diff options
Diffstat (limited to 'Semiconductor_Circuit_Approximations_by_Malvino/10-Other_Power_Amplifiers.ipynb')
-rw-r--r-- | Semiconductor_Circuit_Approximations_by_Malvino/10-Other_Power_Amplifiers.ipynb | 358 |
1 files changed, 358 insertions, 0 deletions
diff --git a/Semiconductor_Circuit_Approximations_by_Malvino/10-Other_Power_Amplifiers.ipynb b/Semiconductor_Circuit_Approximations_by_Malvino/10-Other_Power_Amplifiers.ipynb new file mode 100644 index 0000000..72122fe --- /dev/null +++ b/Semiconductor_Circuit_Approximations_by_Malvino/10-Other_Power_Amplifiers.ipynb @@ -0,0 +1,358 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 10: Other Power Amplifiers" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 10.1: PDQ_PDmax_and_PLmax.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Example 10.1\n", +"format('v',6)\n", +"clc;\n", +"clear;\n", +"close;\n", +"// given data\n", +"V_CEQ= 7.5;// in V\n", +"R_L= 50;// in Ω\n", +"I_Csat= V_CEQ/R_L;// in A\n", +"I_CQ= 0.01*I_Csat;// in A\n", +"P_DQ= V_CEQ*I_CQ;// in W\n", +"PP= 2*V_CEQ;// in V\n", +"P_Dmax= PP^2/(40*R_L);// in W\n", +"P_Lmax= PP^2/(8*R_L);// in W\n", +"// The value of P_DQ \n", +"P_DQ= P_DQ*10^3;// in mW\n", +"// The value of P_Dmax \n", +"P_Dmax= P_Dmax*10^3;// in mW\n", +"// The value of P_Lmax \n", +"P_Lmax= P_Lmax*10^3;// in mW\n", +"disp(P_DQ,'The value of P_DQ in mW is : ')\n", +"disp(P_Dmax,'The value of P_Dmax in mW is : ')\n", +"disp(P_Lmax,'The value of P_Lmax in mW is : ')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 10.2: Efficiency_of_the_amplifier_with_a_maximum_output_signal.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Example 10.2\n", +"format('v',6)\n", +"clc;\n", +"clear;\n", +"close;\n", +"// given data\n", +"V_CC= 15;// in V\n", +"I_Csat= 150;// in mA\n", +"P_Lmax= 563;// in mW\n", +"I= 0.02*I_Csat;// in mA\n", +"Idc= 0.318*I_Csat;// in mA\n", +"I_CC= I+Idc;// in mA\n", +"P_CC= V_CC*I_CC;// in mW\n", +"// The efficiency of amplifier \n", +"Eta= P_Lmax/P_CC*100;// in %\n", +"disp(Eta,'The efficiency of amplifier in % is : ');\n", +"\n", +"// Note: The answer in the book is not accurate\n", +"\n", +"" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 10.3: DC_and_AC_load_line.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Example 10.3\n", +"format('v',6)\n", +"clc;\n", +"clear;\n", +"close;\n", +"// given data\n", +"V_CC= 40;// in V\n", +"V_CEQ= 20;// in V\n", +"R_L= 10;// in Ω\n", +"I_Csat= V_CEQ/R_L;// in A\n", +"V_CEcutoff= V_CEQ;// in V\n", +"V_CE= 0:0.1:V_CEcutoff;// in V\n", +"I_C= (V_CEQ-V_CE)/R_L;// in A\n", +"// The plot of ac load line,\n", +"plot(V_CE,I_C)\n", +"xlabel('V_CE in volts')\n", +"ylabel('I_C in A')\n", +"title('AC load line')\n", +"disp('AC load line shown in figure')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 10.4: PDQ_PDmax_and_PLmax.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Example 10.4\n", +"format('v',6)\n", +"clc;\n", +"clear;\n", +"close;\n", +"// given data\n", +"V_CC= 40;// in V\n", +"V_BE= 0.7;// in V\n", +"R= 1*10^3;// in Ω\n", +"R_L= 10;// in Ω\n", +"V_CEQ= 20;// in V\n", +"I_CQ= (V_CC-2*V_BE)/(2*R);// in A\n", +"// The value of P_DQ\n", +"P_DQ= V_CEQ*I_CQ;// in W\n", +"disp(P_DQ,'The value of P_DQ in W is : ')\n", +"PP= 2*V_CEQ;// in V\n", +"// The value of P_Lmax\n", +"P_Lmax= PP^2/(8*R_L);// in W\n", +"// The value of P_Dmax\n", +"P_Dmax= PP^2/(40*R_L);// in W\n", +"disp(P_Lmax,'The value of P_Lmax in W is : ')\n", +"disp(P_Dmax,'The value of P_Dmax in W is : ')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 10.5: Voltage_gain_of_the_driver_stage.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Example 10.5\n", +"format('v',6)\n", +"clc;\n", +"clear;\n", +"close;\n", +"// given data\n", +"V_E= 1.43;// in V\n", +"R_E= 100;// in Ω\n", +"R_L= 100;// in Ω\n", +"R_C= 1*10^3;// in Ω\n", +"bita= 200;\n", +"Vt= 25*10^-3;// in V\n", +"I_E= V_E/R_E;// in A\n", +"I_CQ= I_E;// in A\n", +"Zin= bita*R_L;// in Ω\n", +"r_desh_e= Vt/I_CQ;// in Ω\n", +"// The voltage gain of the driver stage \n", +"A= (R_C*Zin/(R_C+Zin))/(R_E+r_desh_e);\n", +"disp(A,'The voltage gain of the driver stage is : ')\n", +"// On ignoring Zin and r_desh_e,\n", +"A= R_C/R_E;\n", +"disp(A,'On ignoring the value of Zin and r''e, the voltage gain is : ')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 10.6: Ideal_value_of_PP_and_PLmax.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Example 10.6\n", +"format('v',6)\n", +"clc;\n", +"clear;\n", +"close;\n", +"// given data\n", +"V_CC= 30;// in V\n", +"PP= V_CC;// in V\n", +"R_L= 100;// in Ω\n", +"// The value of P_Lmax \n", +"P_Lmax= PP^2/(8*R_L);// in W\n", +"disp(PP,'The value of PP in volts is : ')\n", +"disp(P_Lmax,'The value of P_Lmax in W is : ')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 10.7: Overall_voltage_gai.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Example 10.7\n", +"format('v',6)\n", +"clc;\n", +"clear;\n", +"close;\n", +"// given data\n", +"R_C= 1*10^3;// in Ω\n", +"r_desh_e= 2.5;//in Ω\n", +"Zin= 1*10^3;// in Ω\n", +"A2= 10;// unit less\n", +"A3= 1;// unit less\n", +"A1= (R_C*Zin/(R_C+Zin))/r_desh_e;// unit less\n", +"// The overall voltage gain \n", +"A= A1*A2*A3;\n", +"disp(A,'The overall voltage gain is : ')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 10.8: Minimum_base_current_that_produces_saturation.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Example 10.8\n", +"format('v',5)\n", +"clc;\n", +"clear;\n", +"close;\n", +"// given data\n", +"V_CC= 50;// in V\n", +"V_CEsat= 1;// in V\n", +"R_L= 5;// in Ω\n", +"bita_dc= 90;// unit less\n", +"I_Csat= (V_CC-V_CEsat)/R_L;// in A\n", +"// The minimum base current that produces saturation \n", +"I_Bsat= I_Csat/bita_dc;// in A\n", +"I_Bsat= I_Bsat*10^3;// in mA\n", +"disp(I_Bsat,'The minimum base current that produces saturation in mA is : ')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 10.9: Input_voltage_required.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Example 10.9\n", +"format('v',5)\n", +"clc;\n", +"clear;\n", +"close;\n", +"// given data\n", +"I_Csat= 109*10^-3;// in A\n", +"bita_dc= 200;\n", +"R_B= 1*10^3;// in Ω\n", +"V_BE1= 0.7;// in V\n", +"V_BE2= 1.6;// in V\n", +"// The base current,\n", +"I_Bsat= I_Csat/bita_dc;// in A\n", +"// The input voltage\n", +"Vin= I_Bsat*R_B+V_BE1+V_BE2;// in V\n", +"disp(Vin,'The input voltage in volts is : ')" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} |