summaryrefslogtreecommitdiff
path: root/Solid_State_Physics_by_P_K_Palanisamy/8-Magnetic_Properties.ipynb
diff options
context:
space:
mode:
Diffstat (limited to 'Solid_State_Physics_by_P_K_Palanisamy/8-Magnetic_Properties.ipynb')
-rw-r--r--Solid_State_Physics_by_P_K_Palanisamy/8-Magnetic_Properties.ipynb257
1 files changed, 257 insertions, 0 deletions
diff --git a/Solid_State_Physics_by_P_K_Palanisamy/8-Magnetic_Properties.ipynb b/Solid_State_Physics_by_P_K_Palanisamy/8-Magnetic_Properties.ipynb
new file mode 100644
index 0000000..4543ef1
--- /dev/null
+++ b/Solid_State_Physics_by_P_K_Palanisamy/8-Magnetic_Properties.ipynb
@@ -0,0 +1,257 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 8: Magnetic Properties"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.1: Relative_permeability.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex8.1: Page-8.33 (2004)\n",
+"clc;clear;\n",
+"M = 3300; // Magnetization of ferromagnetic material, amp/metre\n",
+"H = 220; // Magnetic field strength, amp/metre\n",
+"mu_r = M/H+1; // Relative permeability, unitless\n",
+"printf('\nRelative permeability = %d', mu_r);\n",
+"\n",
+"// Result\n",
+"// Relative permeability = 16 "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.2: Magnetization_and_flux_density_of_ferromagnetic_material.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex8.2: Page-8.33 (2004)\n",
+"clc;clear;\n",
+"H = 10^6; // Magnetic field strength, amp/metre\n",
+"ki = 1.5e-3; // Magnetic susceptibility, units\n",
+"M = ki*H; // Magnetization of ferromagnetic material, amp/metre\n",
+"muo = 4*%pi*1e-7; // Magnetic permeability, henry/metre\n",
+"B = muo*(M+H); // Flux density,tesla\n",
+"printf('\nMagnetization of ferromagnetic material, = %3.1e amp/metre', M);\n",
+"printf('\nFlux density of ferromagnetic material, = %5.3f tesla', B);\n",
+"\n",
+"// Result\n",
+"\n",
+"// Magnetization of ferromagnetic material, = 1.5e+03 amp/metre\n",
+"// Flux density of ferromagnetic material, = 1.259 tesla "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.3: Magnetization_and_flux_density.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex8.3 : Page-8.34 (2004)\n",
+"clc;clear;\n",
+"H = 10^4; // Magnetic field strength, amp/metre\n",
+"ki = 3.7e-3; // Magnetic susceptibility, units \n",
+"M = ki*H; // Magnetization of ferromagnetic material, amp/metre\n",
+"muo = 4*%pi*1e-7; // Magnetic perbeability, henry/metre\n",
+"B = muo*(M+H); // Flux density, weber/square meter\n",
+"printf('\nMagnetization of ferromagnetic material, = %d amp/metre', M);\n",
+"printf('\nFlux density of ferromagnetic material, = %3.4f weber/squaremetre ', B);\n",
+"\n",
+"// Result\n",
+"\n",
+"// Magnetization of ferromagnetic material, = 37 amp/metre\n",
+"// Flux density of ferromagnetic material, = 0.0126 weber/squaremetre"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.4: Magnetic_moment.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex8.4: Page-8.34 (2004)\n",
+"clc;clear;\n",
+"d = 8906; // Density of nickel, kg metrecube\n",
+"An = 6.025e+26; // Avogadro number, per kmol\n",
+"W = 58.7; // Atomic weight, kg\n",
+"N = d*An/W; // Number of nickel atom, per cubemetre\n",
+"Bs = 0.65; // Saturation magnetic, weber per squaremetre\n",
+"muo = (4*%pi*1e-7); // Magnetic perbeability, henry/metre\n",
+"mum = Bs/(N*muo); // Magnetic moment, ampere per sqauremetre\n",
+"X = mum/(9.27e-24); // magnetic moment, bohr magneton\n",
+"\n",
+"printf('\nNumber of nickel atom per cubemetre = %3.3e /cubemetre', N);\n",
+"printf('\nMagnetic moment = %1.2e bohr magneton', X);\n",
+"\n",
+"// Result\n",
+"\n",
+"// Number of nickel atom per cubemetre = 9.141e+28 /cubemetre\n",
+"// Magnetic moment = 6.10e-01 bohr magneton "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.5: Calculation_of_temperature_using_classical_statistics.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex8.5: Page-8.35 (2004)\n",
+"clc;clear;\n",
+"mu = 9.4e-24; // Magnetic moment, ampere metre square\n",
+"H = 2; // Magnetic field , weber per squaremetre \n",
+"k = 1.38e-23; // Boltzmann Constant, joule per kelvin\n",
+"T = (2*mu*H)/(log(2)*k); //Temperature using classical statistics, K\n",
+"\n",
+"printf('\nTemperature using classical statistics = %3.1f K', T);\n",
+"\n",
+"// Result\n",
+"// Temperature using classical statistics = 3.9 K "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.6: Saturation_magnetization.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex8.6: Page-8.36 (2004)\n",
+"clc;clear;\n",
+"A = 6.025e+26; // Avogadro number, per k mol\n",
+"W = 157.26; // Atomic weight, kg\n",
+"d = 7.8e+3; // Density of nickel,kg metrecube\n",
+"N = d*A/(W*1000); // No of atoms, per gm metrecube\n",
+"muo = 4*%pi*1e-7; // Magnetic perbeability, henry per m\n",
+"mum = N*7.1*(9.27e-24); // Magnetic moment, ampere metersquare\n",
+"Bs = mum*muo; // Saturation magnetization, weber/squaremetre\n",
+"printf('\nMagnetic moment = %6.4e ampere meter square', mum);\n",
+"printf('\nSaturation magnetization = %6.4e weber/squaremetre', Bs);\n",
+"\n",
+"// Result\n",
+"// Magnetic moment = 1.9669e+03 ampere meter square\n",
+"// Saturation magnetization = 2.4716e-03 weber/squaremetre \n",
+""
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.7: Magnetic_moment_of_nickel_in_Bohr_Magneton.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab Code Ex8.7: Page-8.36 (2004)\n",
+"clc;clear;\n",
+"d = 8906; // Density of nickel, kg per metrecube\n",
+"An = 6.025e+26; // Avogadro number, per k mol\n",
+"W = 58.7; // Atomic weight, kg\n",
+"N = d*An/W; // Number density of nickel atom, per cubemetre\n",
+"Bs = 0.65; // Saturation magnetization, wb per squaremetre\n",
+"muo = (4*%pi*1e-7); // magnetic perbeability, henry/metre\n",
+"mum = Bs/(N*muo); // magnetic moment, ampere per squaremetre\n",
+"X = mum/(9.27e-24); // magnetic moment, bohr magneton\n",
+"\n",
+"printf('\nNumber density of nickel atom = %3.3e /cubemetre', N);\n",
+"printf('\nMagnetic moment = %1.2f bohr magneton', X);\n",
+"\n",
+"// Result\n",
+"\n",
+"// Number density of nickel atom per cubemetre = 9.141e+28 /cubemetre\n",
+"// Magnetic moment = 6.10e-01 bohr magneton "
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}