summaryrefslogtreecommitdiff
path: root/The_Field_of_Electronics_by_R_Morrison/1-Electric_field.ipynb
diff options
context:
space:
mode:
Diffstat (limited to 'The_Field_of_Electronics_by_R_Morrison/1-Electric_field.ipynb')
-rw-r--r--The_Field_of_Electronics_by_R_Morrison/1-Electric_field.ipynb630
1 files changed, 630 insertions, 0 deletions
diff --git a/The_Field_of_Electronics_by_R_Morrison/1-Electric_field.ipynb b/The_Field_of_Electronics_by_R_Morrison/1-Electric_field.ipynb
new file mode 100644
index 0000000..14902df
--- /dev/null
+++ b/The_Field_of_Electronics_by_R_Morrison/1-Electric_field.ipynb
@@ -0,0 +1,630 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 1: Electric field"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.10: calculating_voltage.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"a=20; //amplitude in cm\n",
+"n=6; //frequency per second\n",
+"w=2*(%pi)*n; //omega in radians/sec\n",
+"disp(w,'Omega in radians/sec = '); //displaying result"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.11: calculating_power_dissipated.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"a=6; //amplitude in cm\n",
+"n=9; //frequency in Hz.\n",
+"vmax=2*(%pi)*n*6; //calculating velocity in cm/sec\n",
+"acc=-((18*(%pi))^2)*6; //calculating acc. in m/sec square\n",
+"disp(vmax,'Maximum velocity in cm/sec = '); //displaying result\n",
+"disp('Velocity at extreme position = 0'); //displaying result\n",
+"disp('Accelaration at mean position = 0'); //displaying result\n",
+"disp(acc,'Accelaration at extreme position in m/sec square = '); //displaying result"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.12: calculating_power_dissipated.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"g=9.8; //gravitational constant\n",
+"m=50; //mass in kg\n",
+"l=0.2; //length in m\n",
+"T=0.6; //time period\n",
+"k=(m*g)/l; //calculating constant\n",
+"m=2450*((T/(2*(%pi)))^2); //calcualting mass using given time period\n",
+"disp(m,'Mass of body in kg = '); //displaying result"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.13: calculating_the_power_level.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"v=4; //volts\n",
+"t=8; //time in sec\n",
+"ch=4; //charge in Coloumb\n",
+"c=ch/t; //current\n",
+"p=c*v; //power\n",
+"e=p*t; //energy\n",
+"disp(c,'Current in Ampere = '); //displaying current\n",
+"disp(p,'Power in Watt = '); //displaying power\n",
+"disp(e,'Energy in Joule = '); //displaying energy"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.14: finding_configuration.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"disp('In a)parallel b)series c)Two pairs of parallel and then in series'); //displaying result"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.15: no_of_resistances.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"p=1/8; //power disipation per resistor\n",
+"v=sqrt(100/8); //voltage across each resistor\n",
+"disp(14.14,'a)Voltage in Series in Ohm = '); //displaying result\n",
+"disp(v,'b)Voltage in Parallel in Ohm ='); //displaying result\n",
+"disp(7.07,'c)Voltage in Series-Parallel in Ohm = '); //displaying result"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.16: calculating_wattage_rating.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"v=10; //voltage in volt\n",
+"t=2; //time in sec\n",
+"r=40; //resistance in ohm\n",
+"p=(v^2)/r; //power\n",
+"e=5/5; //energy in Watt\n",
+"disp(p,'Power in Watt = '); //displaying power\n",
+"disp('2 W resistor is adequate.'); //displaying result"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.17: calculating_power_dissipation.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"v=24; //voltage in volt\n",
+"t=2; //time in sec\n",
+"r=48; //resistance in ohm\n",
+"p=(v^2)/r; //calculating power\n",
+"disp(p,'Power in Watt = '); //displaying result"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.18: calculating_joules.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"i=60; //current in ampere\n",
+"v=12; //voltage in volt\n",
+"t=3600; //time in sec\n",
+"p=i*v*t; //calculating power\n",
+"disp(p,'Number of joules = '); //displaying result"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.19: calculating_wattage.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"v=12; //voltage in volt\n",
+"ah=720; //ampere-hours\n",
+"am=ah/24; //calculating amperage\n",
+"r=v/am; //calculating resistance\n",
+"disp(r,'Load in Ohm = '); //displaying result"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.1: calculating_Electric_field_intensity.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"n=512; //frequency in Hz\n",
+"l=67; //wavelength in cm\n",
+"v=n*l; //calculating velocity\n",
+"disp(v,'Velocity in cm/sec = '); //displaying result"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.20: calculating_current.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"p=200; //power in Watt\n",
+"v=12; //voltage in volt\n",
+"i=p/v; //calculating current in Ampere\n",
+"I=p/6; //calculating\n",
+"disp(i,'Current in Ampere = '); //displaying\n",
+"disp(I,'Current in Ampere if voltage were 6V = '); //displaying result"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.21: calculating_energy.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"E=10^6; //in volt/m\n",
+"e=8.85*10^-12; //constant in F/m\n",
+"v=10^-5; //volume in m cube\n",
+"en=(1/2)*e*E*E*v; //calculating energy\n",
+"disp(en,'Energy in Joule = '); //displaying result"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.22: calculating_voltage.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"en=4.42*10^-5; //energy in Joule\n",
+"v=10^6;\n",
+"q=(2*en)/v; //calculating q\n",
+"disp(q,'Charge in Coloumb = '); //displaying result"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.23: calculating_force.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"e=4.42*10^-5; //energy in Joule\n",
+"v=1.1*10^-5; //volume in m cube\n",
+"dv=(10/100)*e; //calculating change in energy\n",
+"dd=10^-4; //change in dimension in metre\n",
+"f=dv/dd; //calculating force\n",
+"disp(f,'Force in kg = '); //displaying result"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.24: calculating_average_power.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"disp('a)1A for 1 sec = 10J/sec '); //displaying\n",
+"disp('b)10A for 0.1 sec = 100 J/sec'); //displaying\n",
+"disp('c)100A for 0.01 sec = 1000 J/sec'); //displaying"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.25: calculating_peak_power.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"disp('Peak power is when 100 A flows for 0.01 sec = 1000J/sec'); //displaying"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.2: calculating_current.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"v=340; //velocity in m/sec\n",
+"l=0.68; //wavelength in m\n",
+"n=v/l; //calculating frequency\n",
+"disp(n,'Frequency in Hz = '); //displaying result"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.3: calculating_resistance_and_conductance.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"v=3*10^8; //velocity in m/sec\n",
+"n=500*10^3; //frequency in Hz\n",
+"l=v/n; //calculating wavelength\n",
+"disp(l,'Wavelength in m = '); //displaying result"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.4: calculating_current.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"v=330; //velocity in m/sec\n",
+"n=560; //frequency in Hz\n",
+"l=v/n; //calculating wavelength\n",
+"disp(l*30,'Distance travelled in 30 vibrations in m = '); //displaying result"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.5: calculating_work.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"s=90; //distance in m\n",
+"u=0; //initial velocity in m/sec\n",
+"t=sqrt(90/4.9); //calculating time using kinematical equation\n",
+"t1=4.56-t; //calculating time taken by sound to travel\n",
+"v=s/t1; //calculating velocity\n",
+"disp(v,'Velocity in m/sec = '); //displaying result"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.6: calculating_resistance.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"l1=1.5; //wavelength in m\n",
+"l2=2; //wavelength in m\n",
+"v1=120; //velocity in m/sec\n",
+"n=v1/l1; //calculating frequency\n",
+"v2=n*l2; //calculating velocity\n",
+"disp(v2,'Velocity in m/sec = '); //displaying result"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.7: calculating_voltage.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"l=5641*10^-10; //wavelength in m\n",
+"c=3*10^8; //velocity in m/sec\n",
+"n=c/l; //calculating frequency\n",
+"u=1.58; //refractive index of glass\n",
+"cg=c/u; //calculating velocity of light in glass\n",
+"l1=cg/n; //calculating wavelegth in glass\n",
+"disp(l1*10^10,'Wavelength in glass in Angstrom ='); //displaying result"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.8: calculating_voltage.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"n=12*10^6; //frequency in Hz\n",
+"v=3*10^8; //velocity in m/sec\n",
+"l=v/n; //calculating wavelength\n",
+"disp(l,'Wavelength in m = '); //displaying result"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.9: calculating_internal_resistance.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"n=400; //frequency in Hz\n",
+"v=300; //velocity in m/sec\n",
+"l=v/n; //calculating wavelength\n",
+"disp(l,'Wavelength in m = '); //displaying result"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}