diff options
Diffstat (limited to 'Solid_State_Pulse_Circuits_by_D_A_Bell/3-Diode_switching.ipynb')
-rw-r--r-- | Solid_State_Pulse_Circuits_by_D_A_Bell/3-Diode_switching.ipynb | 330 |
1 files changed, 330 insertions, 0 deletions
diff --git a/Solid_State_Pulse_Circuits_by_D_A_Bell/3-Diode_switching.ipynb b/Solid_State_Pulse_Circuits_by_D_A_Bell/3-Diode_switching.ipynb new file mode 100644 index 0000000..af93853 --- /dev/null +++ b/Solid_State_Pulse_Circuits_by_D_A_Bell/3-Diode_switching.ipynb @@ -0,0 +1,330 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 3: Diode switching" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.10: Calculate_Capacitance_C1and_C2.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Caption:Calculate Capacitance C1and C2,Diode reverse recovery time and input voltage\n", +"//Ex3.10\n", +"clc;\n", +"clear;\n", +"close;\n", +"V=12//Output voltage(in volts)\n", +"Vd=0.7//Diode forward voltage(in volts)\n", +"R=1.2//Load resistance(in Kilo ohm)\n", +"f=1//Frequency(in KHz)\n", +"r=10//Ripple in output voltage(in %)\n", +"Il=V/R\n", +"t=1000/(2*f)\n", +"C2=(Il*t)*10^(-3)/((r/(2*100))*V)\n", +"C1=(2*Il*t)*10^(-3)/((r/(2*100))*V)\n", +"trr=t/10\n", +"Vpp=V+((r/100)*V)+(2*Vd)\n", +"Vp=Vpp/2\n", +"disp(C1,C2,trr,Vp,'Input voltage(in volts),Diode reverse recovery time(in micro sec),C2 and C1(in micro farad)=')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.1: Forward_Current.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Caption:Calculate (a)Resistance (b)Forward Current (c)Power dissipation (d)Peak Reverse Voltage\n", +"//Ex:3.1\n", +"clc;\n", +"clear;\n", +"close;\n", +"e=50//Input voltage(in volts)\n", +"i=20//Output Current(in mA)\n", +"v=0.5//Output voltage(in volts)\n", +"is=5//Reverse Leakage Current(in micro ampere)\n", +"vf=0.7//Forward voltage of diode(in volts)\n", +"R=v*1000/is\n", +"disp(R,'(a)Resistance(in Kilo ohm)=')\n", +"I=(e-vf)/R\n", +"P=(e^2)/R\n", +"if=i+I\n", +"disp(if,'(b)Forward Current(in mA)=')\n", +"p=vf*if\n", +"disp(p,'(c)Power Dissipation(in mW)=')\n", +"ep=-e\n", +"disp(ep,'(d)Peak Reverse Voltage(in volts)=')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.3: Calculate_resistance_and_amplitude_of_output_signal_Ex3_3.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Caption:Calculate resistance and amplitude of output signal\n", +"//Ex3.3\n", +"clc;\n", +"clear;\n", +"close;\n", +"E=2//Input voltage(in volts)\n", +"v=0.5//Input noise voltage(in volts)\n", +"Vf=0.7//Forward diode voltage(in volts)\n", +"if=1//Forward current of diode(in mA)\n", +"V=E-Vf\n", +"R=V/if\n", +"disp(V,R,'Resistance(in kilo ohm) and Output signal amplitude(in volts)=')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.4: Calculate_Resistance_and_diode_forward_current.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Caption:Calculate Resistance and diode forward current\n", +"//Ex3.4\n", +"clc;\n", +"clear;\n", +"close;\n", +"E=10//Input voltage(in volts)\n", +"v=9//Output voltage(in volts)\n", +"i=1//Output current(in mA)\n", +"vf=0.7//Diode forward voltage(in volts)\n", +"R=E-v/i\n", +"if=E-vf/R\n", +"disp(if,R,'Resistance(in kilo ohm) and Diode forward current(in mA)=')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.5: Calculate_Resistance.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Caption:Calculate Resistance\n", +"//Ex3.5\n", +"clc;\n", +"clear;\n", +"close;\n", +"V=2.7//Output voltage(in volts)\n", +"E=8//Input voltage(in volts)\n", +"i=1//Output current(in mA)\n", +"vf=0.7//Diode forward voltage(in volts)\n", +"if=1//Diode forward current(in mA)\n", +"vb=V-vf\n", +"R=(E-vb-vf)/(i+if)\n", +"disp(R,'Resistance(in kilo ohm)=')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.6: Find_Zener_voltage_and_Resistance.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Caption:Find Zener voltage and Resistance\n", +"//Ex3.6\n", +"clc;\n", +"clear;\n", +"close;\n", +"E=25//Input voltage(in volts)\n", +"V=11//Output voltage(in volts)\n", +"Vf=0.7//Forward diode voltage(in volts)\n", +"i=1//Output current(in mA)\n", +"v=9.1//Voltage for 1N757 diode\n", +"I=20//Current across 1N757 diode(in mA)\n", +"Vz=V-Vf\n", +"Vr=E-(Vf+v)\n", +"Iz=0.25*I\n", +"Ir=Iz+i\n", +"R=Vr/Ir\n", +"disp(R,Vz,'Zener voltage(in volts) and Resistance(in Kilo ohm)=')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.7: Calculate_Capacitance_and_Resistance.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Caption:Calculate Capacitance and Resistance\n", +"//Ex3.7\n", +"clc;\n", +"clear;\n", +"close;\n", +"E=10//Input voltage(in volts)\n", +"f=1//Frequency(in Khz)\n", +"Rs=500//Source resistance(in ohms)\n", +"t=0.01//Tilt\n", +"T=1/(f)\n", +"pw=T*1000/2\n", +"C=pw/Rs\n", +"R=pw/(t*C*1000)\n", +"disp(R,C,'Capacitance(in micro farad) and Resistance(in Kilo ohm)=')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.8: Find_Capacitance_and_Resistance_required_to_design_the_circuit.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Caption:Find Capacitance and Resistance required to design the circuit\n", +"//Ex3.8\n", +"clc;\n", +"clear;\n", +"close;\n", +"E=20//Input waveform amplitude(in volts)\n", +"f=2//Frequency(in Khz)\n", +"t=0.02//Tilt\n", +"R=600//Resistance(in ohm)\n", +"T=1/f\n", +"pw=T*1000/2\n", +"C=pw/R\n", +"R=pw/(t*C)\n", +"disp(R,C,'Capacitance(in micro farad) and Resistance(in ohm)=')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.9: Calculate_Capacitance.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Caption:Calculate Capacitance,Resistance and Zener Voltage\n", +"//Ex3.9\n", +"clc;\n", +"clear;\n", +"close;\n", +"E=15//Amplitude of input waveform(in volts)\n", +"Rs=1//Source Resistance(in Kilo ohm)\n", +"V=9//Output Voltage(in volts)\n", +"Vf=0.7//Diode forward voltage(in volts)\n", +"f=500//Frequency(in hertz)\n", +"t=0.01//Tilt\n", +"T=1000/f\n", +"pw=T/2\n", +"C=pw/Rs\n", +"R=pw/(t*C)\n", +"Vz=V-Vf\n", +"disp(Vz,R,C,'Capacitance(in micro farad),Resistance(in Kilo ohm) and Zener Voltage(in volts)=')" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} |