diff options
Diffstat (limited to 'Semiconductor_Circuit_Approximations_by_Malvino/2-Rectifier_Diodes.ipynb')
-rw-r--r-- | Semiconductor_Circuit_Approximations_by_Malvino/2-Rectifier_Diodes.ipynb | 248 |
1 files changed, 248 insertions, 0 deletions
diff --git a/Semiconductor_Circuit_Approximations_by_Malvino/2-Rectifier_Diodes.ipynb b/Semiconductor_Circuit_Approximations_by_Malvino/2-Rectifier_Diodes.ipynb new file mode 100644 index 0000000..b106524 --- /dev/null +++ b/Semiconductor_Circuit_Approximations_by_Malvino/2-Rectifier_Diodes.ipynb @@ -0,0 +1,248 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 2: Rectifier Diodes" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.1: Output_voltage.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Example 2.1\n", +"clc;\n", +"clear;\n", +"close;\n", +"format('v',6)\n", +"// given data\n", +"Vin= 15;// in V\n", +"R_L= 10;// in kΩ\n", +"// The output voltage\n", +"Vout= Vin ;// in V\n", +"// The current\n", +"I= Vout/R_L;// in mA\n", +"disp(Vout,'The output voltage in volts is : ');\n", +"disp(I,'The current in mA is : ');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.2: Output_voltage.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Example 2.2\n", +"clc;\n", +"clear;\n", +"close;\n", +"format('v',6)\n", +"// given data\n", +"Vin= 15;// in V\n", +"I=0;\n", +"R_L= 10;// in kΩ\n", +"R_L= R_L*10^3;// in Ω\n", +"// The output voltage \n", +"Vout= I*R_L;// in V\n", +"// The voltage across the diode \n", +"V_R= Vin-Vout;// in V\n", +"disp(Vout,'The output voltage in volts is : ');\n", +"disp(V_R,'The voltage across the diode in volts is : ');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.4: Maximum_reverse_voltage.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Example 2.4\n", +"format('v',6)\n", +"clc;\n", +"clear;\n", +"close;\n", +"// given data\n", +"Vin= 15;// in V\n", +"V_P= Vin;// in V\n", +"R_L= 10;// in kΩ\n", +"R_L= R_L*10^3;// in Ω\n", +"Vout=0;\n", +"// The peak current through the diode \n", +"I_P= V_P/R_L;// in A\n", +"// The maximum reverse voltage \n", +"V_R= Vin-Vout;// in V\n", +"I_P= I_P*10^3;// in mA\n", +"disp(I_P,'The peak current through the diode in mA is : ');\n", +"disp(V_R,'The maximum reverse voltage in volts is : ')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.5: Power_dissipation_of_the_diode.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Example 2.5\n", +"format('v',6)\n", +"clc;\n", +"clear;\n", +"close;\n", +"// given data\n", +"Vin= 15;// in V\n", +"V_K= 0.7;// in V\n", +"R_L= 10;// in kΩ\n", +"R_L= R_L*10^3;// in Ω\n", +"// The output voltage \n", +"Vout= Vin-V_K;// in V\n", +"// The current \n", +"I= Vout/R_L;// in A\n", +"// The power dissipation of the diode \n", +"P= V_K*I;// in W\n", +"I=I*10^3;// in mA\n", +"P= round(P*10^3);// in mW\n", +"disp(Vout,'The output voltage in volts is : ');\n", +"disp(I,'The current in mA is : ');\n", +"disp(P,'The power dissipation of the diode in mW is : ')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.6: Peak_forward_current_and_PIV.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Example 2.6\n", +"format('v',6)\n", +"clc;\n", +"clear;\n", +"close;\n", +"// given data\n", +"Vin= 15;// in V\n", +"V_K= 0.7;// in V\n", +"Vout=0;// in V\n", +"R_L= 10;// in kΩ\n", +"R_L= R_L*10^3;// in Ω\n", +"// The peak output voltage \n", +"V_P= Vin-V_K;// in V\n", +"// The maximum forward current \n", +"I_P= V_P/R_L;// in A\n", +"// The peak inverse voltage \n", +"PIV= Vin-Vout;// in V\n", +"I_P= I_P*10^3;// in mA\n", +"disp(V_P,'The peak output voltage in volts is : ');\n", +"disp(I_P,'The maximum forward current in mA is : ');\n", +"disp(PIV,'The peak inverse voltage in volts is : ')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.7: Peak_load_voltage_and_peak_inverse_voltage.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Example 2.7\n", +"clc;\n", +"clear;\n", +"close;\n", +"format('v',5)\n", +"// given data\n", +"Vin= 10;// in V\n", +"V_K= 0.7;// in V\n", +"Vout=0;// in V\n", +"R_L= 1000;// in kΩ\n", +"r_B= 20;// in Ω\n", +"// The peak forward current,\n", +"I_P= (Vin-V_K)/(R_L+r_B);// in A\n", +"// The peak voltage \n", +"V_P= I_P*R_L;// in V\n", +"// The peak inverse voltage \n", +"PIV= Vin-Vout;// in V\n", +"disp(V_P,'The peak voltage in volts is : ');\n", +"disp(PIV,'The peak inverse voltage in volts is : ')" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} |