summaryrefslogtreecommitdiff
path: root/Semiconductor_Circuit_Approximations_by_Malvino/10-Other_Power_Amplifiers.ipynb
diff options
context:
space:
mode:
Diffstat (limited to 'Semiconductor_Circuit_Approximations_by_Malvino/10-Other_Power_Amplifiers.ipynb')
-rw-r--r--Semiconductor_Circuit_Approximations_by_Malvino/10-Other_Power_Amplifiers.ipynb358
1 files changed, 358 insertions, 0 deletions
diff --git a/Semiconductor_Circuit_Approximations_by_Malvino/10-Other_Power_Amplifiers.ipynb b/Semiconductor_Circuit_Approximations_by_Malvino/10-Other_Power_Amplifiers.ipynb
new file mode 100644
index 0000000..72122fe
--- /dev/null
+++ b/Semiconductor_Circuit_Approximations_by_Malvino/10-Other_Power_Amplifiers.ipynb
@@ -0,0 +1,358 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 10: Other Power Amplifiers"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 10.1: PDQ_PDmax_and_PLmax.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Example 10.1\n",
+"format('v',6)\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"// given data\n",
+"V_CEQ= 7.5;// in V\n",
+"R_L= 50;// in Ω\n",
+"I_Csat= V_CEQ/R_L;// in A\n",
+"I_CQ= 0.01*I_Csat;// in A\n",
+"P_DQ= V_CEQ*I_CQ;// in W\n",
+"PP= 2*V_CEQ;// in V\n",
+"P_Dmax= PP^2/(40*R_L);// in W\n",
+"P_Lmax= PP^2/(8*R_L);// in W\n",
+"// The value of P_DQ \n",
+"P_DQ= P_DQ*10^3;// in mW\n",
+"// The value of P_Dmax \n",
+"P_Dmax= P_Dmax*10^3;// in mW\n",
+"// The value of P_Lmax \n",
+"P_Lmax= P_Lmax*10^3;// in mW\n",
+"disp(P_DQ,'The value of P_DQ in mW is : ')\n",
+"disp(P_Dmax,'The value of P_Dmax in mW is : ')\n",
+"disp(P_Lmax,'The value of P_Lmax in mW is : ')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 10.2: Efficiency_of_the_amplifier_with_a_maximum_output_signal.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Example 10.2\n",
+"format('v',6)\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"// given data\n",
+"V_CC= 15;// in V\n",
+"I_Csat= 150;// in mA\n",
+"P_Lmax= 563;// in mW\n",
+"I= 0.02*I_Csat;// in mA\n",
+"Idc= 0.318*I_Csat;// in mA\n",
+"I_CC= I+Idc;// in mA\n",
+"P_CC= V_CC*I_CC;// in mW\n",
+"// The efficiency of amplifier \n",
+"Eta= P_Lmax/P_CC*100;// in %\n",
+"disp(Eta,'The efficiency of amplifier in % is : ');\n",
+"\n",
+"// Note: The answer in the book is not accurate\n",
+"\n",
+""
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 10.3: DC_and_AC_load_line.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Example 10.3\n",
+"format('v',6)\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"// given data\n",
+"V_CC= 40;// in V\n",
+"V_CEQ= 20;// in V\n",
+"R_L= 10;// in Ω\n",
+"I_Csat= V_CEQ/R_L;// in A\n",
+"V_CEcutoff= V_CEQ;// in V\n",
+"V_CE= 0:0.1:V_CEcutoff;// in V\n",
+"I_C= (V_CEQ-V_CE)/R_L;// in A\n",
+"// The plot of ac load line,\n",
+"plot(V_CE,I_C)\n",
+"xlabel('V_CE in volts')\n",
+"ylabel('I_C in A')\n",
+"title('AC load line')\n",
+"disp('AC load line shown in figure')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 10.4: PDQ_PDmax_and_PLmax.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Example 10.4\n",
+"format('v',6)\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"// given data\n",
+"V_CC= 40;// in V\n",
+"V_BE= 0.7;// in V\n",
+"R= 1*10^3;// in Ω\n",
+"R_L= 10;// in Ω\n",
+"V_CEQ= 20;// in V\n",
+"I_CQ= (V_CC-2*V_BE)/(2*R);// in A\n",
+"// The value of P_DQ\n",
+"P_DQ= V_CEQ*I_CQ;// in W\n",
+"disp(P_DQ,'The value of P_DQ in W is : ')\n",
+"PP= 2*V_CEQ;// in V\n",
+"// The value of P_Lmax\n",
+"P_Lmax= PP^2/(8*R_L);// in W\n",
+"// The value of P_Dmax\n",
+"P_Dmax= PP^2/(40*R_L);// in W\n",
+"disp(P_Lmax,'The value of P_Lmax in W is : ')\n",
+"disp(P_Dmax,'The value of P_Dmax in W is : ')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 10.5: Voltage_gain_of_the_driver_stage.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Example 10.5\n",
+"format('v',6)\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"// given data\n",
+"V_E= 1.43;// in V\n",
+"R_E= 100;// in Ω\n",
+"R_L= 100;// in Ω\n",
+"R_C= 1*10^3;// in Ω\n",
+"bita= 200;\n",
+"Vt= 25*10^-3;// in V\n",
+"I_E= V_E/R_E;// in A\n",
+"I_CQ= I_E;// in A\n",
+"Zin= bita*R_L;// in Ω\n",
+"r_desh_e= Vt/I_CQ;// in Ω\n",
+"// The voltage gain of the driver stage \n",
+"A= (R_C*Zin/(R_C+Zin))/(R_E+r_desh_e);\n",
+"disp(A,'The voltage gain of the driver stage is : ')\n",
+"// On ignoring Zin and r_desh_e,\n",
+"A= R_C/R_E;\n",
+"disp(A,'On ignoring the value of Zin and r''e, the voltage gain is : ')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 10.6: Ideal_value_of_PP_and_PLmax.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Example 10.6\n",
+"format('v',6)\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"// given data\n",
+"V_CC= 30;// in V\n",
+"PP= V_CC;// in V\n",
+"R_L= 100;// in Ω\n",
+"// The value of P_Lmax \n",
+"P_Lmax= PP^2/(8*R_L);// in W\n",
+"disp(PP,'The value of PP in volts is : ')\n",
+"disp(P_Lmax,'The value of P_Lmax in W is : ')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 10.7: Overall_voltage_gai.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Example 10.7\n",
+"format('v',6)\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"// given data\n",
+"R_C= 1*10^3;// in Ω\n",
+"r_desh_e= 2.5;//in Ω\n",
+"Zin= 1*10^3;// in Ω\n",
+"A2= 10;// unit less\n",
+"A3= 1;// unit less\n",
+"A1= (R_C*Zin/(R_C+Zin))/r_desh_e;// unit less\n",
+"// The overall voltage gain \n",
+"A= A1*A2*A3;\n",
+"disp(A,'The overall voltage gain is : ')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 10.8: Minimum_base_current_that_produces_saturation.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Example 10.8\n",
+"format('v',5)\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"// given data\n",
+"V_CC= 50;// in V\n",
+"V_CEsat= 1;// in V\n",
+"R_L= 5;// in Ω\n",
+"bita_dc= 90;// unit less\n",
+"I_Csat= (V_CC-V_CEsat)/R_L;// in A\n",
+"// The minimum base current that produces saturation \n",
+"I_Bsat= I_Csat/bita_dc;// in A\n",
+"I_Bsat= I_Bsat*10^3;// in mA\n",
+"disp(I_Bsat,'The minimum base current that produces saturation in mA is : ')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 10.9: Input_voltage_required.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Example 10.9\n",
+"format('v',5)\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"// given data\n",
+"I_Csat= 109*10^-3;// in A\n",
+"bita_dc= 200;\n",
+"R_B= 1*10^3;// in Ω\n",
+"V_BE1= 0.7;// in V\n",
+"V_BE2= 1.6;// in V\n",
+"// The base current,\n",
+"I_Bsat= I_Csat/bita_dc;// in A\n",
+"// The input voltage\n",
+"Vin= I_Bsat*R_B+V_BE1+V_BE2;// in V\n",
+"disp(Vin,'The input voltage in volts is : ')"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}