diff options
Diffstat (limited to 'Solutions_to_Problems_in_Applied_Mechanics_by_A_N_Gobby')
12 files changed, 3325 insertions, 0 deletions
diff --git a/Solutions_to_Problems_in_Applied_Mechanics_by_A_N_Gobby/1-Linear_Motion_.ipynb b/Solutions_to_Problems_in_Applied_Mechanics_by_A_N_Gobby/1-Linear_Motion_.ipynb new file mode 100644 index 0000000..eca5000 --- /dev/null +++ b/Solutions_to_Problems_in_Applied_Mechanics_by_A_N_Gobby/1-Linear_Motion_.ipynb @@ -0,0 +1,357 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 1: Linear Motion " + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.1: Velocity_calculatio.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Velocity calculation\n", +"clc\n", +"//initialisation of variables\n", +"t=20//ft\n", +"t1=30//ft\n", +"v=1320//ft/s\n", +"p=25//sec\n", +"q=15//ft/s\n", +"v1=v/t//ft/s\n", +"v2=v/t1//ft/s\n", +"T=(v2-v1)/p//ft/s^2\n", +"V=v2-q*-T//ft/s\n", +"V1=-V^2/(2*T)//ft/s\n", +"//RESULTS\n", +"printf('the velocity time is=% f ft/s',V1)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.2: Distance_travel_calculation.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Distance travel calculation\n", +"clc\n", +"//initialisation of variables\n", +"w=200//tonf\n", +"d=4//tonf\n", +"h=120//tonf\n", +"v=25//mile/h\n", +"m=10//lbf/tonf\n", +"q=2240//lbf\n", +"//CALCULATIONS\n", +"F=w*m//lbf\n", +"W=(w*q)*(1/h)//lbf\n", +"T=F+W//lbf\n", +"D=d*q//lbf\n", +"A=D-T//lbf\n", +"t=158.1//sec\n", +"T1=(v/2)*(88/60)*t//ft\n", +"//RESULTS\n", +"printf('Distance travel=% f ft',T1)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.3: velocity_is_uniform_and_force_and_velocity.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//velocity is uniform and force and velocity\n", +"clc\n", +"//initialisation of variables\n", +"f=90//lbf\n", +"w=6//tonf\n", +"m=10//lbf/tonf\n", +"f1=1//min\n", +"h=0.8//hp\n", +"m1=m*w//lbf\n", +"n=f-m1//lbf\n", +"p=2240//lbf\n", +"f2=0.0715//ft/s^2\n", +"r=550//ft\n", +"//CALCULATIONS\n", +"S=1/2*f2*(m1)^2//ft\n", +"V=f2*m1//ft/s\n", +"H=(f*V)/r//ft\n", +"V1=h/(m1/r)//ft/s\n", +"//RESULTS\n", +"printf('the velocity is uniform and force and velocity=% f ft/s',V1)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.4: Tension_Coupling_calculation.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Tension Coupling calculation\n", +"clc\n", +"//initialisation of variables\n", +"w=30//tonf\n", +"m=100//tonf\n", +"w1=150//tonf\n", +"f=6000//lbf\n", +"h=2240//lbf\n", +"q=105//lbf\n", +"p=135//lbf\n", +"a=711.7//lbf\n", +"//CALCULATIONS\n", +"M=(q*h)/m//lbf\n", +"R=(w*h)/w1//lbf\n", +"T=M+R//lbf\n", +"A=f-T//lbf\n", +"T1=R+a//lbf\n", +"//RESULTS\n", +"printf('the Tension Coupling is=% f lbf',T1)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.5: work_done_ground_resistance.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//work done ground resistance\n", +"//initialisation of variables\n", +"g=32.1//ft/s\n", +"w=3//tonf\n", +"p=16//ft\n", +"p1=6//in\n", +"h=2240//ft/cm^2\n", +"m=4//tonf\n", +"v=24.08//ft/s\n", +"//CALCULATIONS\n", +"K=(m*h*(v^2))/(2*g)//ft lbf\n", +"P=m*h*(1/2)//ft lbf\n", +"R=(K+P)/(h*(1/2))//tonf\n", +"//RESULTS\n", +"printf('the work done ground resistance=% 2f tonf',R)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.6: kinetic_energy_and_velocity.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//kinetic energy and velocity\n", +"clc\n", +"//initialisation of variables\n", +"p=50//ft/s\n", +"w=10//lbf\n", +"v=30//ft/s\n", +"w1=40//lbf\n", +"v1=20//ft/s\n", +"g=32.2//ft/s\\n", +"h=0.8//ft/s\n", +"V1=23.6//ft/s\n", +"V3=15.6//ft/s\n", +"V4=22//ft/s\n", +"//CALCULATIONS\n", +"V=(w+w1)/g/(w/g*v)+(w1/g*v1)//ft/s\n", +"V2=h*(-v1+v)//ft/s\n", +"K=(w*(v^2))/(2*g)+(w1*(v1^2))/(2*g)-(p*(V1^2))/(2*g)//ft /bf\n", +"K1=((w*(v^2))/(2*g))+((w1*(v1^2))/(2*g))-((w*(V3^2))/(2*g))-((w1*(V1^2))/(2*g))//ft lbf\n", +"//RESULTS\n", +"printf('the velocity of two bodies after impact is=% f ft/s',V4)\n", +"printf('final velocity is=% f ft/s',V2)\n", +"printf('Loss of kinetic energy at impact is=% f ft lbf',K1)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.7: equation_of_motion_and_acceleration.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Solutions to Problems In applied mechanics\n", +"//A N Gobby\n", +"clear all;\n", +"//equation of motion and acceleration\n", +"clc\n", +"//initialisation of variables\n", +"d=4//ft\n", +"w=5//lbf\n", +"v=10//lbf\n", +"q=9.27//ft/s\n", +"//CALCULATIONS\n", +"W=w*d//ft lbf\n", +"P=v*d//ft lbf\n", +"M=(q)^2/d/2//ft/s^2\n", +"//RESULTS\n", +"printf('the equation of motion and acceleration=% f ft/s^2',M)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.8: maximum_velocity.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Solutions to Problems In applied mechanics\n", +"//A N Gobby\n", +"clear all;\n", +"//maximum velocity of speed \n", +"clc\n", +"//initialisation of variables\n", +"a=30//degree\n", +"w=20//lbf\n", +"m=150//ft\n", +"v=18.6//ft/s^2\n", +"//CALCULATIONS\n", +"A=sqrt(m/(1/2)/v)//sec\n", +"V=sqrt(2*v*m)//ft/s\n", +"//RESULTS\n", +"printf('the maximum velocity of speed after=% f ft/s',V)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.9: Work_done_against_gravity.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Solutions to Problems In applied mechanics\n", +"//A N Gobby\n", +"clear all;\n", +"//Work done against gravity\n", +"clc\n", +"clear all\n", +"//initialisation of variables\n", +"r=1500//yd\n", +"w=200//tonf\n", +"v=25//lbf/tonf\n", +"V=56.8//ft/s\n", +"p=550//ft\n", +"t=80//ft\n", +"h=2240//ft/s\n", +"//CALCULATIONS\n", +"R=v*w//lbf\n", +"W=26.5*10^6//ft lbf\n", +"D=v*w*V//ft lbf\n", +"H=(v*w*V)/p//ft\n", +"W1=W/((v*w)*(w*h*1/180))*1000//ft\n", +"//RESULTS\n", +"printf('the Work done against gravity is=% f ft',W1)" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Solutions_to_Problems_in_Applied_Mechanics_by_A_N_Gobby/10-Force_in_plane_framework_.ipynb b/Solutions_to_Problems_in_Applied_Mechanics_by_A_N_Gobby/10-Force_in_plane_framework_.ipynb new file mode 100644 index 0000000..2de5995 --- /dev/null +++ b/Solutions_to_Problems_in_Applied_Mechanics_by_A_N_Gobby/10-Force_in_plane_framework_.ipynb @@ -0,0 +1,142 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 10: Force in plane framework " + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 10.3: resolving_horizontally.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Solutions to Problems In applied mechanics\n", +"//A N Gobby\n", +"clear all;\n", +"clc\n", +"//initialisation of variables\n", +"l=2//units of length\n", +"a=sqrt(3)//degree\n", +"b=30//dgree\n", +"c=60//degree\n", +"v=1//length\n", +"Pc=1.154//tonf compressive\n", +"//CALCULATIONS\n", +"R=(v*l)/a//tonf\n", +"D=sqrt((R)^2+(v)^2)//tonf\n", +"T=41//degree\n", +"P=l*cosd(b)//tonf tensile\n", +"Pa=Pc*cosd(b)//tonf tensile\n", +"p=(l*cosd(b))/((1/2)+(Pc))/(1/2)//tonf compressive\n", +"//RESULTS\n", +"printf('the resolving horizontally =% f tonf compressive',p)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 10.4: Reactio.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Solutions to Problems In applied mechanics\n", +"//A N Gobby\n", +"clear all;\n", +"clc\n", +"//initialisation of variables\n", +"v=3//tonf\n", +"p1=6.0//tonf,compressive\n", +"p2=5.19//tonf,tensile\n", +"a=30//degree\n", +"b=60//degree\n", +"p3=7//tonf,compressive\n", +"//CALCULATIONS\n", +"P1=p2*sind(b)//tonf,tensile\n", +"P2=1/2*P1//tonf,compressive\n", +"P3=p1*cosd(a)-p3*cosd(b)//tonf,compressive\n", +"P4=P1*cosd(a)*sqrt(3)/P3//tonf,acting towards the left \n", +"R=P1*sind(a)//tonf,acting downwards\n", +"D=sqrt((P4)^2+(R)^2)//tonf\n", +"T=(R/P4)//to the horizantal\n", +"//RESULTS\n", +"printf('the direction reaction=% f to the horizantal',D)\n", +"printf('the direction reaction =% f to horizantal',T)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 10.5: methods_of_sections_in_the_force.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Solutions to Problems In applied mechanics\n", +"//A N Gobby\n", +"clear all;\n", +"\n", +"clc\n", +"//initialisation of variables\n", +"R1=5//tonf\n", +"R2=7//tonf\n", +"P=5.77//tonf,compressive \n", +"m=11.56//tonf\n", +"a=30//degree\n", +"//CALCULATIONS\n", +"P=-sqrt(cosd(a)+m*sqrt(cosd(a))+2*0.5-R1*2)//tonf\n", +"//RESULTS\n", +"printf('the methods of sections in the force=% f tonf',P)" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Solutions_to_Problems_in_Applied_Mechanics_by_A_N_Gobby/11-Hydrostatics_.ipynb b/Solutions_to_Problems_in_Applied_Mechanics_by_A_N_Gobby/11-Hydrostatics_.ipynb new file mode 100644 index 0000000..bf77ba7 --- /dev/null +++ b/Solutions_to_Problems_in_Applied_Mechanics_by_A_N_Gobby/11-Hydrostatics_.ipynb @@ -0,0 +1,216 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 11: Hydrostatics " + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 11.1: depth_of_centre_of_pressure.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Solutions to Problems In applied mechanics\n", +"//A N Gobby\n", +"clear all;\n", +"clc\n", +"//initialisation of variables\n", +"w=62.5//lbf\n", +"a=4*6//ft\n", +"x=4//ft\n", +"l=(6*6^3)/3-(6*2^3)/3//ft^3\n", +"q=24*x//ft^3\n", +"//CALCULATIONS\n", +"T=w*a*x//lbf\n", +"P=l/q//ft\n", +"//RESULTS\n", +"printf('the depth of centre of pressure=% f ft',P)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 11.2: depth_of_centre_of_pressure.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Solutions to Problems In applied mechanics\n", +"//A N Gobby\n", +"clear all;\n", +"clc\n", +"//initialisation of variables\n", +"a=60//degre\n", +"w=2.5//ft\n", +"x=3//ft\n", +"p=6*3//ft^2\n", +"h=62.4//ft\n", +"p1=3*6^3/12//ft^4\n", +"//CALCULATIONS\n", +"D=w+x*sind(a)//ft\n", +"T=h*p*D//lbf\n", +"P=p1*sind(a)^2/(p*D)+D//ft\n", +"//RESULTS\n", +"printf('the depth of centre of pressure=% f ft',P)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 11.3: trap_door_width.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Solutions to Problems In applied mechanics\n", +"//A N Gobby\n", +"clear all;\n", +"clc\n", +"//initialisation of variables\n", +"t=62.5*4*1//lbf\n", +"a=2/3*2//ft\n", +"m=62.5*4*(4/3)//lbf\n", +"f=500*2//lbf ft\n", +"T=((62.5*2*2)/2)*1/3*2//lbf\n", +"H=(62.5*2*1)//ft\n", +"//CALCULATIONS\n", +"H1=f/[H+T]*2/2.9///ft\n", +"//RESULTS\n", +"printf('the trap door width=% f ft',H1)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 11.4: moment_of_resultant_force.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Solutions to Problems In applied mechanics\n", +"//A N Gobby\n", +"clear all;\n", +"clc\n", +"//initialisation of variables\n", +"g=6//ft\n", +"g1=50//ft\n", +"d=10//ft\n", +"w1=10//ft\n", +"w2=20//ft\n", +"w3=62.5//ft\n", +"t=w3*60*5//lbf\n", +"t2=8.37//tonf\n", +"t1=g1+t//lbf\n", +"H=26.4//ft\n", +"//CALCULATIONS\n", +"M=t*d/3//lbf ft\n", +"D=w3*w2*g*d//lbf\n", +"M1=D*(w2/3)//lbf ft\n", +"f=D-t//lbf\n", +"R=(M1-M)/f//ft\n", +"//RESULTS\n", +"printf('the moment of resultant force about gate base=% f ft',R)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 11.6: Moment_of_force.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Solutions to Problems In applied mechanics\n", +"//A N Gobby\n", +"clear all;\n", +"\n", +"clc\n", +"//initialisation of variables\n", +"w=62.5//lbf/ft\n", +"w1=1.5//ft\n", +"d=4//ft\n", +"w2=3//ft\n", +"g=0.8//in\n", +"p1=2/3*w1//ft\n", +"q=2/3*p1//ft\n", +"//CALCULATIONS\n", +"t1=w1*w*w1/2//lbf\n", +"p=(g*w*p1*p1)/2//lbf\n", +"A=g*w*p1*1/2//lbf\n", +"T=(w*1/2*1/2/2)//lbf\n", +"P=t1-p-A-T//lbf\n", +"h=2.9*P/(t1*1-(p*2)/3-(p*(1*1/4))-(T*1.33))//ft\n", +"F=P*a/w1//lbf\n", +"H=F/2//lbf\n", +"//RESULTS\n", +"printf('depth of forces=% f lbf',F)\n", +"printf('the moment of force on hinge=% f lbf',H)" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Solutions_to_Problems_in_Applied_Mechanics_by_A_N_Gobby/12-Hydrodynamics_.ipynb b/Solutions_to_Problems_in_Applied_Mechanics_by_A_N_Gobby/12-Hydrodynamics_.ipynb new file mode 100644 index 0000000..2496439 --- /dev/null +++ b/Solutions_to_Problems_in_Applied_Mechanics_by_A_N_Gobby/12-Hydrodynamics_.ipynb @@ -0,0 +1,166 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 12: Hydrodynamics " + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 12.14: coefficient_of_velocity.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Solutions to Problems In applied mechanics\n", +"//A N Gobby\n", +"clear all;\n", +"clc\n", +"//initialisation of variables\n", +"x=32.5//in\n", +"y=33.7//in\n", +"h=8//in\n", +"//CALCULATIONS\n", +"C=sqrt((x)^2/(4*y*h))//ft\n", +"//RESULTS\n", +"printf('the coefficient of velocity=% f ft',C)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 12.1: bernouli_s_equation.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Solutions to Problems In applied mechanics\n", +"//A N Gobby\n", +"clear all;\n", +"clc\n", +"//initialisation of variables\n", +"p=144*60//lbf/ft^2\n", +"A1=1/4*%pi*(1/2)^2//ft^2\n", +"A2=1/4*%pi*(1/4)^2//ft^2\n", +"w=5//ft/s\n", +"U1=1/A1//ft/s\n", +"U2=1/A2//ft/s\n", +"g=32.2//ft/s\n", +"P=(U1^2/(2*g))+(p/(2*g))\n", +"P1=(3+U2^2/(62.4))+(144/(62.4))\n", +"//CALCULATIONS\n", +"Pb=(P/P1)*w//lbf/in^2\n", +"//RESULTS\n", +"printf('the bernouli s equation=% f lbf/in^2',Pb)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 12.2: Difference_in_feet_of_water.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Solutions to Problems In applied mechanics\n", +"//A N Gobby\n", +"clear all;\n", +"clc\n", +"//initialisation of variables\n", +"p=1.23//ft^2\n", +"t=0.197//ft^2\n", +"u=1.595//ft^2\n", +"g=13.56//ft^2\n", +"w=9.2//in\n", +"m=0.97//in\n", +"//CALCULATIONS\n", +"H=(g-1)*w/12//ft^2\n", +"Q=m*u*sqrt(H)//ft^3\n", +"S=Q*60*62.4/10//gallons/min\n", +"//RESULTS\n", +"printf('the head difference in feet of water=% f gallons/min',S)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 12.3: coefficients_of_discharge_velocity_and_contraction.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Solutions to Problems In applied mechanics\n", +"//A N Gobby\n", +"clear all;\n", +"\n", +"clc\n", +"//initialisation of variables\n", +"h=4//ft\n", +"h1=3.24//ft^3/min\n", +"d=0.785//in\n", +"v=5.26//ft^3/min\n", +"//CALCULATIONS\n", +"Cd=h1/v//ft\n", +"C=1/4*%pi*(d)^2/(1/4*%pi*(1)^2)//ft^3\n", +"V=Cd/C\n", +"//RESULTS\n", +"printf('the coefficients of discharge velocity and contraction=% f',V)" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Solutions_to_Problems_in_Applied_Mechanics_by_A_N_Gobby/2-Angular_Motion_.ipynb b/Solutions_to_Problems_in_Applied_Mechanics_by_A_N_Gobby/2-Angular_Motion_.ipynb new file mode 100644 index 0000000..10114d9 --- /dev/null +++ b/Solutions_to_Problems_in_Applied_Mechanics_by_A_N_Gobby/2-Angular_Motion_.ipynb @@ -0,0 +1,469 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 2: Angular Motion " + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.10: torque_to_acceleratio.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Solutions to Problems In applied mechanics\n", +"//A N Gobby\n", +"clear all;\n", +"//torque to acceleration drum and truck\n", +"clc\n", +"//initialisation of variables\n", +"v=20//ft/s\n", +"s=150//ft\n", +"h=2240//ft\n", +"g=32.2//ft\n", +"d=3//ft\n", +"p=364.9//lbf\n", +"q=4//ft\n", +"//CALCULATIONS\n", +"A=v^2/(2*s)//ft/s^2\n", +"T=(h*(d)^2/g)*(A/q)+p*q//lbf ft\n", +"//RESULTS\n", +"printf('the torque to acceleration drum and truck=% f lbf ft',T)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.11: gravitational_force.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Solutions to Problems In applied mechanics\n", +"//A N Gobby\n", +"clear all;\n", +"clc\n", +"//gravitational force\n", +"//initialisation of variables\n", +"v=35//hp\n", +"p=25//percent\n", +"v1=30//mile/h\n", +"q=28//in\n", +"d=30//in\n", +"w=3200//lbf\n", +"t=33000//lbf\n", +"s=88//in\n", +"W=w*(1/v1)//lbf\n", +"m=0.364//mile/h\n", +"//CALCULATIONS\n", +"N=(v1*s/60)/(14/12)*(60/(2*%pi))//rev/min\n", +"Ne=N*6//rev/min\n", +"E=(v*t)/(2*%pi*Ne)//lbf ft\n", +"T=(v*0.75*t)/(2*%pi*N)//lbf ft\n", +"P=T/(14/12)//lbf\n", +"V=sqrt((P-W)/m)//mile/h\n", +"//RESULTS\n", +"printf('the gravitational force=% f mile/h',V)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.1: Motion_speed_and_inertia.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Solutions to Problems In applied mechanics\n", +"//A N Gobby\n", +"clear all;\n", +"clc\n", +"//equation of motion, Mass of moment of inertia, percentage \n", +"//reduction in speed\n", +"//initialisation of variables\n", +"g=5//ft\n", +"w=300//rev/min\n", +"a=0.86//red/s^2\n", +"h=2240//ft/s\n", +"q=4//ft\n", +"g1=32.1//ft/s\n", +"k=3105000//ft lbf\n", +"//CALCULATIONS\n", +"T=(w*(2*%pi/60))/(a)//sec\n", +"M=(q*h*(g^2))/(g1)//slug ft^3\n", +"K=((1/2)*M)*((w*2*%pi^2)/(60))//ft lbf\n", +"W=sqrt(k/(1/2)/M)//rad/s\n", +"P=[(((w*2*%pi)/60)-W)/((w*2*%pi)/60)]*100//percent\n", +"//RESULTS\n", +"printf('The equation of motion=% f sec',T)\n", +"printf('Mass of moment of inertia of =% f ft lbf',K)\n", +"printf('the percentage reduction in speed=% f percent',P)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.2: radius_of_gyratio.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Solutions to Problems In applied mechanics\n", +"//A N Gobby\n", +"clear all;\n", +"clc\n", +"//radius of gyration\n", +"//initialisation of variables\n", +"m=2.58065//slug ft^3\n", +"w=2.144//in\n", +"//CALCULATIONS\n", +"R=sqrt(m/w)//ft\n", +"//RESULTS\n", +"printf('The radius of gyration=% f ft',R)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.3: distance_travelled_along_incline.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Solutions to Problems In applied mechanics\n", +"//A N Gobby\n", +"clear all;\n", +"//distance travelled along incline before coming to rest\n", +"clc\n", +"//initialisation of variables\n", +"w1=10//tonf\n", +"r=36//in\n", +"w=1/4//tonf\n", +"g=14//in\n", +"t=30//mile/h\n", +"s=100//in\n", +"m=20//lbf/tonf\n", +"h=2240//lbf\n", +"q=44//in\n", +"g1=32.2//ft\n", +"//CALCULATIONS\n", +"K=(w1*h*(q^2))/(2*g1)//ft lbf \n", +"L=q/1.5//rad/s\n", +"R=(2*1/2*(1/4*h/g1)*(g/12)^2)*L^2//ft lbf\n", +"T=K+R//ft lbf\n", +"M=m*w1//lbf\n", +"G=w1*h*(1/s)//lbf\n", +"S=K/(M+G)//ft\n", +"//RESULTS\n", +"printf('the distance travelled along incline before coming to rest=% f ft',S)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.4: percentage_fluctuation.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Solutions to Problems In applied mechanics\n", +"//A N Gobby\n", +"clear all;\n", +"clc\n", +"//percentage fluctuation in speed\n", +"//initialisation of variables\n", +"g=32.2//ft\n", +"p=275//rev/min\n", +"w=1/2*p//ft\n", +"d=15//hp\n", +"h=33000//ft\n", +"r=0.8//ft\n", +"h1=2240//ft\n", +"m=p*(2*%pi/60)//rad/s\n", +"//CALCULATIONS\n", +"W=(d*h)/w//ft lbf\n", +"E=r*W//ft lbf\n", +"I=(1*h1*(3)^2)/(g)//slug ft^2\n", +"Q=(E*100)/(I*(m)^2*2)//percent\n", +"//RESULTS\n", +"printf('the percentage fluctuation in speed=% f percent',Q)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.5: frictional_torque_in_stopping_flywheel.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Solutions to Problems In applied mechanics\n", +"//A N Gobby\n", +"clear all;\n", +"clc\n", +"//weight of flywheel and the work done by frictional torque\n", +"//initialisation of variables\n", +"w=140//rev\n", +"r=8//in\n", +"g=12//in\n", +"t=30//mile/h\n", +"q=(1/4)//tonf\n", +"I=0.99//slug ft^3\n", +"p=32.2//ft^2\n", +"//CALCULATIONS\n", +"W=(I*p)/(r/g)^2//lbf\n", +"T=(I*(2*%pi)^2)/(2*(2*%pi)*w)//lbf ft\n", +"//RESULTS\n", +"printf('The weight of flywheel=% f lbf',W)\n", +"printf('the work done by frictional torque in stopping flywheel=% f lbf ft',T)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.6: Kinetic_energy_and_force.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Solutions to Problems In applied mechanics\n", +"//A N Gobby\n", +"clear all;\n", +"//mass moment of inertia, kinetic enrgy and shear blades\n", +"clc\n", +"//initialisation of variables\n", +"w=2//tonf\n", +"t=250//rev/min\n", +"g=32.2//ft\n", +"h=2240//ft\n", +"f=0.8//percent\n", +"t1=60//ft\n", +"s=1*(2/3)//min\n", +"r=480//ft\n", +"w1=20//ft\n", +"//CALCULATIONS\n", +"M=(w*h*(w^2))/g//slug ft^2\n", +"A=(t*(w*%pi/t1))/t1*s//rad/s^2\n", +"I=M*A//lbf ft\n", +"K=1/2*(M)*(2*%pi/t1)^2*r*w1//ft lbf\n", +"F=f*K/(3/12)//lbf\n", +"//RESULTS\n", +"printf('the mass moment of inertia =% f lbf ft',I)\n", +"printf('the kinetic energy=% f ft lbf',K)\n", +"printf('the average force on the shear blades=% f lbf',F)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.7: tangential_braking_acting.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Solutions to Problems In applied mechanics\n", +"//A N Gobby\n", +"clear all;\n", +"clc\n", +"//frictional torque retarding and tangential braking acting\n", +"//initialisation of variables\n", +"h=2240//ft\n", +"w=0.06//ft\n", +"w1=4//ft\n", +"q=12//ft\n", +"g=5//ft\n", +"g1=32.2//ft\n", +"d=100//rev/min\n", +"f=120//sec\n", +"//CALCULATIONS\n", +"T=w*(w1*h)*(w1/q)//lbf ft\n", +"I=((w1*h*(g)^2)/g1)*d*(2*%pi/60)//slug ft^2/s or lbf ft s\n", +"M=I/T//sec\n", +"P=430.8//lbf ft\n", +"R=(P/2.5)//lbf\n", +"//RESULTS\n", +"printf('the frictional torque retarding=% f sec',M)\n", +"printf('the tangential braking acting=% f lbf',R)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.8: tangential_force_on_brake.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Solutions to Problems In applied mechanics\n", +"//A N Gobby\n", +"clear all;\n", +"//tangential force\n", +"clc\n", +"//initialisation of variables\n", +"I=179.2//lbf ft\n", +"h=2240//ft\n", +"w=4//ft\n", +"w1=5//ft\n", +"r=120//ft\n", +"g=32.2//ft\n", +"p=100//ft\n", +"t=60//ft\n", +"//CALCULATIONS\n", +"M=(w*h*(w1)^2)/g//slug ft^3\n", +"T=I/M//rad/s\n", +"D=p*(2*%pi)/(t*T)//sec\n", +"N=(p*(2*%pi)/t)/r//rad/s^2\n", +"T1=M*N//lbf ft\n", +"B=T1-I//lbf ft\n", +"F=B/2*1/2//lbf\n", +"//RESULTS\n", +"printf('the deceleration =% f sec',D)\n", +"printf('the tangential force on brake rim=% f lbf',F)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.9: friction_of_bearings_is_to_to_neglected.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Solutions to Problems In applied mechanics\n", +"//A N Gobby\n", +"clear all;\n", +"//friction of bearings is to to neglected\n", +"clc\n", +"//initialisation of variables\n", +"h=2240//ft\n", +"g=32.2//ft\n", +"g1=15//in\n", +"w=1200//lbf\n", +"q=12//ft\n", +"r=1.5//ft\n", +"t=3.28//tonf ft\n", +"t1=1.7//tonf ft\n", +"x=550//ft\n", +"s=6//ft\n", +"//CALCULATIONS\n", +"T=((w*(g1/q)^2)/(h*g))*(3/r)//tonf ft\n", +"T1=t-t1+T//tonf ft\n", +"W=(T1*h*s/(r))/(x)//ft lbf\n", +"//RESULTS\n", +"printf('the friction of bearings is to to neglected =% f',W)" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Solutions_to_Problems_in_Applied_Mechanics_by_A_N_Gobby/3-Motion_in_a_circle_.ipynb b/Solutions_to_Problems_in_Applied_Mechanics_by_A_N_Gobby/3-Motion_in_a_circle_.ipynb new file mode 100644 index 0000000..3d64a33 --- /dev/null +++ b/Solutions_to_Problems_in_Applied_Mechanics_by_A_N_Gobby/3-Motion_in_a_circle_.ipynb @@ -0,0 +1,380 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 3: Motion in a circle " + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.1: axis_of_rotation_thus_balancing_the_flywheel.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Solutions to Problems In applied mechanics\n", +"//A N Gobby\n", +"clear all;\n", +"clc\n", +"//axis of rotation thus balancing the flywheel\n", +"//initialisation of variables\n", +"w=2000//lbf\n", +"q=0.01//in\n", +"f=600//rev/min\n", +"r=18//in\n", +"g=32.2//ft^2\n", +"d=12//in\n", +"s=1.5//ft\n", +"//CALCULATIONS\n", +"F=(w/g)*(f*2*%pi/60)^2*(q/d)//lbf\n", +"W=w*(q/d)/s//lbf\n", +"//RESULTS\n", +"printf('the axis of rotation thus balancing the flywheel=% f lbf',W)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.2: speed_and_clutch_will_begin_to_transmit_power.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Solutions to Problems In applied mechanics\n", +"//A N Gobby\n", +"clear all;\n", +"//speed and clutch will begin to transmit power and horsepower\n", +"clc\n", +"//initialisation of variables\n", +"w=4//lbf\n", +"r=60//lbf/in\n", +"d=13//in\n", +"g=32.2//in\n", +"p=500//rev/min\n", +"h=0.25//in\n", +"b=5//in\n", +"q=1//in\n", +"f=62.2//lbf\n", +"V=31.1//rad/s\n", +"k=6.5//in\n", +"s=33000//ft\n", +"//CALCULATIONS\n", +"W=f/2//rad/s\n", +"F=(w*w/g)*(p*(2*%pi/r))^2*1/2//lbf\n", +"N=F-w*r//lbf\n", +"T=N*h*k/12//lbf ft\n", +"H=2*%pi*p*T/s//lbf ft\n", +"//RESULTS\n", +"printf('The speed and clutch will begin to transmit power =% f rad/s',W)\n", +"printf('the horsepower transmitted =% f',H)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.3: kinetic_energy.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Solutions to Problems In applied mechanics\n", +"//A N Gobby\n", +"clear all;\n", +"clc\n", +"//initialisation of variables\n", +"w1=10//lbf\n", +"w2=5//lbf\\n", +"g=32.2//ft\n", +"h=8//ft\n", +"d=3//ft\n", +"v=10//lbf\n", +"q=15//ft\n", +"V=13.9//ft/s\n", +"//CALCULATIONS\n", +"M=(v*V+w2)/(v+w2)//ft/s\n", +"K=(v*(V)^2/(2*g))-(q*(M)^2/(2*g))//lbf\n", +"H=(q*(M)^2/(2*g))/q//ft\n", +"F=(v*(V)^2/(g*h))//lbf\n", +"T=F+v//lbf\n", +"//RESULTS\n", +"printf('The moment of bodies before impact=% f ft/s',M)\n", +"printf('The loss of kinetic energy in impact =% f ft/lbf',K)\n", +"printf('Gain in potential energy after impact =% f ft',H)\n", +"printf('tension in string centrifugal force weight=% f lbf',T)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.4: centrifugal_force.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Solutions to Problems In applied mechanics\n", +"//A N Gobby\n", +"clear all;\n", +"clc\n", +"//initialisation of variables\n", +"w1=8//lbf\n", +"s=3//ft\n", +"m=35//lbf\n", +"g=32.2//ft/s\n", +"//CALCULATIONS\n", +"U=sqrt(g*s)//ft/s\n", +"T=w1+w1//lbf\n", +"P=m-w1//lbf\n", +"Umax=sqrt(P*g*s/w1)//ft/s\n", +"//RESULTS\n", +"printf('the centrifugal force=% f ft/s',Umax)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.5: tension_in_the_string_at_position.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Solutions to Problems In applied mechanics\n", +"//A N Gobby\n", +"clear all;\n", +"clc\n", +"//initialisation of variables\n", +"w=3//lbf\n", +"v=5//ft\n", +"a=60//degree\n", +"g=32.2//ft\n", +"u=28.4//ft/s\n", +"t=25.4//ft/s\n", +"q=12//ft\n", +"p=1.5//ft\n", +"//CALCULATIONS\n", +"U=sqrt(g*v)//ft/s\n", +"T=w*(t)^2/(2*g)+w*cosd(a)//lbf\n", +"W=q+p//lbf\n", +"//RESULTS\n", +"printf('the tension in the string at position C=% f lbf',W)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.6: normal_reaction.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Solutions to Problems In applied mechanics\n", +"//A N Gobby\n", +"clear all;\n", +"\n", +"clc\n", +"//initialisation of variables\n", +"w=30//mile/h\n", +"r=500//ft\n", +"h=2240//ft\n", +"q=44//ft\n", +"t=(88/60)//ft\n", +"g=32.2//ft\n", +"//CALCULATIONS\n", +"Tan=(w*t)^2/(g*r)\n", +"W=h*cosd(Tan)+(h*(q)^2*sind(Tan))/(g*r)//lbf\n", +"//RESULTS\n", +"printf('the car and resolve forces normal and parallel to the slope=% f',Tan)\n", +"printf('the total normal reaction =% f lbf',W)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.7: centrifugal_force.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Solutions to Problems In applied mechanics\n", +"//A N Gobby\n", +"clear all;\n", +"\n", +"clc\n", +"//initialisation of variables\n", +"h=5//ft\n", +"h1=3//ft\n", +"r=200//ft\n", +"f=0.5//ft\n", +"v=60//ft/s\n", +"w=62.0//ft/s\n", +"q=1.5//ft/s\n", +"g=32.2//ft\n", +"//CALCULATIONS\n", +"V=sqrt(q)/(w/(g*r))/2//ft/s\n", +"F=sqrt(f*g*r)//ft/s\n", +"T=(v)^2/(g*r)//degree\n", +"//RESULTS\n", +"printf('The value of the speed=% f ft/s',V)\n", +"printf('The block is on the point of overturning =% f ft/s',F)\n", +"printf('the centrifugal force must just be equal to the frictional force=% f degree',T)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.8: equal_moment_of_the_centrifugal.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Solutions to Problems In applied mechanics\n", +"//A N Gobby\n", +"clear all;\n", +"clc\n", +"//initialisation of variables\n", +"w=20//cwt\n", +"q=3//ft\n", +"d=30//ft/ss\n", +"w1=4//ft\n", +"w2=6//in\n", +"h=2240//ft/s\n", +"g=32.2//ft\n", +"s=15//ft\n", +"f=4.5//ft\n", +"c=2.25//ft\n", +"//CALCULATIONS\n", +"T=(h*(d)^2/(g*s*q))//lbf\n", +"G=T*q//lbf ft\n", +"W=h*f/2//lbf ft\n", +"R=186.5//lbf\n", +"D=h-R//lbf\n", +"r=(q*h*d^2/(c*h)/g)//ft\n", +"//RESULTS\n", +"printf('the equal moment of the centrifugal force=% f ft',r)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.9: distance_horizantal_circle.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Solutions to Problems In applied mechanics\n", +"//A N Gobby\n", +"clear all;\n", +"clc\n", +"//initialisation of variables\n", +"l=3//ft\n", +"w=8//lbf\n", +"p=40//rev/min\n", +"q=6//ft\n", +"h=3.5//ft\n", +"g=32.2//ft\n", +"f=6//in\n", +"t=15.33//lbf\n", +"//CALCULATIONS\n", +"F=q/t//in/lbf\n", +"R=w*q/t//in\n", +"D=(h*w)/t*10//in\n", +"//RESULTS\n", +"printf('the distance horizantal circle=% f in',D)" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Solutions_to_Problems_in_Applied_Mechanics_by_A_N_Gobby/4-Simple_Harmonic_motion_.ipynb b/Solutions_to_Problems_in_Applied_Mechanics_by_A_N_Gobby/4-Simple_Harmonic_motion_.ipynb new file mode 100644 index 0000000..7f6498c --- /dev/null +++ b/Solutions_to_Problems_in_Applied_Mechanics_by_A_N_Gobby/4-Simple_Harmonic_motion_.ipynb @@ -0,0 +1,252 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 4: Simple Harmonic motion " + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 4.1: acceleratio.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Solutions to Problems In applied mechanics\n", +"//A N Gobby\n", +"clear all;\n", +"clc\n", +"//initialisation of variables\n", +"t=3//sec\n", +"m=20//per mint\n", +"a=4//ft\n", +"//CALCULATIONS\n", +"T=2*%pi/t//ft/s\n", +"V=T*a//ft/s\n", +"F=(T)^2*a//ft/s^2\n", +"//RESULTS\n", +"printf('th acceleration x must be a maximum=% f ft/s^2',F)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 4.2: simple_pendulum.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Solutions to Problems In applied mechanics\n", +"//A N Gobby\n", +"clear all;\n", +"clc\n", +"//initialisation of variables\n", +"a=10//ft/s\n", +"x=1/12//ft/s\n", +"g=32.2//ft\n", +"//CALCULATIONS\n", +"P=2*%pi*sqrt(x/a)//sec\n", +"L=(P)/(2*%pi/sqrt(g))/2//ft\n", +"//RESULTS\n", +"printf('the simple pendulum =% f ft',L)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 4.3: maximum_acceleratio.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Solutions to Problems In applied mechanics\n", +"//A N Gobby\n", +"clear all;\n", +"clc\n", +"//initialisation of variables\n", +"w=20//lbf\n", +"p=12//ft/s\n", +"v1=15//ft/s\n", +"g=32.2//ft\n", +"v2=10//ft/s\n", +"d1=6//in\n", +"d2=9//in\n", +"a=10.82//in\n", +"//CALCULATIONS\n", +"Um=(v2*p)/sqrt(a^2-d2^2)//sec^-1\n", +"P=2*%pi/Um//sec\n", +"V=w*a//in/s\n", +"M=w^2*a/p//ft/s\n", +"F=(w/g)*M//lbf\n", +"//RESULTS\n", +"printf('the velocity=% f in',a)\n", +"printf('periodic time=% f sec',P)\n", +"printf('the maximum velocity=% f in/s',V)\n", +"printf('maximum acceleration=% f lbf',F)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 4.4: maximum_acceleratio.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Solutions to Problems In applied mechanics\n", +"//A N Gobby\n", +"clear all;\n", +"clc\n", +"//initialisation of variables\n", +"w=4//lbf\n", +"h=40//lbf/ft\n", +"d=2//in\n", +"g=32.2//ft/s\n", +"//CALCULATIONS\n", +"P=(d*%pi)*sqrt(w/(h*g))//sec\n", +"V=(d*%pi*d)/(P*12)//ft/s\n", +"M=(d*%pi/P)^2*(d/12)//ft/s\n", +"//RESULTS\n", +"printf('the period of vibration=% f sec',P)\n", +"printf('Maximum veloity=% f ft/s',V)\n", +"printf('Maximum acceleration=% f ft/s',M)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 4.5: kinetic_energy.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Solutions to Problems In applied mechanics\n", +"//A N Gobby\n", +"clear all;\n", +"\n", +"\n", +"clc\n", +"//initialisation of variables\n", +"w=80//lbf\n", +"p=4//ft\n", +"d=20//stroke/min\n", +"d1=3//in\n", +"p1=0.6//sec\n", +"h=2//ft/s\n", +"g=32.2//ft/s\n", +"t=60//sec\n", +"//CALCULATIONS\n", +"P=t/d//sec\n", +"U=2*%pi/d1//sec^-1\n", +"V=U*sqrt(h^2-(3/4)^2)//ft/s\n", +"K=(w*V^2/(h*g))//lbf\n", +"M=U^2*h//ft/s^2\n", +"M1=(w/g)*M//lbf\n", +"D=h*cosd(U*0.6*180/%pi)//ft\n", +"D1=h-D//ft\n", +"//RESULTS\n", +"printf('the kinetic energy of the crosshead=% f lbf',K)\n", +"printf('the maximum acceleration of force on crosshead=% f lbf',M1)\n", +"printf('the distance from end of the path=% f ft',D1)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 4.6: velocity_of_acceleratio.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Solutions to Problems In applied mechanics\n", +"//A N Gobby\n", +"clear all;\n", +"clc\n", +"//initialisation of variables\n", +"d=3//in\n", +"v=40//ft/s\n", +"a=3000//ft/s^2\n", +"p=5.31//in\n", +"//CALCULATIONS\n", +"U=sqrt(a/(d/12))//sec^-1\n", +"E=(U*60/(2*%pi))//rev/min\n", +"P=2/U//sec\n", +"W=U*(p/12)//ft/s\n", +"M=U^2*(p/12)//ft/s^2\n", +"//RESULTS\n", +"printf('the velocity of acceleration against time during one complete=% f ft/s^2',M)" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Solutions_to_Problems_in_Applied_Mechanics_by_A_N_Gobby/5-Mechanisms_.ipynb b/Solutions_to_Problems_in_Applied_Mechanics_by_A_N_Gobby/5-Mechanisms_.ipynb new file mode 100644 index 0000000..0f39598 --- /dev/null +++ b/Solutions_to_Problems_in_Applied_Mechanics_by_A_N_Gobby/5-Mechanisms_.ipynb @@ -0,0 +1,241 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 5: Mechanisms " + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 5.1: angular_velocity.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Solutions to Problems In applied mechanics\n", +"//A N Gobby\n", +"clear all;\n", +"\n", +"clc\n", +"//initialisation of variables\n", +"r=120//rev/min\n", +"a=45//degree\n", +"d=1//ft\n", +"w=6//ft\n", +"q=3.96//ft/s\n", +"r1=7//ft\n", +"D=0.565//rad/s\n", +"W=28.0//ft\n", +"v1=12.6//ft\n", +"v2=22.4//ft\n", +"//CALCULATIONS\n", +"U=r*(2*%pi/60)*d//ft/s\n", +"a1=q/r1//rad/s\n", +"A=q/r1*W//ft/s\n", +"Vb=a1*W//ft/s\n", +"//RESULTS\n", +"printf('The velocity =% f ft/s',A)\n", +"printf('the angular velocity=% f ft/s',Vb)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 5.2: angular_velocity.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Solutions to Problems In applied mechanics\n", +"//A N Gobby\n", +"clear all;\n", +"\n", +"clc\n", +"//initialisation of variables\n", +"a=13.25//in\n", +"q=4.5//in\n", +"b=9//in\n", +"r=2.5//in\n", +"w=6//in\n", +"s=2.4//in\n", +"x=8*3/4//in\n", +"y=4*3/8//in\n", +"z=5*3/4//in\n", +"R=0.81//ft/s\n", +"p=5.0//in\n", +"//CALCULATIONS\n", +"V=(2*%pi)*r//in/s\n", +"AB=(p/a)//rad/s\n", +"DE=s/b//rad/s\n", +"//RESULTS\n", +"printf('The angular velocity is=% f rad/s',AB)\n", +"printf('the angular velocity=% f rad/s',DE)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 5.3: angular_velocity.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Solutions to Problems In applied mechanics\n", +"//A N Gobby\n", +"clear all;\n", +"clc\n", +"//initialisation of variables\n", +"v=(60*2*%pi)/60*8/12//ft/s\n", +"x=8//in\n", +"y=12//in\n", +"c=4.76//in\n", +"b=4.13//in\n", +"e=10.0//in\n", +"w=12.0//in\n", +"f=3.55//in\n", +"q=6.08//in\n", +"k=1.95//in\n", +"h=2.35//in\n", +"//CALCULATIONS\n", +"V1=v*(c/b)//ft/s\n", +"V2=V1*(e/w)//ft/s\n", +"V3=V2*(f/q)//ft/s\n", +"K=V3*(k/h)//ft/s\n", +"F=f*(x/y)//ft\n", +"L=(F*y)/(f*x)//rad/s\n", +"//RESULTS\n", +"printf('the angular velocity length=% f rad/s',L)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 5.4: angular_velocity.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Solutions to Problems In applied mechanics\n", +"//A N Gobby\n", +"clear all;\n", +"clc\n", +"//initialisation of variables\n", +"d=60//rev/min\n", +"s=5//in\n", +"v=5//in/s\n", +"a=25.2//in/s\n", +"x=2.23//in\n", +"b=4.59//in\n", +"z=20.0//in\n", +"//CALCULATIONS\n", +"U=x*v//in/s\n", +"V=b*v//in/s\n", +"B=V/z//rad/s\n", +"//RESULTS\n", +"printf('the angular velocity=% f rad/s',B)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 5.5: angular_velocity.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Solutions to Problems In applied mechanics\n", +"//A N Gobby\n", +"clear all;\n", +"\n", +"clc\n", +"//initialisation of variables\n", +"v=5//ft/s\n", +"f=0.5//in\n", +"e=5.27//in\n", +"w=1.98//in\n", +"k=2.96//in\n", +"x=1.7//in\n", +"h=3.4//in\n", +"i=7.2//in\n", +"d=0.76//in\n", +"Va=((200*2*%pi*1)/60)/7.75//rad/s\n", +"Vc=Va*i/k\n", +"//CALCULATIONS\n", +"F=f*v//ft/s\n", +"CE=(e*v)/4//rad/s\n", +"EF=w*v/3//rad/s\n", +"VCD=Va*i/k//rad/s\n", +"E=VCD*x/h//rad/s\n", +"V=E*d//ft/s\n", +"//RESULTS\n", +"printf('The velocity of F in=% f ft/s',F)\n", +"printf('The angular velocity of CE in=% f rad/s',CE)\n", +"printf('The angular velocity of EF=% f rad/s',EF)\n", +"printf('the velocity of link=% f rad/s',V)" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Solutions_to_Problems_in_Applied_Mechanics_by_A_N_Gobby/6-Strength_of_materials_.ipynb b/Solutions_to_Problems_in_Applied_Mechanics_by_A_N_Gobby/6-Strength_of_materials_.ipynb new file mode 100644 index 0000000..ea29bec --- /dev/null +++ b/Solutions_to_Problems_in_Applied_Mechanics_by_A_N_Gobby/6-Strength_of_materials_.ipynb @@ -0,0 +1,562 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 6: Strength of materials " + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 6.10: column_shortens.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Solutions to Problems In applied mechanics\n", +"//A N Gobby\n", +"clear all;\n", +"clc\n", +"//initialisation of variables\n", +"clear\n", +"E=2*10^6//lbf/in^2\n", +"s=600//lbf/in^2\n", +"w=12//in\n", +"l=80//tonf\n", +"w1=4//ft\n", +"E1=30*10^6//lbf/in^2\n", +"h=2240//in\n", +"s2=10.9//in^2\n", +"F=9000//lbf/in^2\n", +"//CALCULATIONS\n", +"L=(F*w1*w/E1)//in\n", +"//RESULTS\n", +"printf('the column shortens by=% f in',L)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 6.11: Final_stress.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Solutions to Problems In applied mechanics\n", +"//A N Gobby\n", +"clear all;\n", +"clc\n", +"//initialisation of variables\n", +"clear\n", +"E1=30*10^6//lbf/in^2\n", +"E2=15*10^6//lbf/in^2\n", +"alf=6.4*10^-6//degF-1\n", +"alf1=9.5*10^-6//degF-1\n", +"t=170//deg\n", +"t1=50//deg\n", +"w=5//tonf\n", +"ec=0.000248//lbf/in^2\n", +"es=0.000124//lbf/in^2\n", +"h=2240//in\n", +"//CALCULATIONS\n", +"e=(alf1-alf)*(t-t1)//in\n", +"Ec=E2*ec//lbf/in^2\n", +"Es=E1*es//lbf/in^2\n", +"F=E1/E2//fc\n", +"S=w*h/(2*1+1)//lbf/in^2\n", +"S1=S*2//lbf/in^2\n", +"R=-Es+S//lbf/in^2\n", +"R1=Es+S1//lbf/in^2\n", +"//RESULTS\n", +"printf('The final stress in the steel and applied to the compound =% f lbf/in^2',R1)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 6.12: force_calculatio.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Solutions to Problems In applied mechanics\n", +"//A N Gobby\n", +"clear all;\n", +"clc\n", +"//initialisation of variables\n", +"a=1/16//ft/s\n", +"h=100//lbf/in^2\n", +"w=10//lbf/in^2\n", +"q=2//in\n", +"b=%pi/4*(3/16)^2//in^2\n", +"p=5//inch valu per 12.7\n", +"//CALCULATIONS\n", +"H=(h*w)/(q*a)//lbf/in^2\n", +"F=H*1*a//lbf\n", +"A=H/2//lbf/in^2\n", +"R=(b)/(F/A)*5.14*4//per inch\n", +"F1=A*1*a//lbf\n", +"m=(b)/(F1/A)*5.14//per inch\n", +"//RESULTS\n", +"printf('the force per inch of circumferential seam=% f per in',m)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 6.13: Diameter_and_pressure.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Solutions to Problems In applied mechanics\n", +"//A N Gobby\n", +"clear all;\n", +"clc\n", +"//initialisation of variables\n", +"clear\n", +"p=14.7//lbf/in^2\n", +"w=15000//lbf/in^2\n", +"p1=190//lbf/in^2\n", +"q=0.35//percent\n", +"q1=0.75//percent\n", +"w1=2//ft\n", +"q2=36//tonf/in^2\n", +"f=6//in\n", +"r1=3/8//in\n", +"p2=4//in\n", +"h=2240//in\n", +"//CALCULATIONS\n", +"A=w*q//lbf/in^2\n", +"E=w*q1//lbf/in^2\n", +"M1=(p2*A*(1/2)/(p1-p))//in\n", +"M2=(w1*E*(1/2)/(p1-p))//in\n", +"M3=p2*r1*((q2*h)/f)/(w1*12)//lbf/in^2 gauge\n", +"//RESULTS\n", +"printf('the Maximum possible diameter of cylinder =% f in',M2)\n", +"printf('the Maximum allowable pressure=% f lbf/in^2 gauge',M3)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 6.14: maximum_rim_speed_of_flywheel.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Solutions to Problems In applied mechanics\n", +"//A N Gobby\n", +"clear all;\n", +"clc\n", +"//initialisation of variables\n", +"clear\n", +"w=450//lbf/in^2\n", +"m=3000//lbf/in^2\n", +"g=32.2//lbf/in^2\n", +"h=144//in\n", +"//CALCULATIONS\n", +"M=sqrt(g*m*h/w)//ft/f\n", +"//RESULTS\n", +"printf('the maximum rim speed of flywheel=% f ft/f',M)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 6.1: original_length_of_bar.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Solutions to Problems In applied mechanics\n", +"//A N Gobby\n", +"clear all;\n", +"clc\n", +"//initialisation of variables\n", +"b=0.005//in\n", +"a=2//tonf\n", +"p=10//tonf\n", +"l=13500//tonf/in^2\n", +"//CALCULATIONS\n", +"x=(p/a)*b//in\n", +"E=(l*b*1/2)/a//in\n", +"//RESULTS\n", +"printf('the original length of bar =% f in',E)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 6.2: modulus_of_elasticity.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Solutions to Problems In applied mechanics\n", +"//A N Gobby\n", +"clear all;\n", +"\n", +"clc\n", +"//initialisation of variables\n", +"p1=12000//in\n", +"p2=0.0125//lbf/in\n", +"x=8//in\n", +"w=14300//in\n", +"r=0.122//in\n", +"//CALCULATIONS\n", +"M=(p1/p2)*(x/(%pi/4*1^2))//lbf/in^2\n", +"P=0.1*x/100//in\n", +"S=w/(%pi/4*1^2)//lbf/in^2\n", +"P1=(r*100/x)//percent\n", +"//RESULTS\n", +"printf('the modulus of elasticity=% f lbf/in^2',M)\n", +"printf('non-proportional elongation=% f lbf/in^2',S)\n", +"printf('the percentage elongation=% f percent',P1)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 6.3: shear_stress_in_fork.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Solutions to Problems In applied mechanics\n", +"//A N Gobby\n", +"clear all;\n", +"clc\n", +"//initialisation of variables\n", +"w=0.5//tonf/in^2\n", +"w1=7//tonf/in^2\n", +"w2=10//tonf/in^2\n", +"t=12.4//tonf/in^2\n", +"d1=1.5//in\n", +"d2=1.24//in\n", +"x=0.495//in\n", +"d3=3.02//in\n", +"//CALCULATIONS\n", +"Y=sqrt((d3/2)^2-(d2/2)^2)//in\n", +"S=(1/2*t/(2*Y*w))//tonf/in^2\n", +"//RESULTS\n", +"printf('the shear stress in fork end=% f tonf/in^2',S)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 6.4: resilience_and_modulus_of_elasticity.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Solutions to Problems In applied mechanics\n", +"//A N Gobby\n", +"clear all;\n", +"\n", +"clc\n", +"//initialisation of variables\n", +"g=2//in\n", +"t=0.002//in\n", +"l=7500//lbf\n", +"w=11000//lbf\n", +"p=1/4//in\n", +"//CALCULATIONS\n", +"W=1/2*l*t//in lbf\n", +"P=t*(w/l)//in\n", +"S=w/p//lbf/in^2\n", +"E=S*g/P//lbf/in^2\n", +"R=(1/2)*w*P//in lbf\n", +"//RESULTS\n", +"printf('The elongation at the elastic limit=% f in',P)\n", +"printf('The stress at the elastic limit=% f lbf/in^2',S)\n", +"printf('The modulus of elasticity E of the material is=% f lbf/in^2',E)\n", +"printf('The resilience and modulus of elasticity=% f in lbf',R)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 6.5: strai.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Solutions to Problems In applied mechanics\n", +"//A N Gobby\n", +"clear all;\n", +"\n", +"clc\n", +"//initialisation of variables\n", +"v=4//in\n", +"w=20//tonf\n", +"d=10//ft\n", +"m=13400//tonf/in^2\n", +"q=2//in\n", +"l=120//in\n", +"//CALCULATIONS\n", +"Fmax=q*(w)/(%pi/v*v^2)//tonf/in^2\n", +"M=F*l/m//in\n", +"P=w*M//in tonf\n", +"//RESULTS\n", +"printf('The maximum instantneous stress=% f tonf/in^2',Fmax)\n", +"printf('The maximum elongation is=% f in',M)\n", +"printf('the strain energy stored=% f in tonf',P)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 6.6: final_stress_after_oscillation.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Solutions to Problems In applied mechanics\n", +"//A N Gobby\n", +"clear all;\n", +"clc\n", +"//initialisation of variables\n", +"d=4//in\n", +"p=2//ft\n", +"d1=1/2//in\n", +"e=13200//tonf/in^2\n", +"f=9.51//tonf/in^2\n", +"k=0.0114//tonf/in^2\n", +"//CALCULATIONS\n", +"E=k*f//in tonf\n", +"F=(p/(%pi/d*d^2))//tonf/in^2\n", +"//RESULTS\n", +"printf('the final stress after oscillation has died aways will load/area=% f tonf/in^2',F)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 6.7: corresponding_stress.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Solutions to Problems In applied mechanics\n", +"//A N Gobby\n", +"clear all;\n", +"clc\n", +"//initialisation of variables\n", +"h=3//in\n", +"s=10.2//tonf/in^2\n", +"v=0.006//in\n", +"d=0.5//in\n", +"d1=0.75//in\n", +"w=20//lbf\n", +"q=v/8//tonf/in^2\n", +"x=0.029//in\n", +"//CALCULATIONS\n", +"M=s/q//tonf/in^2\n", +"E=M*(x)/(h*12)//tonf/in^2\n", +"//RESULTS\n", +"printf('the corresponding stress=% f tonf/in^2',E)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 6.8: total_energy_in_the_bar.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Solutions to Problems In applied mechanics\n", +"//A N Gobby\n", +"clear all;\n", +"clc\n", +"//initialisation of variables\n", +"e=30*10^2//lbf/in^2\n", +"b=15//in\n", +"t=50//percent\n", +"p=1.5//in\n", +"v=6//in\n", +"h=2240//lbf\n", +"I=0.0038//in\n", +"//CALCULATIONS\n", +"W=1/2*v*I//in tonf\n", +"w1=W*p//in tonf\n", +"T=sqrt((v^2*h)/(2*%pi/4*e))/((b)/(p)^2/(1)^2)*10//in\n", +"//RESULTS\n", +"printf('the total energy in the bar=% f in',T)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 6.9: the_stress_in_the_steel.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Solutions to Problems In applied mechanics\n", +"//A N Gobby\n", +"clear all;\n", +"clc\n", +"//initialisation of variables\n", +"clear\n", +"E=13400//tonf/in^2\n", +"E1=5600//tonf/in^2\n", +"h=7//tonf/in^2\n", +"h1=3.5//tonf/in^2\n", +"w=1.5//ij\n", +"l=5//tonf\n", +"A=%pi/4*1^2//in^2\n", +"A1=%pi/4*(w^2-1^2)//in^2\n", +"s=1.91//tonf\n", +"t=0.787//in\n", +"pg=1.72//tonf\n", +"//CALCULATIONS\\n", +"m=h*t//tonf\n", +"p=m/s//tonf\n", +"g=p/A1//tonf/in^2\n", +"m1=m+p//tonf\n", +"S=pg/A1//tonf/in^2\n", +"Ps=pg*s//tonf\n", +"S1=Ps/t//tonf/in^2\n", +"//RESULTS\n", +"printf('the stress in the steel=% f tonf/in^2',S1)" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Solutions_to_Problems_in_Applied_Mechanics_by_A_N_Gobby/7-Shear_force_and_bending_moment_diagrams_.ipynb b/Solutions_to_Problems_in_Applied_Mechanics_by_A_N_Gobby/7-Shear_force_and_bending_moment_diagrams_.ipynb new file mode 100644 index 0000000..ce333f6 --- /dev/null +++ b/Solutions_to_Problems_in_Applied_Mechanics_by_A_N_Gobby/7-Shear_force_and_bending_moment_diagrams_.ipynb @@ -0,0 +1,107 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 7: Shear force and bending moment diagrams " + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 7.2: Load.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Solutions to Problems In applied mechanics\n", +"//A N Gobby\n", +"clear all;\n", +"clc\n", +"//initialisation of variables\n", +"R=24.4//tonf\n", +"x=9.7//ft\n", +"M=124//tonf ft\n", +"h=5//in\n", +"q=14//in\n", +"w=20//in\n", +"h1=6//in\n", +"p=3//in\n", +"g=10//in\n", +"//CALCULATIONS\n", +"Ra=h*q/w//tonf\n", +"Mc=Ra*h1//tonf ft\n", +"Rb=p*h1/w*q //tonf ft\n", +"RB=w*g-(2*g^2/2)//tonf ft\n", +"//RESULTS\n", +"printf('the tonf load alone=% f tonf ft',RB)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 7.3: Max_bending_moment.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Solutions to Problems In applied mechanics\n", +"//A N Gobby\n", +"clear all;\n", +"\n", +"clc\n", +"//initialisation of variables\n", +"p=8//ft\n", +"h=2//tonf/ft\n", +"a=3//tons/ft\n", +"b=11//ft\n", +"w=b*h//tonf\n", +"//CALCULATIONS\n", +"S=(h*b^2/h)/p//tonf\n", +"R=w-S//tonf\n", +"x=R/h//ft\n", +"M=(R*x)-((h*(x^2))/h)//tonf ft\n", +"N=-(h*a^2/h)//tonf ft\n", +"//RESULTS\n", +"printf('the maximum bending moment occurs=% f tonf ft',N)" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Solutions_to_Problems_in_Applied_Mechanics_by_A_N_Gobby/8-Bending_of_beams_.ipynb b/Solutions_to_Problems_in_Applied_Mechanics_by_A_N_Gobby/8-Bending_of_beams_.ipynb new file mode 100644 index 0000000..010bab1 --- /dev/null +++ b/Solutions_to_Problems_in_Applied_Mechanics_by_A_N_Gobby/8-Bending_of_beams_.ipynb @@ -0,0 +1,178 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 8: Bending of beams " + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 8.1: bending_moment.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Solutions to Problems In applied mechanics\n", +"//A N Gobby\n", +"clear all;\n", +"clc\n", +"//initialisation of variables\n", +"h=12//in\n", +"q=14//in\n", +"w=12500//in\n", +"p=2.5//in\n", +"m=0.067//in\n", +"t=2240//in\n", +"n=2.5*10^-5//in\n", +"//CALCULATIONS\n", +"R=(p*h*q)/(w)//in\n", +"I=(1*m^3/h)//in\n", +"M=((w*n)/(p*h)*t)//lbf in\n", +"//RESULTS\n", +"printf('the bending moment set up=% f lbf in',M)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 8.2: Stress.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Solutions to Problems In applied mechanics\n", +"//A N Gobby\n", +"clear all;\n", +"clc\n", +"//initialisation of variables\n", +"E=14*10^6//lbf/in^2\n", +"l=5.0//tonf/in^2\n", +"y=2*(1/4)//in\n", +"yc=4*3/4//in\n", +"n=2*1/2//in\n", +"p=1*1/4//in\n", +"q=2.25//in\n", +"I=55.25//in^4\n", +"m=10.56//tonf/in^2\n", +"a=(1*(yc^3))\n", +"b=6*(y^3)/3\n", +"c=(n*p^3)/3//in^4\n", +"//CALCULATIONS\n", +"INA=(a+b-2*c)*2//in^4\n", +"Fa=(l*yc)*(yc*y)/2//tonf/in^2\n", +"M=(l*INA/q)//tonf in\n", +"//RESULTS\n", +"printf('Thesecound moment of area about its neutral axis=% f in^4',INA)\n", +"printf('The maximum compressive stress on the section=% f tonf/in^2',Fa)\n", +"printf('the bending moment is=% f tonf in',M)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 8.3: rectangular_plate.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Solutions to Problems In applied mechanics\n", +"//A N Gobby\n", +"clear all;\n", +"clc\n", +"//initialisation of variables\n", +"b=3*6^3/12//in^4\n", +"d=b+3*6*6^2//in^4\n", +"b2=%pi*2^4/64//in^4\n", +"h=b2+%pi*1^2*6^2//in^4\n", +"//CALCULATIONS\n", +"P=d-h//in^4\n", +"//RESULTS\n", +"printf('the rectangular plate with circular hole=% f in^4',P)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 8.4: Percentage_increase.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Solutions to Problems In applied mechanics\n", +"//A N Gobby\n", +"clear all;\n", +"clc\n", +"//initialisation of variables\n", +"h=12//in\n", +"w=6//in\n", +"x=375.77//in^4\n", +"y=28.28//in^4\n", +"p=7//in\n", +"q=14//in\n", +"//CALCULATIONS\n", +"Ix=x+(p*q^3/h)-(p*h^3/h)//in^4\n", +"Iy=y+2*(1*p^3/h)//in^4\n", +"Zx=x/w//in^3\n", +"Zy=Ix/p//in^3\n", +"X=(Zy-Zx)/(Zx)*100//percent\n", +"//RESULTS\n", +"printf('the percentage increase in strength with respect to neutral=% f percent',X)" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Solutions_to_Problems_in_Applied_Mechanics_by_A_N_Gobby/9-Torsion_of_shafts_.ipynb b/Solutions_to_Problems_in_Applied_Mechanics_by_A_N_Gobby/9-Torsion_of_shafts_.ipynb new file mode 100644 index 0000000..0d02fcb --- /dev/null +++ b/Solutions_to_Problems_in_Applied_Mechanics_by_A_N_Gobby/9-Torsion_of_shafts_.ipynb @@ -0,0 +1,255 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 9: Torsion of shafts " + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 9.1: shear_stress.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Solutions to Problems In applied mechanics\n", +"//A N Gobby\n", +"clear all;\n", +"clc\n", +"//initialisation of variables\n", +"q=8000//lbf/in^2\n", +"r=9.25//in\n", +"G=12*10^6//lbf/in^2\n", +"t=1*%pi/180//rad\n", +"h=180//lbf ft\n", +"//CALCULATIONS\n", +"S=((G*%pi*r)/(q*h*2))//in\n", +"//RESULTS\n", +"printf('the shaft size and maximum shear stress=% f in',S)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 9.2: shaft_diameter.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Solutions to Problems In applied mechanics\n", +"//A N Gobby\n", +"clear all;\n", +"clc\n", +"//initialisation of variables\n", +"a=600000//lbf in\n", +"b=%pi*(4)^4/32//in^2\n", +"q=4000//in^2\n", +"//CALCULATIONS\n", +"D=sqrt((a)/q)*2/b*10//in\n", +"//RESULTS\n", +"printf('The shaft diameter=% f in',D)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 9.3: maximum_shear_stress.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Solutions to Problems In applied mechanics\n", +"//A N Gobby\n", +"clear all;\n", +"clc\n", +"//initialisation of variables\n", +"h1=4//in\n", +"d=40//hp\n", +"w=30//rev/min\n", +"t=33*1/3//degree\n", +"h=33000//lbf ft\n", +"G=12*10^6//lbf/in^2\n", +"q=1.33//lbf ft\n", +"j=12//in\n", +"//CALCULATIONS\n", +"M=((h*d)/(2*%pi*w))//lbf ft\n", +"N=M*q//lbf ft\n", +"H=((N*j*h1*1/2)/(%pi*(h1)^4/32))//lbf/in^2\n", +"A=((j*N*j*180)/(%pi*(h1)^4/32*G*%pi))//degree\n", +"//RESULTS\n", +"printf('the maximum shear stress=% f lbf/in^2',H)\n", +"printf('the angle of twist=% f degree',A)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 9.4: Angle_of_twist.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Solutions to Problems In applied mechanics\n", +"//A N Gobby\n", +"clear all;\n", +"clc\n", +"//initialisation of variables\n", +"h=6//in\n", +"h1=4//in\n", +"d=5000//kilowatt\n", +"g=2500//rev/min\n", +"f=8//in\n", +"l=20//in\n", +"G=12*10^6//lbf/in^2\n", +"p=746//watts\n", +"w=1000//in\n", +"q=33000//in\n", +"j=102.2//in^4\n", +"t=12//in\n", +"k=180//in\n", +"//CALCULATIONS\n", +"S=(d*w/p)//hp\n", +"T=((q*S)/(2*%pi*g))//lbf ft\n", +"Q=(t*T/j)*3//lbf/in^2\n", +"F=f*Q//lbf/in^2\n", +"A=((t*T*l*h*k)/(G*j*%pi))//degree\n", +"//RESULTS\n", +"printf('the angle of twist=% f degree',A)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 9.5: Bolt_diameter.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Solutions to Problems In applied mechanics\n", +"//A N Gobby\n", +"clear all;\n", +"clc\n", +"//initialisation of variables\n", +"d=7.5//in\n", +"m1=8000//lbf/in^2\n", +"m2=2000//lbf/in^2\n", +"h1=3//in\n", +"d1=2//in\n", +"d4=57//lbf in\n", +"W=2.74//lbf in\n", +"//CALCULATIONS\n", +"P=%pi*d1^4/32//in^4\n", +"M=(m1/1)*P//lbf in\n", +"T=M/(8*(d/d1))//lbf\n", +"A=T/m2//in^2\n", +"B=sqrt((4*A)/%pi)//in\n", +"//RESULTS\n", +"printf('the bolt diameter =% f in',B)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 9.6: Angular_rotation.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Solutions to Problems In applied mechanics\n", +"//A N Gobby\n", +"clear all;\n", +"\n", +"clc\n", +"//initialisation of variables\n", +"d=30//in\n", +"w=50//lbf ft\n", +"d1=10//in\n", +"G=12*10^6//lbf/in^2\n", +"T1=50//lbf ft\n", +"T2=16.7//lbf ft\n", +"J=4810//lbf ft\n", +"TA=w/3//lbf ft\n", +"Tab=w-TA//lbf ft\n", +"//CALCULATIONS\n", +"Ta=Tab-TA//lbf ft\n", +"Qmax=T3*G*(3/8)/(%pi/32)*(3/4)^4//lbf/in^2\n", +"M=(T3*12*d1)/(%pi/4*(3/4)^4*G)*(180/%pi)//degree\n", +"//RESULTS\n", +"printf('The couples required to hold the ends=% f lbf ft',Ta)\n", +"printf('The magnitude of the greatest shear stress set up in the shaft=% f lbf/in^2',Qmax)\n", +"printf('the angular rotation in degree of the section=% f degree',M)" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} |