summaryrefslogtreecommitdiff
path: root/Solid_State_Pulse_Circuits_by_D_A_Bell/3-Diode_switching.ipynb
diff options
context:
space:
mode:
Diffstat (limited to 'Solid_State_Pulse_Circuits_by_D_A_Bell/3-Diode_switching.ipynb')
-rw-r--r--Solid_State_Pulse_Circuits_by_D_A_Bell/3-Diode_switching.ipynb330
1 files changed, 330 insertions, 0 deletions
diff --git a/Solid_State_Pulse_Circuits_by_D_A_Bell/3-Diode_switching.ipynb b/Solid_State_Pulse_Circuits_by_D_A_Bell/3-Diode_switching.ipynb
new file mode 100644
index 0000000..af93853
--- /dev/null
+++ b/Solid_State_Pulse_Circuits_by_D_A_Bell/3-Diode_switching.ipynb
@@ -0,0 +1,330 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 3: Diode switching"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.10: Calculate_Capacitance_C1and_C2.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Caption:Calculate Capacitance C1and C2,Diode reverse recovery time and input voltage\n",
+"//Ex3.10\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"V=12//Output voltage(in volts)\n",
+"Vd=0.7//Diode forward voltage(in volts)\n",
+"R=1.2//Load resistance(in Kilo ohm)\n",
+"f=1//Frequency(in KHz)\n",
+"r=10//Ripple in output voltage(in %)\n",
+"Il=V/R\n",
+"t=1000/(2*f)\n",
+"C2=(Il*t)*10^(-3)/((r/(2*100))*V)\n",
+"C1=(2*Il*t)*10^(-3)/((r/(2*100))*V)\n",
+"trr=t/10\n",
+"Vpp=V+((r/100)*V)+(2*Vd)\n",
+"Vp=Vpp/2\n",
+"disp(C1,C2,trr,Vp,'Input voltage(in volts),Diode reverse recovery time(in micro sec),C2 and C1(in micro farad)=')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.1: Forward_Current.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Caption:Calculate (a)Resistance (b)Forward Current (c)Power dissipation (d)Peak Reverse Voltage\n",
+"//Ex:3.1\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"e=50//Input voltage(in volts)\n",
+"i=20//Output Current(in mA)\n",
+"v=0.5//Output voltage(in volts)\n",
+"is=5//Reverse Leakage Current(in micro ampere)\n",
+"vf=0.7//Forward voltage of diode(in volts)\n",
+"R=v*1000/is\n",
+"disp(R,'(a)Resistance(in Kilo ohm)=')\n",
+"I=(e-vf)/R\n",
+"P=(e^2)/R\n",
+"if=i+I\n",
+"disp(if,'(b)Forward Current(in mA)=')\n",
+"p=vf*if\n",
+"disp(p,'(c)Power Dissipation(in mW)=')\n",
+"ep=-e\n",
+"disp(ep,'(d)Peak Reverse Voltage(in volts)=')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.3: Calculate_resistance_and_amplitude_of_output_signal_Ex3_3.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Caption:Calculate resistance and amplitude of output signal\n",
+"//Ex3.3\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"E=2//Input voltage(in volts)\n",
+"v=0.5//Input noise voltage(in volts)\n",
+"Vf=0.7//Forward diode voltage(in volts)\n",
+"if=1//Forward current of diode(in mA)\n",
+"V=E-Vf\n",
+"R=V/if\n",
+"disp(V,R,'Resistance(in kilo ohm) and Output signal amplitude(in volts)=')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.4: Calculate_Resistance_and_diode_forward_current.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Caption:Calculate Resistance and diode forward current\n",
+"//Ex3.4\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"E=10//Input voltage(in volts)\n",
+"v=9//Output voltage(in volts)\n",
+"i=1//Output current(in mA)\n",
+"vf=0.7//Diode forward voltage(in volts)\n",
+"R=E-v/i\n",
+"if=E-vf/R\n",
+"disp(if,R,'Resistance(in kilo ohm) and Diode forward current(in mA)=')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.5: Calculate_Resistance.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Caption:Calculate Resistance\n",
+"//Ex3.5\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"V=2.7//Output voltage(in volts)\n",
+"E=8//Input voltage(in volts)\n",
+"i=1//Output current(in mA)\n",
+"vf=0.7//Diode forward voltage(in volts)\n",
+"if=1//Diode forward current(in mA)\n",
+"vb=V-vf\n",
+"R=(E-vb-vf)/(i+if)\n",
+"disp(R,'Resistance(in kilo ohm)=')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.6: Find_Zener_voltage_and_Resistance.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Caption:Find Zener voltage and Resistance\n",
+"//Ex3.6\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"E=25//Input voltage(in volts)\n",
+"V=11//Output voltage(in volts)\n",
+"Vf=0.7//Forward diode voltage(in volts)\n",
+"i=1//Output current(in mA)\n",
+"v=9.1//Voltage for 1N757 diode\n",
+"I=20//Current across 1N757 diode(in mA)\n",
+"Vz=V-Vf\n",
+"Vr=E-(Vf+v)\n",
+"Iz=0.25*I\n",
+"Ir=Iz+i\n",
+"R=Vr/Ir\n",
+"disp(R,Vz,'Zener voltage(in volts) and Resistance(in Kilo ohm)=')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.7: Calculate_Capacitance_and_Resistance.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Caption:Calculate Capacitance and Resistance\n",
+"//Ex3.7\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"E=10//Input voltage(in volts)\n",
+"f=1//Frequency(in Khz)\n",
+"Rs=500//Source resistance(in ohms)\n",
+"t=0.01//Tilt\n",
+"T=1/(f)\n",
+"pw=T*1000/2\n",
+"C=pw/Rs\n",
+"R=pw/(t*C*1000)\n",
+"disp(R,C,'Capacitance(in micro farad) and Resistance(in Kilo ohm)=')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.8: Find_Capacitance_and_Resistance_required_to_design_the_circuit.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Caption:Find Capacitance and Resistance required to design the circuit\n",
+"//Ex3.8\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"E=20//Input waveform amplitude(in volts)\n",
+"f=2//Frequency(in Khz)\n",
+"t=0.02//Tilt\n",
+"R=600//Resistance(in ohm)\n",
+"T=1/f\n",
+"pw=T*1000/2\n",
+"C=pw/R\n",
+"R=pw/(t*C)\n",
+"disp(R,C,'Capacitance(in micro farad) and Resistance(in ohm)=')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.9: Calculate_Capacitance.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Caption:Calculate Capacitance,Resistance and Zener Voltage\n",
+"//Ex3.9\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"E=15//Amplitude of input waveform(in volts)\n",
+"Rs=1//Source Resistance(in Kilo ohm)\n",
+"V=9//Output Voltage(in volts)\n",
+"Vf=0.7//Diode forward voltage(in volts)\n",
+"f=500//Frequency(in hertz)\n",
+"t=0.01//Tilt\n",
+"T=1000/f\n",
+"pw=T/2\n",
+"C=pw/Rs\n",
+"R=pw/(t*C)\n",
+"Vz=V-Vf\n",
+"disp(Vz,R,C,'Capacitance(in micro farad),Resistance(in Kilo ohm) and Zener Voltage(in volts)=')"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}