summaryrefslogtreecommitdiff
path: root/Semiconductor_Circuit_Approximations_by_Malvino/2-Rectifier_Diodes.ipynb
diff options
context:
space:
mode:
Diffstat (limited to 'Semiconductor_Circuit_Approximations_by_Malvino/2-Rectifier_Diodes.ipynb')
-rw-r--r--Semiconductor_Circuit_Approximations_by_Malvino/2-Rectifier_Diodes.ipynb248
1 files changed, 248 insertions, 0 deletions
diff --git a/Semiconductor_Circuit_Approximations_by_Malvino/2-Rectifier_Diodes.ipynb b/Semiconductor_Circuit_Approximations_by_Malvino/2-Rectifier_Diodes.ipynb
new file mode 100644
index 0000000..b106524
--- /dev/null
+++ b/Semiconductor_Circuit_Approximations_by_Malvino/2-Rectifier_Diodes.ipynb
@@ -0,0 +1,248 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 2: Rectifier Diodes"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.1: Output_voltage.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Example 2.1\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"format('v',6)\n",
+"// given data\n",
+"Vin= 15;// in V\n",
+"R_L= 10;// in kΩ\n",
+"// The output voltage\n",
+"Vout= Vin ;// in V\n",
+"// The current\n",
+"I= Vout/R_L;// in mA\n",
+"disp(Vout,'The output voltage in volts is : ');\n",
+"disp(I,'The current in mA is : ');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.2: Output_voltage.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Example 2.2\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"format('v',6)\n",
+"// given data\n",
+"Vin= 15;// in V\n",
+"I=0;\n",
+"R_L= 10;// in kΩ\n",
+"R_L= R_L*10^3;// in Ω\n",
+"// The output voltage \n",
+"Vout= I*R_L;// in V\n",
+"// The voltage across the diode \n",
+"V_R= Vin-Vout;// in V\n",
+"disp(Vout,'The output voltage in volts is : ');\n",
+"disp(V_R,'The voltage across the diode in volts is : ');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.4: Maximum_reverse_voltage.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Example 2.4\n",
+"format('v',6)\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"// given data\n",
+"Vin= 15;// in V\n",
+"V_P= Vin;// in V\n",
+"R_L= 10;// in kΩ\n",
+"R_L= R_L*10^3;// in Ω\n",
+"Vout=0;\n",
+"// The peak current through the diode \n",
+"I_P= V_P/R_L;// in A\n",
+"// The maximum reverse voltage \n",
+"V_R= Vin-Vout;// in V\n",
+"I_P= I_P*10^3;// in mA\n",
+"disp(I_P,'The peak current through the diode in mA is : ');\n",
+"disp(V_R,'The maximum reverse voltage in volts is : ')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.5: Power_dissipation_of_the_diode.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Example 2.5\n",
+"format('v',6)\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"// given data\n",
+"Vin= 15;// in V\n",
+"V_K= 0.7;// in V\n",
+"R_L= 10;// in kΩ\n",
+"R_L= R_L*10^3;// in Ω\n",
+"// The output voltage \n",
+"Vout= Vin-V_K;// in V\n",
+"// The current \n",
+"I= Vout/R_L;// in A\n",
+"// The power dissipation of the diode \n",
+"P= V_K*I;// in W\n",
+"I=I*10^3;// in mA\n",
+"P= round(P*10^3);// in mW\n",
+"disp(Vout,'The output voltage in volts is : ');\n",
+"disp(I,'The current in mA is : ');\n",
+"disp(P,'The power dissipation of the diode in mW is : ')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.6: Peak_forward_current_and_PIV.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Example 2.6\n",
+"format('v',6)\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"// given data\n",
+"Vin= 15;// in V\n",
+"V_K= 0.7;// in V\n",
+"Vout=0;// in V\n",
+"R_L= 10;// in kΩ\n",
+"R_L= R_L*10^3;// in Ω\n",
+"// The peak output voltage \n",
+"V_P= Vin-V_K;// in V\n",
+"// The maximum forward current \n",
+"I_P= V_P/R_L;// in A\n",
+"// The peak inverse voltage \n",
+"PIV= Vin-Vout;// in V\n",
+"I_P= I_P*10^3;// in mA\n",
+"disp(V_P,'The peak output voltage in volts is : ');\n",
+"disp(I_P,'The maximum forward current in mA is : ');\n",
+"disp(PIV,'The peak inverse voltage in volts is : ')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.7: Peak_load_voltage_and_peak_inverse_voltage.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Example 2.7\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"format('v',5)\n",
+"// given data\n",
+"Vin= 10;// in V\n",
+"V_K= 0.7;// in V\n",
+"Vout=0;// in V\n",
+"R_L= 1000;// in kΩ\n",
+"r_B= 20;// in Ω\n",
+"// The peak forward current,\n",
+"I_P= (Vin-V_K)/(R_L+r_B);// in A\n",
+"// The peak voltage \n",
+"V_P= I_P*R_L;// in V\n",
+"// The peak inverse voltage \n",
+"PIV= Vin-Vout;// in V\n",
+"disp(V_P,'The peak voltage in volts is : ');\n",
+"disp(PIV,'The peak inverse voltage in volts is : ')"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}