = %.4f lbm/lbm dry air',w)\n", +"printf('\n relative humidity = %.1f percent',phi*100)\n", +"printf('\n Dew point = %d F',td)\n", +"" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 14.4: Enthalpy_and_sigma_function_calculations.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"clear\n", +"//Initialization of variables\n", +"W=0.0065 //lbm/lbm of dry air\n", +"t=80 //F\n", +"td=60 //F\n", +"//calculations\n", +"H=0.24*t+W*(1060+0.45*t)\n", +"sig=H-W*(td-32)\n", +"Ws=0.0111\n", +"H2=0.24*td+Ws*(1060+0.45*td)\n", +"sig2=H2-Ws*(td-32)\n", +"//results\n", +"printf('In case 1, enthalpy = %.2f Btu/lbm dry air',H)\n", +"printf('\n In case 1, sigma function = %.2f Btu/lbm dry air',sig)\n", +"printf('\n In case 2, enthalpy = %.2f Btu/lbm dry air',H2)\n", +"printf('\n In case 2, sigma function = %.2f Btu/lbm dry air',sig2)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 14.5: Enthalpy_calculations.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"clear\n", +"//Initialization of variables\n", +"t1=30 //F\n", +"t2=60 //F\n", +"t3=80 //F\n", +"W1=0.00206\n", +"W2=0.01090\n", +"//calculations\n", +"cm1=0.24+0.45*W1\n", +"H1=cm1*t1+W1*1060\n", +"cm2=0.24+0.45*W2\n", +"H2=cm2*t3+W2*1060\n", +"hf=t2-32\n", +"dq=H2-H1-(W2-W1)*hf\n", +"//results\n", +"printf('In case 1, Enthalpy = %.2f Btu/lbm dry air',H1)\n", +"printf('\n In case 2, Enthalpy = %.2f Btu/lbm dry air',H2)\n", +"printf('\n Heat added = %.2f Btu/lbm dry air',dq)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 14.6: Humidity_calculations.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"clear\n", +"//Initialization of variables\n", +"pw=0.15//psia\n", +"disp('using psychrometric charts,')\n", +"tdew=46 //F\n", +"//calculations\n", +"va=13.74 //ft^3/lbm dry air\n", +"rhoa=1/va\n", +"V=13.74\n", +"mw=46/7000\n", +"rhow=mw/V\n", +"w=0.00657\n", +"//results\n", +"disp('part a')\n", +"printf('partial pressure of water = %.2f psia',pw)\n", +"printf('\n dew temperature = %d F',tdew)\n", +"disp('part b')\n", +"printf('density of water = %.6f lbm/ft^3',rhow)\n", +"printf('\n density of air = %.4f lbm/ft^3',rhoa)\n", +"disp('part c')\n", +"printf('specific humidity = %.5f lbm water/lbm air',w)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 14.7: Enthalpy_change_calculations.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"clear\n", +"//Initialization of variables\n", +"W1=0.00206 //lbm/lbm dry air\n", +"W2=0.01090 //lbm/lbm dry air\n", +"t=60 //F\n", +"disp('From humidity charts,')\n", +"//calculations\n", +"dw=W1-W2\n", +"hs=144.4\n", +"hs2=66.8-32\n", +"w1=14.4 //Btu/lbm\n", +"ws1=20 //Btu/lbm\n", +"w2=76.3 //Btu/lbm\n", +"ws2=98.5 //Btu/lbm\n", +"dwh1=-(w1-ws1)/7000 *hs\n", +"H1=9.3+dwh1\n", +"dwh2=(w2-ws2)/7000 *hs2\n", +"H2=31.3+dwh2\n", +"dwc=dw*(t-32)\n", +"dq=H2-H1+dwc\n", +"//results\n", +"printf('Enthalpy change = %.2f Btu/lbm dry air',dq)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 14.8: Enthalpy_and_temperature_calculations.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"clear\n", +"//Initialization of variables\n", +"disp('From psychrometric charts at 50 F and 80 F,')\n", +"va1=13 //ft^3/lbm dry air\n", +"va2=13.88 //ft^3/lbm dry air\n", +"flow=2000 //cfm\n", +"//calculations\n", +"ma1= flow/va1\n", +"ma2=flow/va2\n", +"disp('The two initial states have been multiplied by 108/262 and distance 2-3 is located')\n", +"t=62.5// F\n", +"phi=0.83 //percent\n", +"//results\n", +"printf('humidity = %.2f ',phi)\n", +"printf('\n Temperature = %.1f F',t)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 14.9: Dry_bulb_calculations.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"clear\n", +"//Initialization of variables\n", +"t=90 //F\n", +"ts=67.2 //F\n", +"phi=0.3\n", +"per=0.8\n", +"//calculations\n", +"dep=t-ts\n", +"dt=dep*per\n", +"tf=t-dt\n", +"disp('from psychrometric charts,')\n", +"phi2=0.8\n", +"//results\n", +"printf('Dry bulb temperature = %.2f F',tf)\n", +"printf('\n percent humidity = %.2f',phi2)" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} |