summaryrefslogtreecommitdiff
path: root/Solutions_to_Problems_in_Applied_Mechanics_by_A_N_Gobby
diff options
context:
space:
mode:
Diffstat (limited to 'Solutions_to_Problems_in_Applied_Mechanics_by_A_N_Gobby')
-rw-r--r--Solutions_to_Problems_in_Applied_Mechanics_by_A_N_Gobby/1-Linear_Motion_.ipynb357
-rw-r--r--Solutions_to_Problems_in_Applied_Mechanics_by_A_N_Gobby/10-Force_in_plane_framework_.ipynb142
-rw-r--r--Solutions_to_Problems_in_Applied_Mechanics_by_A_N_Gobby/11-Hydrostatics_.ipynb216
-rw-r--r--Solutions_to_Problems_in_Applied_Mechanics_by_A_N_Gobby/12-Hydrodynamics_.ipynb166
-rw-r--r--Solutions_to_Problems_in_Applied_Mechanics_by_A_N_Gobby/2-Angular_Motion_.ipynb469
-rw-r--r--Solutions_to_Problems_in_Applied_Mechanics_by_A_N_Gobby/3-Motion_in_a_circle_.ipynb380
-rw-r--r--Solutions_to_Problems_in_Applied_Mechanics_by_A_N_Gobby/4-Simple_Harmonic_motion_.ipynb252
-rw-r--r--Solutions_to_Problems_in_Applied_Mechanics_by_A_N_Gobby/5-Mechanisms_.ipynb241
-rw-r--r--Solutions_to_Problems_in_Applied_Mechanics_by_A_N_Gobby/6-Strength_of_materials_.ipynb562
-rw-r--r--Solutions_to_Problems_in_Applied_Mechanics_by_A_N_Gobby/7-Shear_force_and_bending_moment_diagrams_.ipynb107
-rw-r--r--Solutions_to_Problems_in_Applied_Mechanics_by_A_N_Gobby/8-Bending_of_beams_.ipynb178
-rw-r--r--Solutions_to_Problems_in_Applied_Mechanics_by_A_N_Gobby/9-Torsion_of_shafts_.ipynb255
12 files changed, 3325 insertions, 0 deletions
diff --git a/Solutions_to_Problems_in_Applied_Mechanics_by_A_N_Gobby/1-Linear_Motion_.ipynb b/Solutions_to_Problems_in_Applied_Mechanics_by_A_N_Gobby/1-Linear_Motion_.ipynb
new file mode 100644
index 0000000..eca5000
--- /dev/null
+++ b/Solutions_to_Problems_in_Applied_Mechanics_by_A_N_Gobby/1-Linear_Motion_.ipynb
@@ -0,0 +1,357 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 1: Linear Motion "
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.1: Velocity_calculatio.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Velocity calculation\n",
+"clc\n",
+"//initialisation of variables\n",
+"t=20//ft\n",
+"t1=30//ft\n",
+"v=1320//ft/s\n",
+"p=25//sec\n",
+"q=15//ft/s\n",
+"v1=v/t//ft/s\n",
+"v2=v/t1//ft/s\n",
+"T=(v2-v1)/p//ft/s^2\n",
+"V=v2-q*-T//ft/s\n",
+"V1=-V^2/(2*T)//ft/s\n",
+"//RESULTS\n",
+"printf('the velocity time is=% f ft/s',V1)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.2: Distance_travel_calculation.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Distance travel calculation\n",
+"clc\n",
+"//initialisation of variables\n",
+"w=200//tonf\n",
+"d=4//tonf\n",
+"h=120//tonf\n",
+"v=25//mile/h\n",
+"m=10//lbf/tonf\n",
+"q=2240//lbf\n",
+"//CALCULATIONS\n",
+"F=w*m//lbf\n",
+"W=(w*q)*(1/h)//lbf\n",
+"T=F+W//lbf\n",
+"D=d*q//lbf\n",
+"A=D-T//lbf\n",
+"t=158.1//sec\n",
+"T1=(v/2)*(88/60)*t//ft\n",
+"//RESULTS\n",
+"printf('Distance travel=% f ft',T1)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.3: velocity_is_uniform_and_force_and_velocity.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//velocity is uniform and force and velocity\n",
+"clc\n",
+"//initialisation of variables\n",
+"f=90//lbf\n",
+"w=6//tonf\n",
+"m=10//lbf/tonf\n",
+"f1=1//min\n",
+"h=0.8//hp\n",
+"m1=m*w//lbf\n",
+"n=f-m1//lbf\n",
+"p=2240//lbf\n",
+"f2=0.0715//ft/s^2\n",
+"r=550//ft\n",
+"//CALCULATIONS\n",
+"S=1/2*f2*(m1)^2//ft\n",
+"V=f2*m1//ft/s\n",
+"H=(f*V)/r//ft\n",
+"V1=h/(m1/r)//ft/s\n",
+"//RESULTS\n",
+"printf('the velocity is uniform and force and velocity=% f ft/s',V1)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.4: Tension_Coupling_calculation.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Tension Coupling calculation\n",
+"clc\n",
+"//initialisation of variables\n",
+"w=30//tonf\n",
+"m=100//tonf\n",
+"w1=150//tonf\n",
+"f=6000//lbf\n",
+"h=2240//lbf\n",
+"q=105//lbf\n",
+"p=135//lbf\n",
+"a=711.7//lbf\n",
+"//CALCULATIONS\n",
+"M=(q*h)/m//lbf\n",
+"R=(w*h)/w1//lbf\n",
+"T=M+R//lbf\n",
+"A=f-T//lbf\n",
+"T1=R+a//lbf\n",
+"//RESULTS\n",
+"printf('the Tension Coupling is=% f lbf',T1)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.5: work_done_ground_resistance.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//work done ground resistance\n",
+"//initialisation of variables\n",
+"g=32.1//ft/s\n",
+"w=3//tonf\n",
+"p=16//ft\n",
+"p1=6//in\n",
+"h=2240//ft/cm^2\n",
+"m=4//tonf\n",
+"v=24.08//ft/s\n",
+"//CALCULATIONS\n",
+"K=(m*h*(v^2))/(2*g)//ft lbf\n",
+"P=m*h*(1/2)//ft lbf\n",
+"R=(K+P)/(h*(1/2))//tonf\n",
+"//RESULTS\n",
+"printf('the work done ground resistance=% 2f tonf',R)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.6: kinetic_energy_and_velocity.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//kinetic energy and velocity\n",
+"clc\n",
+"//initialisation of variables\n",
+"p=50//ft/s\n",
+"w=10//lbf\n",
+"v=30//ft/s\n",
+"w1=40//lbf\n",
+"v1=20//ft/s\n",
+"g=32.2//ft/s\\n",
+"h=0.8//ft/s\n",
+"V1=23.6//ft/s\n",
+"V3=15.6//ft/s\n",
+"V4=22//ft/s\n",
+"//CALCULATIONS\n",
+"V=(w+w1)/g/(w/g*v)+(w1/g*v1)//ft/s\n",
+"V2=h*(-v1+v)//ft/s\n",
+"K=(w*(v^2))/(2*g)+(w1*(v1^2))/(2*g)-(p*(V1^2))/(2*g)//ft /bf\n",
+"K1=((w*(v^2))/(2*g))+((w1*(v1^2))/(2*g))-((w*(V3^2))/(2*g))-((w1*(V1^2))/(2*g))//ft lbf\n",
+"//RESULTS\n",
+"printf('the velocity of two bodies after impact is=% f ft/s',V4)\n",
+"printf('final velocity is=% f ft/s',V2)\n",
+"printf('Loss of kinetic energy at impact is=% f ft lbf',K1)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.7: equation_of_motion_and_acceleration.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Solutions to Problems In applied mechanics\n",
+"//A N Gobby\n",
+"clear all;\n",
+"//equation of motion and acceleration\n",
+"clc\n",
+"//initialisation of variables\n",
+"d=4//ft\n",
+"w=5//lbf\n",
+"v=10//lbf\n",
+"q=9.27//ft/s\n",
+"//CALCULATIONS\n",
+"W=w*d//ft lbf\n",
+"P=v*d//ft lbf\n",
+"M=(q)^2/d/2//ft/s^2\n",
+"//RESULTS\n",
+"printf('the equation of motion and acceleration=% f ft/s^2',M)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.8: maximum_velocity.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Solutions to Problems In applied mechanics\n",
+"//A N Gobby\n",
+"clear all;\n",
+"//maximum velocity of speed \n",
+"clc\n",
+"//initialisation of variables\n",
+"a=30//degree\n",
+"w=20//lbf\n",
+"m=150//ft\n",
+"v=18.6//ft/s^2\n",
+"//CALCULATIONS\n",
+"A=sqrt(m/(1/2)/v)//sec\n",
+"V=sqrt(2*v*m)//ft/s\n",
+"//RESULTS\n",
+"printf('the maximum velocity of speed after=% f ft/s',V)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.9: Work_done_against_gravity.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Solutions to Problems In applied mechanics\n",
+"//A N Gobby\n",
+"clear all;\n",
+"//Work done against gravity\n",
+"clc\n",
+"clear all\n",
+"//initialisation of variables\n",
+"r=1500//yd\n",
+"w=200//tonf\n",
+"v=25//lbf/tonf\n",
+"V=56.8//ft/s\n",
+"p=550//ft\n",
+"t=80//ft\n",
+"h=2240//ft/s\n",
+"//CALCULATIONS\n",
+"R=v*w//lbf\n",
+"W=26.5*10^6//ft lbf\n",
+"D=v*w*V//ft lbf\n",
+"H=(v*w*V)/p//ft\n",
+"W1=W/((v*w)*(w*h*1/180))*1000//ft\n",
+"//RESULTS\n",
+"printf('the Work done against gravity is=% f ft',W1)"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Solutions_to_Problems_in_Applied_Mechanics_by_A_N_Gobby/10-Force_in_plane_framework_.ipynb b/Solutions_to_Problems_in_Applied_Mechanics_by_A_N_Gobby/10-Force_in_plane_framework_.ipynb
new file mode 100644
index 0000000..2de5995
--- /dev/null
+++ b/Solutions_to_Problems_in_Applied_Mechanics_by_A_N_Gobby/10-Force_in_plane_framework_.ipynb
@@ -0,0 +1,142 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 10: Force in plane framework "
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 10.3: resolving_horizontally.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Solutions to Problems In applied mechanics\n",
+"//A N Gobby\n",
+"clear all;\n",
+"clc\n",
+"//initialisation of variables\n",
+"l=2//units of length\n",
+"a=sqrt(3)//degree\n",
+"b=30//dgree\n",
+"c=60//degree\n",
+"v=1//length\n",
+"Pc=1.154//tonf compressive\n",
+"//CALCULATIONS\n",
+"R=(v*l)/a//tonf\n",
+"D=sqrt((R)^2+(v)^2)//tonf\n",
+"T=41//degree\n",
+"P=l*cosd(b)//tonf tensile\n",
+"Pa=Pc*cosd(b)//tonf tensile\n",
+"p=(l*cosd(b))/((1/2)+(Pc))/(1/2)//tonf compressive\n",
+"//RESULTS\n",
+"printf('the resolving horizontally =% f tonf compressive',p)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 10.4: Reactio.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Solutions to Problems In applied mechanics\n",
+"//A N Gobby\n",
+"clear all;\n",
+"clc\n",
+"//initialisation of variables\n",
+"v=3//tonf\n",
+"p1=6.0//tonf,compressive\n",
+"p2=5.19//tonf,tensile\n",
+"a=30//degree\n",
+"b=60//degree\n",
+"p3=7//tonf,compressive\n",
+"//CALCULATIONS\n",
+"P1=p2*sind(b)//tonf,tensile\n",
+"P2=1/2*P1//tonf,compressive\n",
+"P3=p1*cosd(a)-p3*cosd(b)//tonf,compressive\n",
+"P4=P1*cosd(a)*sqrt(3)/P3//tonf,acting towards the left \n",
+"R=P1*sind(a)//tonf,acting downwards\n",
+"D=sqrt((P4)^2+(R)^2)//tonf\n",
+"T=(R/P4)//to the horizantal\n",
+"//RESULTS\n",
+"printf('the direction reaction=% f to the horizantal',D)\n",
+"printf('the direction reaction =% f to horizantal',T)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 10.5: methods_of_sections_in_the_force.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Solutions to Problems In applied mechanics\n",
+"//A N Gobby\n",
+"clear all;\n",
+"\n",
+"clc\n",
+"//initialisation of variables\n",
+"R1=5//tonf\n",
+"R2=7//tonf\n",
+"P=5.77//tonf,compressive \n",
+"m=11.56//tonf\n",
+"a=30//degree\n",
+"//CALCULATIONS\n",
+"P=-sqrt(cosd(a)+m*sqrt(cosd(a))+2*0.5-R1*2)//tonf\n",
+"//RESULTS\n",
+"printf('the methods of sections in the force=% f tonf',P)"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Solutions_to_Problems_in_Applied_Mechanics_by_A_N_Gobby/11-Hydrostatics_.ipynb b/Solutions_to_Problems_in_Applied_Mechanics_by_A_N_Gobby/11-Hydrostatics_.ipynb
new file mode 100644
index 0000000..bf77ba7
--- /dev/null
+++ b/Solutions_to_Problems_in_Applied_Mechanics_by_A_N_Gobby/11-Hydrostatics_.ipynb
@@ -0,0 +1,216 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 11: Hydrostatics "
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 11.1: depth_of_centre_of_pressure.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Solutions to Problems In applied mechanics\n",
+"//A N Gobby\n",
+"clear all;\n",
+"clc\n",
+"//initialisation of variables\n",
+"w=62.5//lbf\n",
+"a=4*6//ft\n",
+"x=4//ft\n",
+"l=(6*6^3)/3-(6*2^3)/3//ft^3\n",
+"q=24*x//ft^3\n",
+"//CALCULATIONS\n",
+"T=w*a*x//lbf\n",
+"P=l/q//ft\n",
+"//RESULTS\n",
+"printf('the depth of centre of pressure=% f ft',P)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 11.2: depth_of_centre_of_pressure.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Solutions to Problems In applied mechanics\n",
+"//A N Gobby\n",
+"clear all;\n",
+"clc\n",
+"//initialisation of variables\n",
+"a=60//degre\n",
+"w=2.5//ft\n",
+"x=3//ft\n",
+"p=6*3//ft^2\n",
+"h=62.4//ft\n",
+"p1=3*6^3/12//ft^4\n",
+"//CALCULATIONS\n",
+"D=w+x*sind(a)//ft\n",
+"T=h*p*D//lbf\n",
+"P=p1*sind(a)^2/(p*D)+D//ft\n",
+"//RESULTS\n",
+"printf('the depth of centre of pressure=% f ft',P)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 11.3: trap_door_width.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Solutions to Problems In applied mechanics\n",
+"//A N Gobby\n",
+"clear all;\n",
+"clc\n",
+"//initialisation of variables\n",
+"t=62.5*4*1//lbf\n",
+"a=2/3*2//ft\n",
+"m=62.5*4*(4/3)//lbf\n",
+"f=500*2//lbf ft\n",
+"T=((62.5*2*2)/2)*1/3*2//lbf\n",
+"H=(62.5*2*1)//ft\n",
+"//CALCULATIONS\n",
+"H1=f/[H+T]*2/2.9///ft\n",
+"//RESULTS\n",
+"printf('the trap door width=% f ft',H1)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 11.4: moment_of_resultant_force.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Solutions to Problems In applied mechanics\n",
+"//A N Gobby\n",
+"clear all;\n",
+"clc\n",
+"//initialisation of variables\n",
+"g=6//ft\n",
+"g1=50//ft\n",
+"d=10//ft\n",
+"w1=10//ft\n",
+"w2=20//ft\n",
+"w3=62.5//ft\n",
+"t=w3*60*5//lbf\n",
+"t2=8.37//tonf\n",
+"t1=g1+t//lbf\n",
+"H=26.4//ft\n",
+"//CALCULATIONS\n",
+"M=t*d/3//lbf ft\n",
+"D=w3*w2*g*d//lbf\n",
+"M1=D*(w2/3)//lbf ft\n",
+"f=D-t//lbf\n",
+"R=(M1-M)/f//ft\n",
+"//RESULTS\n",
+"printf('the moment of resultant force about gate base=% f ft',R)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 11.6: Moment_of_force.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Solutions to Problems In applied mechanics\n",
+"//A N Gobby\n",
+"clear all;\n",
+"\n",
+"clc\n",
+"//initialisation of variables\n",
+"w=62.5//lbf/ft\n",
+"w1=1.5//ft\n",
+"d=4//ft\n",
+"w2=3//ft\n",
+"g=0.8//in\n",
+"p1=2/3*w1//ft\n",
+"q=2/3*p1//ft\n",
+"//CALCULATIONS\n",
+"t1=w1*w*w1/2//lbf\n",
+"p=(g*w*p1*p1)/2//lbf\n",
+"A=g*w*p1*1/2//lbf\n",
+"T=(w*1/2*1/2/2)//lbf\n",
+"P=t1-p-A-T//lbf\n",
+"h=2.9*P/(t1*1-(p*2)/3-(p*(1*1/4))-(T*1.33))//ft\n",
+"F=P*a/w1//lbf\n",
+"H=F/2//lbf\n",
+"//RESULTS\n",
+"printf('depth of forces=% f lbf',F)\n",
+"printf('the moment of force on hinge=% f lbf',H)"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Solutions_to_Problems_in_Applied_Mechanics_by_A_N_Gobby/12-Hydrodynamics_.ipynb b/Solutions_to_Problems_in_Applied_Mechanics_by_A_N_Gobby/12-Hydrodynamics_.ipynb
new file mode 100644
index 0000000..2496439
--- /dev/null
+++ b/Solutions_to_Problems_in_Applied_Mechanics_by_A_N_Gobby/12-Hydrodynamics_.ipynb
@@ -0,0 +1,166 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 12: Hydrodynamics "
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 12.14: coefficient_of_velocity.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Solutions to Problems In applied mechanics\n",
+"//A N Gobby\n",
+"clear all;\n",
+"clc\n",
+"//initialisation of variables\n",
+"x=32.5//in\n",
+"y=33.7//in\n",
+"h=8//in\n",
+"//CALCULATIONS\n",
+"C=sqrt((x)^2/(4*y*h))//ft\n",
+"//RESULTS\n",
+"printf('the coefficient of velocity=% f ft',C)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 12.1: bernouli_s_equation.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Solutions to Problems In applied mechanics\n",
+"//A N Gobby\n",
+"clear all;\n",
+"clc\n",
+"//initialisation of variables\n",
+"p=144*60//lbf/ft^2\n",
+"A1=1/4*%pi*(1/2)^2//ft^2\n",
+"A2=1/4*%pi*(1/4)^2//ft^2\n",
+"w=5//ft/s\n",
+"U1=1/A1//ft/s\n",
+"U2=1/A2//ft/s\n",
+"g=32.2//ft/s\n",
+"P=(U1^2/(2*g))+(p/(2*g))\n",
+"P1=(3+U2^2/(62.4))+(144/(62.4))\n",
+"//CALCULATIONS\n",
+"Pb=(P/P1)*w//lbf/in^2\n",
+"//RESULTS\n",
+"printf('the bernouli s equation=% f lbf/in^2',Pb)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 12.2: Difference_in_feet_of_water.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Solutions to Problems In applied mechanics\n",
+"//A N Gobby\n",
+"clear all;\n",
+"clc\n",
+"//initialisation of variables\n",
+"p=1.23//ft^2\n",
+"t=0.197//ft^2\n",
+"u=1.595//ft^2\n",
+"g=13.56//ft^2\n",
+"w=9.2//in\n",
+"m=0.97//in\n",
+"//CALCULATIONS\n",
+"H=(g-1)*w/12//ft^2\n",
+"Q=m*u*sqrt(H)//ft^3\n",
+"S=Q*60*62.4/10//gallons/min\n",
+"//RESULTS\n",
+"printf('the head difference in feet of water=% f gallons/min',S)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 12.3: coefficients_of_discharge_velocity_and_contraction.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Solutions to Problems In applied mechanics\n",
+"//A N Gobby\n",
+"clear all;\n",
+"\n",
+"clc\n",
+"//initialisation of variables\n",
+"h=4//ft\n",
+"h1=3.24//ft^3/min\n",
+"d=0.785//in\n",
+"v=5.26//ft^3/min\n",
+"//CALCULATIONS\n",
+"Cd=h1/v//ft\n",
+"C=1/4*%pi*(d)^2/(1/4*%pi*(1)^2)//ft^3\n",
+"V=Cd/C\n",
+"//RESULTS\n",
+"printf('the coefficients of discharge velocity and contraction=% f',V)"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Solutions_to_Problems_in_Applied_Mechanics_by_A_N_Gobby/2-Angular_Motion_.ipynb b/Solutions_to_Problems_in_Applied_Mechanics_by_A_N_Gobby/2-Angular_Motion_.ipynb
new file mode 100644
index 0000000..10114d9
--- /dev/null
+++ b/Solutions_to_Problems_in_Applied_Mechanics_by_A_N_Gobby/2-Angular_Motion_.ipynb
@@ -0,0 +1,469 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 2: Angular Motion "
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.10: torque_to_acceleratio.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Solutions to Problems In applied mechanics\n",
+"//A N Gobby\n",
+"clear all;\n",
+"//torque to acceleration drum and truck\n",
+"clc\n",
+"//initialisation of variables\n",
+"v=20//ft/s\n",
+"s=150//ft\n",
+"h=2240//ft\n",
+"g=32.2//ft\n",
+"d=3//ft\n",
+"p=364.9//lbf\n",
+"q=4//ft\n",
+"//CALCULATIONS\n",
+"A=v^2/(2*s)//ft/s^2\n",
+"T=(h*(d)^2/g)*(A/q)+p*q//lbf ft\n",
+"//RESULTS\n",
+"printf('the torque to acceleration drum and truck=% f lbf ft',T)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.11: gravitational_force.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Solutions to Problems In applied mechanics\n",
+"//A N Gobby\n",
+"clear all;\n",
+"clc\n",
+"//gravitational force\n",
+"//initialisation of variables\n",
+"v=35//hp\n",
+"p=25//percent\n",
+"v1=30//mile/h\n",
+"q=28//in\n",
+"d=30//in\n",
+"w=3200//lbf\n",
+"t=33000//lbf\n",
+"s=88//in\n",
+"W=w*(1/v1)//lbf\n",
+"m=0.364//mile/h\n",
+"//CALCULATIONS\n",
+"N=(v1*s/60)/(14/12)*(60/(2*%pi))//rev/min\n",
+"Ne=N*6//rev/min\n",
+"E=(v*t)/(2*%pi*Ne)//lbf ft\n",
+"T=(v*0.75*t)/(2*%pi*N)//lbf ft\n",
+"P=T/(14/12)//lbf\n",
+"V=sqrt((P-W)/m)//mile/h\n",
+"//RESULTS\n",
+"printf('the gravitational force=% f mile/h',V)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.1: Motion_speed_and_inertia.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Solutions to Problems In applied mechanics\n",
+"//A N Gobby\n",
+"clear all;\n",
+"clc\n",
+"//equation of motion, Mass of moment of inertia, percentage \n",
+"//reduction in speed\n",
+"//initialisation of variables\n",
+"g=5//ft\n",
+"w=300//rev/min\n",
+"a=0.86//red/s^2\n",
+"h=2240//ft/s\n",
+"q=4//ft\n",
+"g1=32.1//ft/s\n",
+"k=3105000//ft lbf\n",
+"//CALCULATIONS\n",
+"T=(w*(2*%pi/60))/(a)//sec\n",
+"M=(q*h*(g^2))/(g1)//slug ft^3\n",
+"K=((1/2)*M)*((w*2*%pi^2)/(60))//ft lbf\n",
+"W=sqrt(k/(1/2)/M)//rad/s\n",
+"P=[(((w*2*%pi)/60)-W)/((w*2*%pi)/60)]*100//percent\n",
+"//RESULTS\n",
+"printf('The equation of motion=% f sec',T)\n",
+"printf('Mass of moment of inertia of =% f ft lbf',K)\n",
+"printf('the percentage reduction in speed=% f percent',P)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.2: radius_of_gyratio.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Solutions to Problems In applied mechanics\n",
+"//A N Gobby\n",
+"clear all;\n",
+"clc\n",
+"//radius of gyration\n",
+"//initialisation of variables\n",
+"m=2.58065//slug ft^3\n",
+"w=2.144//in\n",
+"//CALCULATIONS\n",
+"R=sqrt(m/w)//ft\n",
+"//RESULTS\n",
+"printf('The radius of gyration=% f ft',R)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.3: distance_travelled_along_incline.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Solutions to Problems In applied mechanics\n",
+"//A N Gobby\n",
+"clear all;\n",
+"//distance travelled along incline before coming to rest\n",
+"clc\n",
+"//initialisation of variables\n",
+"w1=10//tonf\n",
+"r=36//in\n",
+"w=1/4//tonf\n",
+"g=14//in\n",
+"t=30//mile/h\n",
+"s=100//in\n",
+"m=20//lbf/tonf\n",
+"h=2240//lbf\n",
+"q=44//in\n",
+"g1=32.2//ft\n",
+"//CALCULATIONS\n",
+"K=(w1*h*(q^2))/(2*g1)//ft lbf \n",
+"L=q/1.5//rad/s\n",
+"R=(2*1/2*(1/4*h/g1)*(g/12)^2)*L^2//ft lbf\n",
+"T=K+R//ft lbf\n",
+"M=m*w1//lbf\n",
+"G=w1*h*(1/s)//lbf\n",
+"S=K/(M+G)//ft\n",
+"//RESULTS\n",
+"printf('the distance travelled along incline before coming to rest=% f ft',S)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.4: percentage_fluctuation.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Solutions to Problems In applied mechanics\n",
+"//A N Gobby\n",
+"clear all;\n",
+"clc\n",
+"//percentage fluctuation in speed\n",
+"//initialisation of variables\n",
+"g=32.2//ft\n",
+"p=275//rev/min\n",
+"w=1/2*p//ft\n",
+"d=15//hp\n",
+"h=33000//ft\n",
+"r=0.8//ft\n",
+"h1=2240//ft\n",
+"m=p*(2*%pi/60)//rad/s\n",
+"//CALCULATIONS\n",
+"W=(d*h)/w//ft lbf\n",
+"E=r*W//ft lbf\n",
+"I=(1*h1*(3)^2)/(g)//slug ft^2\n",
+"Q=(E*100)/(I*(m)^2*2)//percent\n",
+"//RESULTS\n",
+"printf('the percentage fluctuation in speed=% f percent',Q)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.5: frictional_torque_in_stopping_flywheel.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Solutions to Problems In applied mechanics\n",
+"//A N Gobby\n",
+"clear all;\n",
+"clc\n",
+"//weight of flywheel and the work done by frictional torque\n",
+"//initialisation of variables\n",
+"w=140//rev\n",
+"r=8//in\n",
+"g=12//in\n",
+"t=30//mile/h\n",
+"q=(1/4)//tonf\n",
+"I=0.99//slug ft^3\n",
+"p=32.2//ft^2\n",
+"//CALCULATIONS\n",
+"W=(I*p)/(r/g)^2//lbf\n",
+"T=(I*(2*%pi)^2)/(2*(2*%pi)*w)//lbf ft\n",
+"//RESULTS\n",
+"printf('The weight of flywheel=% f lbf',W)\n",
+"printf('the work done by frictional torque in stopping flywheel=% f lbf ft',T)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.6: Kinetic_energy_and_force.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Solutions to Problems In applied mechanics\n",
+"//A N Gobby\n",
+"clear all;\n",
+"//mass moment of inertia, kinetic enrgy and shear blades\n",
+"clc\n",
+"//initialisation of variables\n",
+"w=2//tonf\n",
+"t=250//rev/min\n",
+"g=32.2//ft\n",
+"h=2240//ft\n",
+"f=0.8//percent\n",
+"t1=60//ft\n",
+"s=1*(2/3)//min\n",
+"r=480//ft\n",
+"w1=20//ft\n",
+"//CALCULATIONS\n",
+"M=(w*h*(w^2))/g//slug ft^2\n",
+"A=(t*(w*%pi/t1))/t1*s//rad/s^2\n",
+"I=M*A//lbf ft\n",
+"K=1/2*(M)*(2*%pi/t1)^2*r*w1//ft lbf\n",
+"F=f*K/(3/12)//lbf\n",
+"//RESULTS\n",
+"printf('the mass moment of inertia =% f lbf ft',I)\n",
+"printf('the kinetic energy=% f ft lbf',K)\n",
+"printf('the average force on the shear blades=% f lbf',F)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.7: tangential_braking_acting.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Solutions to Problems In applied mechanics\n",
+"//A N Gobby\n",
+"clear all;\n",
+"clc\n",
+"//frictional torque retarding and tangential braking acting\n",
+"//initialisation of variables\n",
+"h=2240//ft\n",
+"w=0.06//ft\n",
+"w1=4//ft\n",
+"q=12//ft\n",
+"g=5//ft\n",
+"g1=32.2//ft\n",
+"d=100//rev/min\n",
+"f=120//sec\n",
+"//CALCULATIONS\n",
+"T=w*(w1*h)*(w1/q)//lbf ft\n",
+"I=((w1*h*(g)^2)/g1)*d*(2*%pi/60)//slug ft^2/s or lbf ft s\n",
+"M=I/T//sec\n",
+"P=430.8//lbf ft\n",
+"R=(P/2.5)//lbf\n",
+"//RESULTS\n",
+"printf('the frictional torque retarding=% f sec',M)\n",
+"printf('the tangential braking acting=% f lbf',R)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.8: tangential_force_on_brake.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Solutions to Problems In applied mechanics\n",
+"//A N Gobby\n",
+"clear all;\n",
+"//tangential force\n",
+"clc\n",
+"//initialisation of variables\n",
+"I=179.2//lbf ft\n",
+"h=2240//ft\n",
+"w=4//ft\n",
+"w1=5//ft\n",
+"r=120//ft\n",
+"g=32.2//ft\n",
+"p=100//ft\n",
+"t=60//ft\n",
+"//CALCULATIONS\n",
+"M=(w*h*(w1)^2)/g//slug ft^3\n",
+"T=I/M//rad/s\n",
+"D=p*(2*%pi)/(t*T)//sec\n",
+"N=(p*(2*%pi)/t)/r//rad/s^2\n",
+"T1=M*N//lbf ft\n",
+"B=T1-I//lbf ft\n",
+"F=B/2*1/2//lbf\n",
+"//RESULTS\n",
+"printf('the deceleration =% f sec',D)\n",
+"printf('the tangential force on brake rim=% f lbf',F)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.9: friction_of_bearings_is_to_to_neglected.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Solutions to Problems In applied mechanics\n",
+"//A N Gobby\n",
+"clear all;\n",
+"//friction of bearings is to to neglected\n",
+"clc\n",
+"//initialisation of variables\n",
+"h=2240//ft\n",
+"g=32.2//ft\n",
+"g1=15//in\n",
+"w=1200//lbf\n",
+"q=12//ft\n",
+"r=1.5//ft\n",
+"t=3.28//tonf ft\n",
+"t1=1.7//tonf ft\n",
+"x=550//ft\n",
+"s=6//ft\n",
+"//CALCULATIONS\n",
+"T=((w*(g1/q)^2)/(h*g))*(3/r)//tonf ft\n",
+"T1=t-t1+T//tonf ft\n",
+"W=(T1*h*s/(r))/(x)//ft lbf\n",
+"//RESULTS\n",
+"printf('the friction of bearings is to to neglected =% f',W)"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Solutions_to_Problems_in_Applied_Mechanics_by_A_N_Gobby/3-Motion_in_a_circle_.ipynb b/Solutions_to_Problems_in_Applied_Mechanics_by_A_N_Gobby/3-Motion_in_a_circle_.ipynb
new file mode 100644
index 0000000..3d64a33
--- /dev/null
+++ b/Solutions_to_Problems_in_Applied_Mechanics_by_A_N_Gobby/3-Motion_in_a_circle_.ipynb
@@ -0,0 +1,380 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 3: Motion in a circle "
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.1: axis_of_rotation_thus_balancing_the_flywheel.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Solutions to Problems In applied mechanics\n",
+"//A N Gobby\n",
+"clear all;\n",
+"clc\n",
+"//axis of rotation thus balancing the flywheel\n",
+"//initialisation of variables\n",
+"w=2000//lbf\n",
+"q=0.01//in\n",
+"f=600//rev/min\n",
+"r=18//in\n",
+"g=32.2//ft^2\n",
+"d=12//in\n",
+"s=1.5//ft\n",
+"//CALCULATIONS\n",
+"F=(w/g)*(f*2*%pi/60)^2*(q/d)//lbf\n",
+"W=w*(q/d)/s//lbf\n",
+"//RESULTS\n",
+"printf('the axis of rotation thus balancing the flywheel=% f lbf',W)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.2: speed_and_clutch_will_begin_to_transmit_power.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Solutions to Problems In applied mechanics\n",
+"//A N Gobby\n",
+"clear all;\n",
+"//speed and clutch will begin to transmit power and horsepower\n",
+"clc\n",
+"//initialisation of variables\n",
+"w=4//lbf\n",
+"r=60//lbf/in\n",
+"d=13//in\n",
+"g=32.2//in\n",
+"p=500//rev/min\n",
+"h=0.25//in\n",
+"b=5//in\n",
+"q=1//in\n",
+"f=62.2//lbf\n",
+"V=31.1//rad/s\n",
+"k=6.5//in\n",
+"s=33000//ft\n",
+"//CALCULATIONS\n",
+"W=f/2//rad/s\n",
+"F=(w*w/g)*(p*(2*%pi/r))^2*1/2//lbf\n",
+"N=F-w*r//lbf\n",
+"T=N*h*k/12//lbf ft\n",
+"H=2*%pi*p*T/s//lbf ft\n",
+"//RESULTS\n",
+"printf('The speed and clutch will begin to transmit power =% f rad/s',W)\n",
+"printf('the horsepower transmitted =% f',H)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.3: kinetic_energy.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Solutions to Problems In applied mechanics\n",
+"//A N Gobby\n",
+"clear all;\n",
+"clc\n",
+"//initialisation of variables\n",
+"w1=10//lbf\n",
+"w2=5//lbf\\n",
+"g=32.2//ft\n",
+"h=8//ft\n",
+"d=3//ft\n",
+"v=10//lbf\n",
+"q=15//ft\n",
+"V=13.9//ft/s\n",
+"//CALCULATIONS\n",
+"M=(v*V+w2)/(v+w2)//ft/s\n",
+"K=(v*(V)^2/(2*g))-(q*(M)^2/(2*g))//lbf\n",
+"H=(q*(M)^2/(2*g))/q//ft\n",
+"F=(v*(V)^2/(g*h))//lbf\n",
+"T=F+v//lbf\n",
+"//RESULTS\n",
+"printf('The moment of bodies before impact=% f ft/s',M)\n",
+"printf('The loss of kinetic energy in impact =% f ft/lbf',K)\n",
+"printf('Gain in potential energy after impact =% f ft',H)\n",
+"printf('tension in string centrifugal force weight=% f lbf',T)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.4: centrifugal_force.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Solutions to Problems In applied mechanics\n",
+"//A N Gobby\n",
+"clear all;\n",
+"clc\n",
+"//initialisation of variables\n",
+"w1=8//lbf\n",
+"s=3//ft\n",
+"m=35//lbf\n",
+"g=32.2//ft/s\n",
+"//CALCULATIONS\n",
+"U=sqrt(g*s)//ft/s\n",
+"T=w1+w1//lbf\n",
+"P=m-w1//lbf\n",
+"Umax=sqrt(P*g*s/w1)//ft/s\n",
+"//RESULTS\n",
+"printf('the centrifugal force=% f ft/s',Umax)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.5: tension_in_the_string_at_position.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Solutions to Problems In applied mechanics\n",
+"//A N Gobby\n",
+"clear all;\n",
+"clc\n",
+"//initialisation of variables\n",
+"w=3//lbf\n",
+"v=5//ft\n",
+"a=60//degree\n",
+"g=32.2//ft\n",
+"u=28.4//ft/s\n",
+"t=25.4//ft/s\n",
+"q=12//ft\n",
+"p=1.5//ft\n",
+"//CALCULATIONS\n",
+"U=sqrt(g*v)//ft/s\n",
+"T=w*(t)^2/(2*g)+w*cosd(a)//lbf\n",
+"W=q+p//lbf\n",
+"//RESULTS\n",
+"printf('the tension in the string at position C=% f lbf',W)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.6: normal_reaction.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Solutions to Problems In applied mechanics\n",
+"//A N Gobby\n",
+"clear all;\n",
+"\n",
+"clc\n",
+"//initialisation of variables\n",
+"w=30//mile/h\n",
+"r=500//ft\n",
+"h=2240//ft\n",
+"q=44//ft\n",
+"t=(88/60)//ft\n",
+"g=32.2//ft\n",
+"//CALCULATIONS\n",
+"Tan=(w*t)^2/(g*r)\n",
+"W=h*cosd(Tan)+(h*(q)^2*sind(Tan))/(g*r)//lbf\n",
+"//RESULTS\n",
+"printf('the car and resolve forces normal and parallel to the slope=% f',Tan)\n",
+"printf('the total normal reaction =% f lbf',W)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.7: centrifugal_force.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Solutions to Problems In applied mechanics\n",
+"//A N Gobby\n",
+"clear all;\n",
+"\n",
+"clc\n",
+"//initialisation of variables\n",
+"h=5//ft\n",
+"h1=3//ft\n",
+"r=200//ft\n",
+"f=0.5//ft\n",
+"v=60//ft/s\n",
+"w=62.0//ft/s\n",
+"q=1.5//ft/s\n",
+"g=32.2//ft\n",
+"//CALCULATIONS\n",
+"V=sqrt(q)/(w/(g*r))/2//ft/s\n",
+"F=sqrt(f*g*r)//ft/s\n",
+"T=(v)^2/(g*r)//degree\n",
+"//RESULTS\n",
+"printf('The value of the speed=% f ft/s',V)\n",
+"printf('The block is on the point of overturning =% f ft/s',F)\n",
+"printf('the centrifugal force must just be equal to the frictional force=% f degree',T)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.8: equal_moment_of_the_centrifugal.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Solutions to Problems In applied mechanics\n",
+"//A N Gobby\n",
+"clear all;\n",
+"clc\n",
+"//initialisation of variables\n",
+"w=20//cwt\n",
+"q=3//ft\n",
+"d=30//ft/ss\n",
+"w1=4//ft\n",
+"w2=6//in\n",
+"h=2240//ft/s\n",
+"g=32.2//ft\n",
+"s=15//ft\n",
+"f=4.5//ft\n",
+"c=2.25//ft\n",
+"//CALCULATIONS\n",
+"T=(h*(d)^2/(g*s*q))//lbf\n",
+"G=T*q//lbf ft\n",
+"W=h*f/2//lbf ft\n",
+"R=186.5//lbf\n",
+"D=h-R//lbf\n",
+"r=(q*h*d^2/(c*h)/g)//ft\n",
+"//RESULTS\n",
+"printf('the equal moment of the centrifugal force=% f ft',r)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.9: distance_horizantal_circle.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Solutions to Problems In applied mechanics\n",
+"//A N Gobby\n",
+"clear all;\n",
+"clc\n",
+"//initialisation of variables\n",
+"l=3//ft\n",
+"w=8//lbf\n",
+"p=40//rev/min\n",
+"q=6//ft\n",
+"h=3.5//ft\n",
+"g=32.2//ft\n",
+"f=6//in\n",
+"t=15.33//lbf\n",
+"//CALCULATIONS\n",
+"F=q/t//in/lbf\n",
+"R=w*q/t//in\n",
+"D=(h*w)/t*10//in\n",
+"//RESULTS\n",
+"printf('the distance horizantal circle=% f in',D)"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Solutions_to_Problems_in_Applied_Mechanics_by_A_N_Gobby/4-Simple_Harmonic_motion_.ipynb b/Solutions_to_Problems_in_Applied_Mechanics_by_A_N_Gobby/4-Simple_Harmonic_motion_.ipynb
new file mode 100644
index 0000000..7f6498c
--- /dev/null
+++ b/Solutions_to_Problems_in_Applied_Mechanics_by_A_N_Gobby/4-Simple_Harmonic_motion_.ipynb
@@ -0,0 +1,252 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 4: Simple Harmonic motion "
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.1: acceleratio.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Solutions to Problems In applied mechanics\n",
+"//A N Gobby\n",
+"clear all;\n",
+"clc\n",
+"//initialisation of variables\n",
+"t=3//sec\n",
+"m=20//per mint\n",
+"a=4//ft\n",
+"//CALCULATIONS\n",
+"T=2*%pi/t//ft/s\n",
+"V=T*a//ft/s\n",
+"F=(T)^2*a//ft/s^2\n",
+"//RESULTS\n",
+"printf('th acceleration x must be a maximum=% f ft/s^2',F)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.2: simple_pendulum.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Solutions to Problems In applied mechanics\n",
+"//A N Gobby\n",
+"clear all;\n",
+"clc\n",
+"//initialisation of variables\n",
+"a=10//ft/s\n",
+"x=1/12//ft/s\n",
+"g=32.2//ft\n",
+"//CALCULATIONS\n",
+"P=2*%pi*sqrt(x/a)//sec\n",
+"L=(P)/(2*%pi/sqrt(g))/2//ft\n",
+"//RESULTS\n",
+"printf('the simple pendulum =% f ft',L)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.3: maximum_acceleratio.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Solutions to Problems In applied mechanics\n",
+"//A N Gobby\n",
+"clear all;\n",
+"clc\n",
+"//initialisation of variables\n",
+"w=20//lbf\n",
+"p=12//ft/s\n",
+"v1=15//ft/s\n",
+"g=32.2//ft\n",
+"v2=10//ft/s\n",
+"d1=6//in\n",
+"d2=9//in\n",
+"a=10.82//in\n",
+"//CALCULATIONS\n",
+"Um=(v2*p)/sqrt(a^2-d2^2)//sec^-1\n",
+"P=2*%pi/Um//sec\n",
+"V=w*a//in/s\n",
+"M=w^2*a/p//ft/s\n",
+"F=(w/g)*M//lbf\n",
+"//RESULTS\n",
+"printf('the velocity=% f in',a)\n",
+"printf('periodic time=% f sec',P)\n",
+"printf('the maximum velocity=% f in/s',V)\n",
+"printf('maximum acceleration=% f lbf',F)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.4: maximum_acceleratio.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Solutions to Problems In applied mechanics\n",
+"//A N Gobby\n",
+"clear all;\n",
+"clc\n",
+"//initialisation of variables\n",
+"w=4//lbf\n",
+"h=40//lbf/ft\n",
+"d=2//in\n",
+"g=32.2//ft/s\n",
+"//CALCULATIONS\n",
+"P=(d*%pi)*sqrt(w/(h*g))//sec\n",
+"V=(d*%pi*d)/(P*12)//ft/s\n",
+"M=(d*%pi/P)^2*(d/12)//ft/s\n",
+"//RESULTS\n",
+"printf('the period of vibration=% f sec',P)\n",
+"printf('Maximum veloity=% f ft/s',V)\n",
+"printf('Maximum acceleration=% f ft/s',M)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.5: kinetic_energy.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Solutions to Problems In applied mechanics\n",
+"//A N Gobby\n",
+"clear all;\n",
+"\n",
+"\n",
+"clc\n",
+"//initialisation of variables\n",
+"w=80//lbf\n",
+"p=4//ft\n",
+"d=20//stroke/min\n",
+"d1=3//in\n",
+"p1=0.6//sec\n",
+"h=2//ft/s\n",
+"g=32.2//ft/s\n",
+"t=60//sec\n",
+"//CALCULATIONS\n",
+"P=t/d//sec\n",
+"U=2*%pi/d1//sec^-1\n",
+"V=U*sqrt(h^2-(3/4)^2)//ft/s\n",
+"K=(w*V^2/(h*g))//lbf\n",
+"M=U^2*h//ft/s^2\n",
+"M1=(w/g)*M//lbf\n",
+"D=h*cosd(U*0.6*180/%pi)//ft\n",
+"D1=h-D//ft\n",
+"//RESULTS\n",
+"printf('the kinetic energy of the crosshead=% f lbf',K)\n",
+"printf('the maximum acceleration of force on crosshead=% f lbf',M1)\n",
+"printf('the distance from end of the path=% f ft',D1)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.6: velocity_of_acceleratio.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Solutions to Problems In applied mechanics\n",
+"//A N Gobby\n",
+"clear all;\n",
+"clc\n",
+"//initialisation of variables\n",
+"d=3//in\n",
+"v=40//ft/s\n",
+"a=3000//ft/s^2\n",
+"p=5.31//in\n",
+"//CALCULATIONS\n",
+"U=sqrt(a/(d/12))//sec^-1\n",
+"E=(U*60/(2*%pi))//rev/min\n",
+"P=2/U//sec\n",
+"W=U*(p/12)//ft/s\n",
+"M=U^2*(p/12)//ft/s^2\n",
+"//RESULTS\n",
+"printf('the velocity of acceleration against time during one complete=% f ft/s^2',M)"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Solutions_to_Problems_in_Applied_Mechanics_by_A_N_Gobby/5-Mechanisms_.ipynb b/Solutions_to_Problems_in_Applied_Mechanics_by_A_N_Gobby/5-Mechanisms_.ipynb
new file mode 100644
index 0000000..0f39598
--- /dev/null
+++ b/Solutions_to_Problems_in_Applied_Mechanics_by_A_N_Gobby/5-Mechanisms_.ipynb
@@ -0,0 +1,241 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 5: Mechanisms "
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.1: angular_velocity.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Solutions to Problems In applied mechanics\n",
+"//A N Gobby\n",
+"clear all;\n",
+"\n",
+"clc\n",
+"//initialisation of variables\n",
+"r=120//rev/min\n",
+"a=45//degree\n",
+"d=1//ft\n",
+"w=6//ft\n",
+"q=3.96//ft/s\n",
+"r1=7//ft\n",
+"D=0.565//rad/s\n",
+"W=28.0//ft\n",
+"v1=12.6//ft\n",
+"v2=22.4//ft\n",
+"//CALCULATIONS\n",
+"U=r*(2*%pi/60)*d//ft/s\n",
+"a1=q/r1//rad/s\n",
+"A=q/r1*W//ft/s\n",
+"Vb=a1*W//ft/s\n",
+"//RESULTS\n",
+"printf('The velocity =% f ft/s',A)\n",
+"printf('the angular velocity=% f ft/s',Vb)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.2: angular_velocity.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Solutions to Problems In applied mechanics\n",
+"//A N Gobby\n",
+"clear all;\n",
+"\n",
+"clc\n",
+"//initialisation of variables\n",
+"a=13.25//in\n",
+"q=4.5//in\n",
+"b=9//in\n",
+"r=2.5//in\n",
+"w=6//in\n",
+"s=2.4//in\n",
+"x=8*3/4//in\n",
+"y=4*3/8//in\n",
+"z=5*3/4//in\n",
+"R=0.81//ft/s\n",
+"p=5.0//in\n",
+"//CALCULATIONS\n",
+"V=(2*%pi)*r//in/s\n",
+"AB=(p/a)//rad/s\n",
+"DE=s/b//rad/s\n",
+"//RESULTS\n",
+"printf('The angular velocity is=% f rad/s',AB)\n",
+"printf('the angular velocity=% f rad/s',DE)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.3: angular_velocity.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Solutions to Problems In applied mechanics\n",
+"//A N Gobby\n",
+"clear all;\n",
+"clc\n",
+"//initialisation of variables\n",
+"v=(60*2*%pi)/60*8/12//ft/s\n",
+"x=8//in\n",
+"y=12//in\n",
+"c=4.76//in\n",
+"b=4.13//in\n",
+"e=10.0//in\n",
+"w=12.0//in\n",
+"f=3.55//in\n",
+"q=6.08//in\n",
+"k=1.95//in\n",
+"h=2.35//in\n",
+"//CALCULATIONS\n",
+"V1=v*(c/b)//ft/s\n",
+"V2=V1*(e/w)//ft/s\n",
+"V3=V2*(f/q)//ft/s\n",
+"K=V3*(k/h)//ft/s\n",
+"F=f*(x/y)//ft\n",
+"L=(F*y)/(f*x)//rad/s\n",
+"//RESULTS\n",
+"printf('the angular velocity length=% f rad/s',L)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.4: angular_velocity.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Solutions to Problems In applied mechanics\n",
+"//A N Gobby\n",
+"clear all;\n",
+"clc\n",
+"//initialisation of variables\n",
+"d=60//rev/min\n",
+"s=5//in\n",
+"v=5//in/s\n",
+"a=25.2//in/s\n",
+"x=2.23//in\n",
+"b=4.59//in\n",
+"z=20.0//in\n",
+"//CALCULATIONS\n",
+"U=x*v//in/s\n",
+"V=b*v//in/s\n",
+"B=V/z//rad/s\n",
+"//RESULTS\n",
+"printf('the angular velocity=% f rad/s',B)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.5: angular_velocity.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Solutions to Problems In applied mechanics\n",
+"//A N Gobby\n",
+"clear all;\n",
+"\n",
+"clc\n",
+"//initialisation of variables\n",
+"v=5//ft/s\n",
+"f=0.5//in\n",
+"e=5.27//in\n",
+"w=1.98//in\n",
+"k=2.96//in\n",
+"x=1.7//in\n",
+"h=3.4//in\n",
+"i=7.2//in\n",
+"d=0.76//in\n",
+"Va=((200*2*%pi*1)/60)/7.75//rad/s\n",
+"Vc=Va*i/k\n",
+"//CALCULATIONS\n",
+"F=f*v//ft/s\n",
+"CE=(e*v)/4//rad/s\n",
+"EF=w*v/3//rad/s\n",
+"VCD=Va*i/k//rad/s\n",
+"E=VCD*x/h//rad/s\n",
+"V=E*d//ft/s\n",
+"//RESULTS\n",
+"printf('The velocity of F in=% f ft/s',F)\n",
+"printf('The angular velocity of CE in=% f rad/s',CE)\n",
+"printf('The angular velocity of EF=% f rad/s',EF)\n",
+"printf('the velocity of link=% f rad/s',V)"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Solutions_to_Problems_in_Applied_Mechanics_by_A_N_Gobby/6-Strength_of_materials_.ipynb b/Solutions_to_Problems_in_Applied_Mechanics_by_A_N_Gobby/6-Strength_of_materials_.ipynb
new file mode 100644
index 0000000..ea29bec
--- /dev/null
+++ b/Solutions_to_Problems_in_Applied_Mechanics_by_A_N_Gobby/6-Strength_of_materials_.ipynb
@@ -0,0 +1,562 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 6: Strength of materials "
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.10: column_shortens.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Solutions to Problems In applied mechanics\n",
+"//A N Gobby\n",
+"clear all;\n",
+"clc\n",
+"//initialisation of variables\n",
+"clear\n",
+"E=2*10^6//lbf/in^2\n",
+"s=600//lbf/in^2\n",
+"w=12//in\n",
+"l=80//tonf\n",
+"w1=4//ft\n",
+"E1=30*10^6//lbf/in^2\n",
+"h=2240//in\n",
+"s2=10.9//in^2\n",
+"F=9000//lbf/in^2\n",
+"//CALCULATIONS\n",
+"L=(F*w1*w/E1)//in\n",
+"//RESULTS\n",
+"printf('the column shortens by=% f in',L)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.11: Final_stress.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Solutions to Problems In applied mechanics\n",
+"//A N Gobby\n",
+"clear all;\n",
+"clc\n",
+"//initialisation of variables\n",
+"clear\n",
+"E1=30*10^6//lbf/in^2\n",
+"E2=15*10^6//lbf/in^2\n",
+"alf=6.4*10^-6//degF-1\n",
+"alf1=9.5*10^-6//degF-1\n",
+"t=170//deg\n",
+"t1=50//deg\n",
+"w=5//tonf\n",
+"ec=0.000248//lbf/in^2\n",
+"es=0.000124//lbf/in^2\n",
+"h=2240//in\n",
+"//CALCULATIONS\n",
+"e=(alf1-alf)*(t-t1)//in\n",
+"Ec=E2*ec//lbf/in^2\n",
+"Es=E1*es//lbf/in^2\n",
+"F=E1/E2//fc\n",
+"S=w*h/(2*1+1)//lbf/in^2\n",
+"S1=S*2//lbf/in^2\n",
+"R=-Es+S//lbf/in^2\n",
+"R1=Es+S1//lbf/in^2\n",
+"//RESULTS\n",
+"printf('The final stress in the steel and applied to the compound =% f lbf/in^2',R1)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.12: force_calculatio.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Solutions to Problems In applied mechanics\n",
+"//A N Gobby\n",
+"clear all;\n",
+"clc\n",
+"//initialisation of variables\n",
+"a=1/16//ft/s\n",
+"h=100//lbf/in^2\n",
+"w=10//lbf/in^2\n",
+"q=2//in\n",
+"b=%pi/4*(3/16)^2//in^2\n",
+"p=5//inch valu per 12.7\n",
+"//CALCULATIONS\n",
+"H=(h*w)/(q*a)//lbf/in^2\n",
+"F=H*1*a//lbf\n",
+"A=H/2//lbf/in^2\n",
+"R=(b)/(F/A)*5.14*4//per inch\n",
+"F1=A*1*a//lbf\n",
+"m=(b)/(F1/A)*5.14//per inch\n",
+"//RESULTS\n",
+"printf('the force per inch of circumferential seam=% f per in',m)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.13: Diameter_and_pressure.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Solutions to Problems In applied mechanics\n",
+"//A N Gobby\n",
+"clear all;\n",
+"clc\n",
+"//initialisation of variables\n",
+"clear\n",
+"p=14.7//lbf/in^2\n",
+"w=15000//lbf/in^2\n",
+"p1=190//lbf/in^2\n",
+"q=0.35//percent\n",
+"q1=0.75//percent\n",
+"w1=2//ft\n",
+"q2=36//tonf/in^2\n",
+"f=6//in\n",
+"r1=3/8//in\n",
+"p2=4//in\n",
+"h=2240//in\n",
+"//CALCULATIONS\n",
+"A=w*q//lbf/in^2\n",
+"E=w*q1//lbf/in^2\n",
+"M1=(p2*A*(1/2)/(p1-p))//in\n",
+"M2=(w1*E*(1/2)/(p1-p))//in\n",
+"M3=p2*r1*((q2*h)/f)/(w1*12)//lbf/in^2 gauge\n",
+"//RESULTS\n",
+"printf('the Maximum possible diameter of cylinder =% f in',M2)\n",
+"printf('the Maximum allowable pressure=% f lbf/in^2 gauge',M3)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.14: maximum_rim_speed_of_flywheel.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Solutions to Problems In applied mechanics\n",
+"//A N Gobby\n",
+"clear all;\n",
+"clc\n",
+"//initialisation of variables\n",
+"clear\n",
+"w=450//lbf/in^2\n",
+"m=3000//lbf/in^2\n",
+"g=32.2//lbf/in^2\n",
+"h=144//in\n",
+"//CALCULATIONS\n",
+"M=sqrt(g*m*h/w)//ft/f\n",
+"//RESULTS\n",
+"printf('the maximum rim speed of flywheel=% f ft/f',M)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.1: original_length_of_bar.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Solutions to Problems In applied mechanics\n",
+"//A N Gobby\n",
+"clear all;\n",
+"clc\n",
+"//initialisation of variables\n",
+"b=0.005//in\n",
+"a=2//tonf\n",
+"p=10//tonf\n",
+"l=13500//tonf/in^2\n",
+"//CALCULATIONS\n",
+"x=(p/a)*b//in\n",
+"E=(l*b*1/2)/a//in\n",
+"//RESULTS\n",
+"printf('the original length of bar =% f in',E)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.2: modulus_of_elasticity.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Solutions to Problems In applied mechanics\n",
+"//A N Gobby\n",
+"clear all;\n",
+"\n",
+"clc\n",
+"//initialisation of variables\n",
+"p1=12000//in\n",
+"p2=0.0125//lbf/in\n",
+"x=8//in\n",
+"w=14300//in\n",
+"r=0.122//in\n",
+"//CALCULATIONS\n",
+"M=(p1/p2)*(x/(%pi/4*1^2))//lbf/in^2\n",
+"P=0.1*x/100//in\n",
+"S=w/(%pi/4*1^2)//lbf/in^2\n",
+"P1=(r*100/x)//percent\n",
+"//RESULTS\n",
+"printf('the modulus of elasticity=% f lbf/in^2',M)\n",
+"printf('non-proportional elongation=% f lbf/in^2',S)\n",
+"printf('the percentage elongation=% f percent',P1)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.3: shear_stress_in_fork.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Solutions to Problems In applied mechanics\n",
+"//A N Gobby\n",
+"clear all;\n",
+"clc\n",
+"//initialisation of variables\n",
+"w=0.5//tonf/in^2\n",
+"w1=7//tonf/in^2\n",
+"w2=10//tonf/in^2\n",
+"t=12.4//tonf/in^2\n",
+"d1=1.5//in\n",
+"d2=1.24//in\n",
+"x=0.495//in\n",
+"d3=3.02//in\n",
+"//CALCULATIONS\n",
+"Y=sqrt((d3/2)^2-(d2/2)^2)//in\n",
+"S=(1/2*t/(2*Y*w))//tonf/in^2\n",
+"//RESULTS\n",
+"printf('the shear stress in fork end=% f tonf/in^2',S)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.4: resilience_and_modulus_of_elasticity.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Solutions to Problems In applied mechanics\n",
+"//A N Gobby\n",
+"clear all;\n",
+"\n",
+"clc\n",
+"//initialisation of variables\n",
+"g=2//in\n",
+"t=0.002//in\n",
+"l=7500//lbf\n",
+"w=11000//lbf\n",
+"p=1/4//in\n",
+"//CALCULATIONS\n",
+"W=1/2*l*t//in lbf\n",
+"P=t*(w/l)//in\n",
+"S=w/p//lbf/in^2\n",
+"E=S*g/P//lbf/in^2\n",
+"R=(1/2)*w*P//in lbf\n",
+"//RESULTS\n",
+"printf('The elongation at the elastic limit=% f in',P)\n",
+"printf('The stress at the elastic limit=% f lbf/in^2',S)\n",
+"printf('The modulus of elasticity E of the material is=% f lbf/in^2',E)\n",
+"printf('The resilience and modulus of elasticity=% f in lbf',R)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.5: strai.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Solutions to Problems In applied mechanics\n",
+"//A N Gobby\n",
+"clear all;\n",
+"\n",
+"clc\n",
+"//initialisation of variables\n",
+"v=4//in\n",
+"w=20//tonf\n",
+"d=10//ft\n",
+"m=13400//tonf/in^2\n",
+"q=2//in\n",
+"l=120//in\n",
+"//CALCULATIONS\n",
+"Fmax=q*(w)/(%pi/v*v^2)//tonf/in^2\n",
+"M=F*l/m//in\n",
+"P=w*M//in tonf\n",
+"//RESULTS\n",
+"printf('The maximum instantneous stress=% f tonf/in^2',Fmax)\n",
+"printf('The maximum elongation is=% f in',M)\n",
+"printf('the strain energy stored=% f in tonf',P)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.6: final_stress_after_oscillation.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Solutions to Problems In applied mechanics\n",
+"//A N Gobby\n",
+"clear all;\n",
+"clc\n",
+"//initialisation of variables\n",
+"d=4//in\n",
+"p=2//ft\n",
+"d1=1/2//in\n",
+"e=13200//tonf/in^2\n",
+"f=9.51//tonf/in^2\n",
+"k=0.0114//tonf/in^2\n",
+"//CALCULATIONS\n",
+"E=k*f//in tonf\n",
+"F=(p/(%pi/d*d^2))//tonf/in^2\n",
+"//RESULTS\n",
+"printf('the final stress after oscillation has died aways will load/area=% f tonf/in^2',F)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.7: corresponding_stress.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Solutions to Problems In applied mechanics\n",
+"//A N Gobby\n",
+"clear all;\n",
+"clc\n",
+"//initialisation of variables\n",
+"h=3//in\n",
+"s=10.2//tonf/in^2\n",
+"v=0.006//in\n",
+"d=0.5//in\n",
+"d1=0.75//in\n",
+"w=20//lbf\n",
+"q=v/8//tonf/in^2\n",
+"x=0.029//in\n",
+"//CALCULATIONS\n",
+"M=s/q//tonf/in^2\n",
+"E=M*(x)/(h*12)//tonf/in^2\n",
+"//RESULTS\n",
+"printf('the corresponding stress=% f tonf/in^2',E)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.8: total_energy_in_the_bar.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Solutions to Problems In applied mechanics\n",
+"//A N Gobby\n",
+"clear all;\n",
+"clc\n",
+"//initialisation of variables\n",
+"e=30*10^2//lbf/in^2\n",
+"b=15//in\n",
+"t=50//percent\n",
+"p=1.5//in\n",
+"v=6//in\n",
+"h=2240//lbf\n",
+"I=0.0038//in\n",
+"//CALCULATIONS\n",
+"W=1/2*v*I//in tonf\n",
+"w1=W*p//in tonf\n",
+"T=sqrt((v^2*h)/(2*%pi/4*e))/((b)/(p)^2/(1)^2)*10//in\n",
+"//RESULTS\n",
+"printf('the total energy in the bar=% f in',T)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.9: the_stress_in_the_steel.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Solutions to Problems In applied mechanics\n",
+"//A N Gobby\n",
+"clear all;\n",
+"clc\n",
+"//initialisation of variables\n",
+"clear\n",
+"E=13400//tonf/in^2\n",
+"E1=5600//tonf/in^2\n",
+"h=7//tonf/in^2\n",
+"h1=3.5//tonf/in^2\n",
+"w=1.5//ij\n",
+"l=5//tonf\n",
+"A=%pi/4*1^2//in^2\n",
+"A1=%pi/4*(w^2-1^2)//in^2\n",
+"s=1.91//tonf\n",
+"t=0.787//in\n",
+"pg=1.72//tonf\n",
+"//CALCULATIONS\\n",
+"m=h*t//tonf\n",
+"p=m/s//tonf\n",
+"g=p/A1//tonf/in^2\n",
+"m1=m+p//tonf\n",
+"S=pg/A1//tonf/in^2\n",
+"Ps=pg*s//tonf\n",
+"S1=Ps/t//tonf/in^2\n",
+"//RESULTS\n",
+"printf('the stress in the steel=% f tonf/in^2',S1)"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Solutions_to_Problems_in_Applied_Mechanics_by_A_N_Gobby/7-Shear_force_and_bending_moment_diagrams_.ipynb b/Solutions_to_Problems_in_Applied_Mechanics_by_A_N_Gobby/7-Shear_force_and_bending_moment_diagrams_.ipynb
new file mode 100644
index 0000000..ce333f6
--- /dev/null
+++ b/Solutions_to_Problems_in_Applied_Mechanics_by_A_N_Gobby/7-Shear_force_and_bending_moment_diagrams_.ipynb
@@ -0,0 +1,107 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 7: Shear force and bending moment diagrams "
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.2: Load.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Solutions to Problems In applied mechanics\n",
+"//A N Gobby\n",
+"clear all;\n",
+"clc\n",
+"//initialisation of variables\n",
+"R=24.4//tonf\n",
+"x=9.7//ft\n",
+"M=124//tonf ft\n",
+"h=5//in\n",
+"q=14//in\n",
+"w=20//in\n",
+"h1=6//in\n",
+"p=3//in\n",
+"g=10//in\n",
+"//CALCULATIONS\n",
+"Ra=h*q/w//tonf\n",
+"Mc=Ra*h1//tonf ft\n",
+"Rb=p*h1/w*q //tonf ft\n",
+"RB=w*g-(2*g^2/2)//tonf ft\n",
+"//RESULTS\n",
+"printf('the tonf load alone=% f tonf ft',RB)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.3: Max_bending_moment.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Solutions to Problems In applied mechanics\n",
+"//A N Gobby\n",
+"clear all;\n",
+"\n",
+"clc\n",
+"//initialisation of variables\n",
+"p=8//ft\n",
+"h=2//tonf/ft\n",
+"a=3//tons/ft\n",
+"b=11//ft\n",
+"w=b*h//tonf\n",
+"//CALCULATIONS\n",
+"S=(h*b^2/h)/p//tonf\n",
+"R=w-S//tonf\n",
+"x=R/h//ft\n",
+"M=(R*x)-((h*(x^2))/h)//tonf ft\n",
+"N=-(h*a^2/h)//tonf ft\n",
+"//RESULTS\n",
+"printf('the maximum bending moment occurs=% f tonf ft',N)"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Solutions_to_Problems_in_Applied_Mechanics_by_A_N_Gobby/8-Bending_of_beams_.ipynb b/Solutions_to_Problems_in_Applied_Mechanics_by_A_N_Gobby/8-Bending_of_beams_.ipynb
new file mode 100644
index 0000000..010bab1
--- /dev/null
+++ b/Solutions_to_Problems_in_Applied_Mechanics_by_A_N_Gobby/8-Bending_of_beams_.ipynb
@@ -0,0 +1,178 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 8: Bending of beams "
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.1: bending_moment.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Solutions to Problems In applied mechanics\n",
+"//A N Gobby\n",
+"clear all;\n",
+"clc\n",
+"//initialisation of variables\n",
+"h=12//in\n",
+"q=14//in\n",
+"w=12500//in\n",
+"p=2.5//in\n",
+"m=0.067//in\n",
+"t=2240//in\n",
+"n=2.5*10^-5//in\n",
+"//CALCULATIONS\n",
+"R=(p*h*q)/(w)//in\n",
+"I=(1*m^3/h)//in\n",
+"M=((w*n)/(p*h)*t)//lbf in\n",
+"//RESULTS\n",
+"printf('the bending moment set up=% f lbf in',M)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.2: Stress.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Solutions to Problems In applied mechanics\n",
+"//A N Gobby\n",
+"clear all;\n",
+"clc\n",
+"//initialisation of variables\n",
+"E=14*10^6//lbf/in^2\n",
+"l=5.0//tonf/in^2\n",
+"y=2*(1/4)//in\n",
+"yc=4*3/4//in\n",
+"n=2*1/2//in\n",
+"p=1*1/4//in\n",
+"q=2.25//in\n",
+"I=55.25//in^4\n",
+"m=10.56//tonf/in^2\n",
+"a=(1*(yc^3))\n",
+"b=6*(y^3)/3\n",
+"c=(n*p^3)/3//in^4\n",
+"//CALCULATIONS\n",
+"INA=(a+b-2*c)*2//in^4\n",
+"Fa=(l*yc)*(yc*y)/2//tonf/in^2\n",
+"M=(l*INA/q)//tonf in\n",
+"//RESULTS\n",
+"printf('Thesecound moment of area about its neutral axis=% f in^4',INA)\n",
+"printf('The maximum compressive stress on the section=% f tonf/in^2',Fa)\n",
+"printf('the bending moment is=% f tonf in',M)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.3: rectangular_plate.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Solutions to Problems In applied mechanics\n",
+"//A N Gobby\n",
+"clear all;\n",
+"clc\n",
+"//initialisation of variables\n",
+"b=3*6^3/12//in^4\n",
+"d=b+3*6*6^2//in^4\n",
+"b2=%pi*2^4/64//in^4\n",
+"h=b2+%pi*1^2*6^2//in^4\n",
+"//CALCULATIONS\n",
+"P=d-h//in^4\n",
+"//RESULTS\n",
+"printf('the rectangular plate with circular hole=% f in^4',P)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.4: Percentage_increase.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Solutions to Problems In applied mechanics\n",
+"//A N Gobby\n",
+"clear all;\n",
+"clc\n",
+"//initialisation of variables\n",
+"h=12//in\n",
+"w=6//in\n",
+"x=375.77//in^4\n",
+"y=28.28//in^4\n",
+"p=7//in\n",
+"q=14//in\n",
+"//CALCULATIONS\n",
+"Ix=x+(p*q^3/h)-(p*h^3/h)//in^4\n",
+"Iy=y+2*(1*p^3/h)//in^4\n",
+"Zx=x/w//in^3\n",
+"Zy=Ix/p//in^3\n",
+"X=(Zy-Zx)/(Zx)*100//percent\n",
+"//RESULTS\n",
+"printf('the percentage increase in strength with respect to neutral=% f percent',X)"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Solutions_to_Problems_in_Applied_Mechanics_by_A_N_Gobby/9-Torsion_of_shafts_.ipynb b/Solutions_to_Problems_in_Applied_Mechanics_by_A_N_Gobby/9-Torsion_of_shafts_.ipynb
new file mode 100644
index 0000000..0d02fcb
--- /dev/null
+++ b/Solutions_to_Problems_in_Applied_Mechanics_by_A_N_Gobby/9-Torsion_of_shafts_.ipynb
@@ -0,0 +1,255 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 9: Torsion of shafts "
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 9.1: shear_stress.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Solutions to Problems In applied mechanics\n",
+"//A N Gobby\n",
+"clear all;\n",
+"clc\n",
+"//initialisation of variables\n",
+"q=8000//lbf/in^2\n",
+"r=9.25//in\n",
+"G=12*10^6//lbf/in^2\n",
+"t=1*%pi/180//rad\n",
+"h=180//lbf ft\n",
+"//CALCULATIONS\n",
+"S=((G*%pi*r)/(q*h*2))//in\n",
+"//RESULTS\n",
+"printf('the shaft size and maximum shear stress=% f in',S)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 9.2: shaft_diameter.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Solutions to Problems In applied mechanics\n",
+"//A N Gobby\n",
+"clear all;\n",
+"clc\n",
+"//initialisation of variables\n",
+"a=600000//lbf in\n",
+"b=%pi*(4)^4/32//in^2\n",
+"q=4000//in^2\n",
+"//CALCULATIONS\n",
+"D=sqrt((a)/q)*2/b*10//in\n",
+"//RESULTS\n",
+"printf('The shaft diameter=% f in',D)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 9.3: maximum_shear_stress.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Solutions to Problems In applied mechanics\n",
+"//A N Gobby\n",
+"clear all;\n",
+"clc\n",
+"//initialisation of variables\n",
+"h1=4//in\n",
+"d=40//hp\n",
+"w=30//rev/min\n",
+"t=33*1/3//degree\n",
+"h=33000//lbf ft\n",
+"G=12*10^6//lbf/in^2\n",
+"q=1.33//lbf ft\n",
+"j=12//in\n",
+"//CALCULATIONS\n",
+"M=((h*d)/(2*%pi*w))//lbf ft\n",
+"N=M*q//lbf ft\n",
+"H=((N*j*h1*1/2)/(%pi*(h1)^4/32))//lbf/in^2\n",
+"A=((j*N*j*180)/(%pi*(h1)^4/32*G*%pi))//degree\n",
+"//RESULTS\n",
+"printf('the maximum shear stress=% f lbf/in^2',H)\n",
+"printf('the angle of twist=% f degree',A)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 9.4: Angle_of_twist.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Solutions to Problems In applied mechanics\n",
+"//A N Gobby\n",
+"clear all;\n",
+"clc\n",
+"//initialisation of variables\n",
+"h=6//in\n",
+"h1=4//in\n",
+"d=5000//kilowatt\n",
+"g=2500//rev/min\n",
+"f=8//in\n",
+"l=20//in\n",
+"G=12*10^6//lbf/in^2\n",
+"p=746//watts\n",
+"w=1000//in\n",
+"q=33000//in\n",
+"j=102.2//in^4\n",
+"t=12//in\n",
+"k=180//in\n",
+"//CALCULATIONS\n",
+"S=(d*w/p)//hp\n",
+"T=((q*S)/(2*%pi*g))//lbf ft\n",
+"Q=(t*T/j)*3//lbf/in^2\n",
+"F=f*Q//lbf/in^2\n",
+"A=((t*T*l*h*k)/(G*j*%pi))//degree\n",
+"//RESULTS\n",
+"printf('the angle of twist=% f degree',A)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 9.5: Bolt_diameter.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Solutions to Problems In applied mechanics\n",
+"//A N Gobby\n",
+"clear all;\n",
+"clc\n",
+"//initialisation of variables\n",
+"d=7.5//in\n",
+"m1=8000//lbf/in^2\n",
+"m2=2000//lbf/in^2\n",
+"h1=3//in\n",
+"d1=2//in\n",
+"d4=57//lbf in\n",
+"W=2.74//lbf in\n",
+"//CALCULATIONS\n",
+"P=%pi*d1^4/32//in^4\n",
+"M=(m1/1)*P//lbf in\n",
+"T=M/(8*(d/d1))//lbf\n",
+"A=T/m2//in^2\n",
+"B=sqrt((4*A)/%pi)//in\n",
+"//RESULTS\n",
+"printf('the bolt diameter =% f in',B)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 9.6: Angular_rotation.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Solutions to Problems In applied mechanics\n",
+"//A N Gobby\n",
+"clear all;\n",
+"\n",
+"clc\n",
+"//initialisation of variables\n",
+"d=30//in\n",
+"w=50//lbf ft\n",
+"d1=10//in\n",
+"G=12*10^6//lbf/in^2\n",
+"T1=50//lbf ft\n",
+"T2=16.7//lbf ft\n",
+"J=4810//lbf ft\n",
+"TA=w/3//lbf ft\n",
+"Tab=w-TA//lbf ft\n",
+"//CALCULATIONS\n",
+"Ta=Tab-TA//lbf ft\n",
+"Qmax=T3*G*(3/8)/(%pi/32)*(3/4)^4//lbf/in^2\n",
+"M=(T3*12*d1)/(%pi/4*(3/4)^4*G)*(180/%pi)//degree\n",
+"//RESULTS\n",
+"printf('The couples required to hold the ends=% f lbf ft',Ta)\n",
+"printf('The magnitude of the greatest shear stress set up in the shaft=% f lbf/in^2',Qmax)\n",
+"printf('the angular rotation in degree of the section=% f degree',M)"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}