summaryrefslogtreecommitdiff
path: root/The_Field_of_Electronics_by_R_Morrison/2-Capacitance.ipynb
diff options
context:
space:
mode:
Diffstat (limited to 'The_Field_of_Electronics_by_R_Morrison/2-Capacitance.ipynb')
-rw-r--r--The_Field_of_Electronics_by_R_Morrison/2-Capacitance.ipynb592
1 files changed, 592 insertions, 0 deletions
diff --git a/The_Field_of_Electronics_by_R_Morrison/2-Capacitance.ipynb b/The_Field_of_Electronics_by_R_Morrison/2-Capacitance.ipynb
new file mode 100644
index 0000000..38f3bc9
--- /dev/null
+++ b/The_Field_of_Electronics_by_R_Morrison/2-Capacitance.ipynb
@@ -0,0 +1,592 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 2: Capacitance"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.10: calculating_H_field_intensity.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"i=0.1; //current in Ampere\n",
+"r=0.05; //radius in metre\n",
+"h=(i*100)/(2*(%pi)*r); //calculating h\n",
+"disp(h,'H field intensity for 100 turns in A/metre = '); //displaying result"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.11: calculating_H_field_intensity.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"disp('Radius is doubled.Therefore, H filed becomes half = 16 A/metre.'); //displaying result"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.12: calculating_H_field_intensity.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"disp('H field at the center is nearly the same.'); //displaying result"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.13: calculating_H_field_intensity.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"i=10; //current\n",
+"r=0.005; //radius in metre\n",
+"h1=(i)/(4*2*(%pi)*r); //at half radius H is (1/4)th\n",
+"disp(h1,'H field intensity at one half of radius in A/metre = '); //displaying result\n",
+"h2=(i)/(2*(%pi)*0.01); //calculating H at surface\n",
+"disp(h2,'H field intensity at surface in A/metre = '); //displaying result\n",
+"disp('H field intensity is proportional to radius.Therefore, it is zero at the center.'); //displaying result"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.14: calculating_time.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"v=2; //voltage in volts\n",
+"l=10^-3; //inductance in Henry\n",
+"i=10*10^-3; //current\n",
+"di=v/l; //change in current in A/sec\n",
+"t=i/di; //calculating time\n",
+"disp(t,'Time required to reach 0.01 A in sec = '); //displaying result"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.15: calculating_energy.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"v=2; //voltage in volts\n",
+"l=10^-3; //inductance in Henry\n",
+"i=10*10^-3; //current\n",
+"e=(1/2)*l*i*i; //calculating energy\n",
+"disp(e,'Energy in Joule = '); //displaying result"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.16: calculating_H_field.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"p=20*10^-2; //path length in metre\n",
+"m=20000; //relative permeability of magnetic material\n",
+"i=2*10^-3; //current in Ampere\n",
+"n=500; //no of turns\n",
+"h=n*i; //calculating A/turn for 20 cm\n",
+"disp(h,'H for 20 cm in A/turn = '); //displaying result\n",
+"a=h/(20*10^-2); //calculating H per metre\n",
+"disp(a,'H field per metre in A/metre = '); //displaying result"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.17: calculating_B_field.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"mo=(4*(%pi)*10^-7); //relative permeability of free space\n",
+"p=20*10^-2; //path length in metre\n",
+"m=20000; //relative permeability of magnetic material\n",
+"i=2*10^-3; //current in Ampere\n",
+"n=500; //no of turns\n",
+"H=n*i; //calculating A/turn for 20 cm\n",
+"disp(H,'H for 20 cm in A/turn = '); //displaying result\n",
+"a=H/(20*10^-2); //calculating H per metre\n",
+"disp(a,'H field per metre in A/metre = '); //displaying result\n",
+"B=(m*mo*a); //calculating flux\n",
+"disp(B,'Flux in Tesla = '); //displaying result"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.18: calculating_flux.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"area=5*10^-4; //area\n",
+"mo=(4*(%pi)*10^-7); //relative permeability of free space\n",
+"p=20*10^-2; //path length in metre\n",
+"m=20000; //relative permeability of magnetic material\n",
+"i=2*10^-3; //current in Ampere\n",
+"n=500; //no of turns\n",
+"H=n*i; //calculating A/turn for 20 cm\n",
+"disp(H,'H for 20 cm in A/turn = '); //displaying result\n",
+"a=H/(20*10^-2); //calculating H per metre\n",
+"disp(a,'H field per metre in A/metre = '); //displaying result\n",
+"B=(m*mo*a); //calculating flux\n",
+"disp(B,'Flux in Tesla = '); //displaying result\n",
+"l=B*area; //calculating flux density\n",
+"disp(l,'Flux Density in Weber/metre = '); //diaplaying result"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.19: calculating_time.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"v=0.04; //voltage per turn in Volt\n",
+"area=5*10^-4; //metre square\n",
+"B=v/area; //calculating B\n",
+"disp(B,'B in Tesla/sec = '); //displaying result\n",
+"H=B/(4*(%pi)*10^-7*20000); //calculating H\n",
+"disp(H,'H in A/m = '); //displaying result\n",
+"disp('Therefore, for 500 turns and 20 cm = 1.27 A/sec.25.4 ms for 20 mA and 38.1 ms for 30 mA'); //displaying result"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.1: calculating_capacitance.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"disp('Example 2.1');\n",
+"v=3000; //volume in metre cube.\n",
+"theta=0.2; //theta in owu(open window unit).\n",
+"s=1850; //area in metre cube.\n",
+"as=theta*s; //calculating total absorbtion of surface.\n",
+"T=(0.165*v)/as //calculating T using Sabine formula\n",
+"disp(T,'Reverberation time of Room = '); //Displaying Result."
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.20: calculating_lowest_frequency_square_wave.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"phi=0.5; //flux density in Tesla\n",
+"v=10; //peak to peak voltage\n",
+"disp('At 80 Tesla/sec it takes 1/160 sec to reach 0.5 Tesla.Therefore,to reach maximum B in opposite sense and return to zero it will take 4/160 sec.'); //displaying result\n",
+"disp('This is a frequency of 40 Hz.'); //displaying result"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.21: calculating_energy.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"v=7.5*10^-5; //volume in metre cube\n",
+"b=1; //flux in tesla\n",
+"mo=4*(%pi)*10^-7; //permeability of free space\n",
+"m=20000; //permeability of material\n",
+"h=b/(m*mo); //calculating field intensity\n",
+"e=(1/2)*b*h*v; //calculating energy\n",
+"disp(e,'Energy in Joule = '); //displaying energy"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.22: calculating_H_field.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"v=7.5*10^-5; //volume in metre cube\n",
+"b=1; //flux in tesla\n",
+"mo=4*(%pi)*10^-7; //permeability of free space\n",
+"m=20000; //permeability of material\n",
+"h=b/(m*mo); //calculating field intensity\n",
+"e=(1/2)*b*h*v; //calculating energy\n",
+"disp(e,'Energy in Joule = '); //displaying energy\n",
+"disp(h,'Field in the gap = '); //displaying field intensity\n",
+"disp(h*10^-2,'Current per metre = Therefore in the gap of 0.001 m current required in mA = '); //displaying result"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.2: calculating_charge.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"disp('Example 2.2');\n",
+"v=120000; //volume in metre cube.\n",
+"t=1.5; //time in second.\n",
+"s=25000; //area in metre cube.\n",
+"a=(0.16*v)/(t*s); //using Sabine formula for calculating a\n",
+"disp(a,'Average Absorbing Power of Surface = '); //Displaying Result."
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.3: calculating_D.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"disp('Example 2.3');\n",
+"v=6000 //Volume in metre cube.\n",
+"as=20 //surface absorbtion in owu(open window unit).\n",
+"T=(0.165*v)/(as); //calculating T using Sabine Formula.\n",
+"disp(T,'Reverberation Time = '); //Displaying Result."
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.4: calculating_current.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"disp('Example2.4');\n",
+"v=3500; //volume in metre cube.\n",
+"n1=370-300; //no. of audience on wooden seats.\n",
+"n2=300-70; //no. of empty wooden seats.\n",
+"a1s1=0.04*60; //absorption due to wooden doors.\n",
+"a2s2=0.03*700; //absorption due to plastered walls.\n",
+"a3s3=0.06*50; //absorption due to glass work.\n",
+"a4s4=4.2*370; //absorption due to audience on spungy and wooden \n",
+"//seats.\n",
+"a5s5=2*230; //absorption due to empty seats.\n",
+"sum=a1s1+a2s2+a3s3+a4s4+a5s5; //total absorption of cinema hall.\n",
+"T=(0.165*v)/sum; //calculating T using Sabine Formula.\n",
+"disp(T,'Reverberation Time = '); //Displaying Result."
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.5: calculating_time_constant.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"disp('Example 2.5');\n",
+"l=10; //length in centimetres.\n",
+"Y=20*10^11; //Young's Modulus in dyne/cm square.\n",
+"R=8; //Density in gram/cc\n",
+"n=(1/(2*l))*sqrt(Y/R); //calculating frequency of vibration using \n",
+"//young's modulus.\n",
+"disp(n,'Frequency of vibration in Hz.'); //Displaying Result. "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.6: calculating_voltage.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"disp('Example 2.7');\n",
+"t=0.1; //thickness in centimetre.\n",
+"Y=8.75*10^11; //Young's Modulus in dyne/cm square.\n",
+"R=2.654; //Density in gram/cm square.\n",
+"n=(1/(2*t))*sqrt(Y/R); //calculating frequency using Young's modulus.\n",
+"disp(n,'Frequency of Vibration in Hz = '); //Displaying Result."
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.7: calculating_resistance.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"disp('Example 2.7');\n",
+"K=2.026*10^9; //Bulk Modulus in N/m square.\n",
+"R=10^3; //Density in Kg/m cube.\n",
+"V=sqrt(K/R); //Calculating speed using Bulk Modulus.\n",
+"disp(V,'Velocity of sound waves in water in m/sec = '); //displaying result."
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.8: calculating_energy.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"disp('Example 2.8');\n",
+"Y=1.41; //Young's Modulus.\n",
+"R=1.293*10^-3; //Density of air in g/centimetre cube.\n",
+"P=76*13.6*980; //atmospheric pressure in dyne/cm square.\n",
+"V=sqrt((Y*P)/R); //calculating speed using young's modulus.\n",
+"disp(V,'Speed of ultrasonic wave in air at n.t.p. in cm/sec = '); //displaying result. \n",
+"disp(V*10^-2,'Speed in m/sec'); //displaying result."
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.9: finding_H_field_intensity.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"r=0.1; //in metre\n",
+"H=3/(2*(%pi)*r); //calculating H field intensity\n",
+"disp(H,'H field intensity in A/metre = '); //displaying result"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}