diff options
Diffstat (limited to 'Quantum_Physics_Of_Atoms_by_Molecules')
16 files changed, 2224 insertions, 0 deletions
diff --git a/Quantum_Physics_Of_Atoms_by_Molecules/1-Thermal_Radiation_and_Plancks_Postulate.ipynb b/Quantum_Physics_Of_Atoms_by_Molecules/1-Thermal_Radiation_and_Plancks_Postulate.ipynb new file mode 100644 index 0000000..a1e69df --- /dev/null +++ b/Quantum_Physics_Of_Atoms_by_Molecules/1-Thermal_Radiation_and_Plancks_Postulate.ipynb @@ -0,0 +1,91 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 1: Thermal Radiation and Plancks Postulate" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.1: Surface_temperature_calculatio.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Example 1.1, page 24\n", +"clear\n", +"//For sun\n", +"sigma=5.67*10^-8//w/m^2-k^4\n", +"T=5700//in K\n", +"ST_sun=sigma*T^4\n", +"printf('\n Surface temperature of sun is %e W/m^2.',ST_sun)\n", +"//For north star\n", +"T=8300//in K\n", +"ST_Northstar=sigma*T^4\n", +"printf('\n Surface temperature of sun is %e W/m^2.',ST_Northstar)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.6: Continious_or_dis_continious_energy.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Example 1.6, apge 39\n", +"clc\n", +"g=9.8//in m/s^2, constant\n", +"l=.1//in m\n", +"m=0.01//in kg\n", +"h=6.63*10^-34//Joule-sec\n", +"theta=0.1//in radians\n", +"v=(1/(2*%pi)*sqrt(g/l))\n", +"printf('\n Oscillation frequency of pendulam %f per sec.',v)\n", +"E=m*g*l*(1-cos(theta))\n", +"printf('\n Energy of pendulum at its maximum potential %e Joule.',E)\n", +"Delta_e=h*v\n", +"printf('\n Delta E %e Joule',Delta_e)" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Quantum_Physics_Of_Atoms_by_Molecules/10-Multi_electron_atoms_optical_excitations.ipynb b/Quantum_Physics_Of_Atoms_by_Molecules/10-Multi_electron_atoms_optical_excitations.ipynb new file mode 100644 index 0000000..4b2af5d --- /dev/null +++ b/Quantum_Physics_Of_Atoms_by_Molecules/10-Multi_electron_atoms_optical_excitations.ipynb @@ -0,0 +1,118 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 10: Multi electron atoms optical excitations" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 10.1: Calculating_wavelength.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Example 10.1, page 370\n", +"clc\n", +"E3p=-3//in ev\n", +"E3s=-5.1//in ev\n", +"E=E3p-E3s\n", +"E_Joule=E*1.6*10^-19//in Joule\n", +"h=6.6*10^-34//in J-s\n", +"c=3*10^8//in m/s\n", +"disp('Part a')\n", +"lambda=(h*c)/E_Joule\n", +"printf('\n The wavelength is %e m',lambda)\n", +"//Part b\n", +"disp('Part b')\n", +"d_lambda=(h*c*E_Joule)/(E_Joule)^2\n", +"printf('\n The magnitude of seperation is %e m',d_lambda)\n", +"//Answer given in book for part b is wrong" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 10.5: Displace_energy.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Example 10.5, page 386\n", +"clc\n", +"a=1*(1+1)\n", +"x=a+a-a\n", +"y=2*a\n", +"g=1+(x/y)\n", +"u=9.3*10^-24//amp-m2\n", +"B=1/10//in Tesla\n", +"delta_E=u*B*g\n", +"printf('\n The displace energy is %e ev',delta_E)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 10.6: Magnetic_energy.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Example 10.6, page 387\n", +"clc\n", +"h=6.6*10^-34//in J-s\n", +"v=1*10^10//per sec\n", +"ub=9.3*10^-24//in amp-m2\n", +"B=(h*v)/(2*ub)\n", +"printf('\n The Magentic energy is %e Tesla',B)" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Quantum_Physics_Of_Atoms_by_Molecules/11-Quantum_statistics.ipynb b/Quantum_Physics_Of_Atoms_by_Molecules/11-Quantum_statistics.ipynb new file mode 100644 index 0000000..2f70dea --- /dev/null +++ b/Quantum_Physics_Of_Atoms_by_Molecules/11-Quantum_statistics.ipynb @@ -0,0 +1,95 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 11: Quantum statistics" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 11.3: Boltzan_factor.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Example 11.3, page 410\n", +"clc\n", +"h=6.6*10^-34//in J-s\n", +"v=1*10^7//per sec\n", +"K=1.4*10^-23//in J-K\n", +"T=300//in K\n", +"n=exp(-((h*v)/(K*T)))\n", +"printf('\n The Boltzan factor is %e Tesla',1-n)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 11.5: Fermi_energy.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Example 11.3, page 424\n", +"clc\n", +"disp('Part a')\n", +"A=108//in g/mole\n", +"M=10.5//in g/cm3\n", +"D=6.02*10^23//in atom/mole\n", +"n=(D*M)/A\n", +"h=6.6*10^-34\n", +"printf('\n The fermi energy is %e electron/cm^3',n)\n", +"m=9.1*10^-31//in kg\n", +"n=5.9*10^28//per m^2\n", +"x=((3*n)/(%pi))^(2/3)\n", +"Ef=(h^2/(8*m))*x\n", +"printf('\n The energy is %e J',Ef)\n", +"disp('part b')\n", +"K=1.38*10^-23//in J-K\n", +"T=300//in K\n", +"z=(n*h^3)/(2*%pi*m*K*T)^(3/2)\n", +"printf('\n The degeneracy term is %e ',z)\n", +"//Anser difference is because of round off" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Quantum_Physics_Of_Atoms_by_Molecules/12-Molecules.ipynb b/Quantum_Physics_Of_Atoms_by_Molecules/12-Molecules.ipynb new file mode 100644 index 0000000..fbbf6b6 --- /dev/null +++ b/Quantum_Physics_Of_Atoms_by_Molecules/12-Molecules.ipynb @@ -0,0 +1,87 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 12: Molecules" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 12.1: Energy_calculation.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Example 12.1, page 435\n", +"clc\n", +"c=9*10^9\n", +"cm=1.6*10^-19\n", +"d=2.4*10^-10//in m\n", +"v=(c*cm*cm)/d\n", +"e=v/(1.6*10^-19)//in J\n", +"printf('\n The energy is %e ev',e)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 12.3: Calculation_of_energy_and_temperature.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Example 12.3, page 445\n", +"clc\n", +"h=6.63*10^-34//in J-s\n", +"I=(2*%pi)^2*2.66*10^-47//in kg-m2\n", +"m_H=1/(6.02*10^26)//in kg\n", +"E=(h^2)/I\n", +"printf('\n The energy is %e J',E)\n", +"s=.59*10^-19//in J\n", +"k=1.38*10^-23//in j/k\n", +"T=(s)/k\n", +"printf('\n The temperature is %f K',T)\n", +"//Answer diffrence is because of round off" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Quantum_Physics_Of_Atoms_by_Molecules/13-Solids_Conductors_and_semiconductors.ipynb b/Quantum_Physics_Of_Atoms_by_Molecules/13-Solids_Conductors_and_semiconductors.ipynb new file mode 100644 index 0000000..81f9d32 --- /dev/null +++ b/Quantum_Physics_Of_Atoms_by_Molecules/13-Solids_Conductors_and_semiconductors.ipynb @@ -0,0 +1,83 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 13: Solids Conductors and semiconductors" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 13.1: Electron_per_unit_volume.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Example 13.1, Page no 471\n", +"clc\n", +"m=9.11*10^-31//in kg\n", +"h=6.63*10^-34//in j-s\n", +"ef=4.72*1.60*10^-19//in J\n", +"n=%pi*(((8*m)/h**2)^(3/2))*((ef**(3/2))/3)\n", +"printf('\n The number of electron per unit volume in lithium is %e /m^3',n)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 13.3: Angle.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Example 13.3, page 483\n", +"clc\n", +"m=9.11*10^-31//in kg\n", +"h=6.63*10^-34//in j-s\n", +"c=3*10^8//m/s\n", +"ef=4.72*1.60*10^-19//in J\n", +"pf=sqrt(2*m*ef)\n", +"tf=pf/(m*c)\n", +"printf('\n The angle is %e rad',tf)" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Quantum_Physics_Of_Atoms_by_Molecules/14-Solids_super_conductors_and_magnetic_properties.ipynb b/Quantum_Physics_Of_Atoms_by_Molecules/14-Solids_super_conductors_and_magnetic_properties.ipynb new file mode 100644 index 0000000..d1dcdc0 --- /dev/null +++ b/Quantum_Physics_Of_Atoms_by_Molecules/14-Solids_super_conductors_and_magnetic_properties.ipynb @@ -0,0 +1,124 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 14: Solids super conductors and magnetic properties" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 14.1: Calculating_wavelength_and_gap_energy.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Example 14.1, page 507\n", +"clc\n", +"disp('Part a')\n", +"k=1.4*10^-23//in J/K\n", +"Te=4.2//in K\n", +"eg=3*k*Te\n", +"printf('\n The gap energy is %e J',eg)\n", +"h=6.63*10^-34//in j-s\n", +"c=3*10^8//m/s\n", +"disp('Part b')\n", +"lambda=(h*c)/eg\n", +"printf('\n The wavelength is %e m',lambda)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 14.3: Unpaired_electrons.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Example 14.3, Page 514\n", +"clc\n", +"u=9.3*10^-24//in Tesla\n", +"B=1//in Tesla\n", +"Eb=u*B*6.24150934*10^18 \n", +"T=300//in K\n", +"k=8.6*10^-5//ev/k\n", +"x=k*T\n", +"s=(Eb/x)*100\n", +"disp('Part a')\n", +"printf('\n The percentage is %f',s)\n", +"disp('Part b')\n", +"n=2.0*10^28///m3\n", +"k=1.38*10^-23//in J/k\n", +"uo=4*%pi*10^-7//T-m/amp\n", +"con=(uo*n*u*u)/(k*T)\n", +"printf('\n The number of unpaired electrons is %e',con)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 14.4: Energy_and_wavelength.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Example 14.4, Page 516\n", +"clc\n", +"uo=4*%pi*10^-7//T-m/amp\n", +"u=2.2*9.3*10^-24//in Tesla\n", +"x=3*10^-10//in m\n", +"E=(uo*u*u)/(2*%pi*x**3)\n", +"printf('\n The Energy required is %e Joule',E)\n", +"k=1.38*10^-23//in J/k\n", +"T=E/k\n", +"printf('\n The temperature is %f K',T)" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Quantum_Physics_Of_Atoms_by_Molecules/15-Nuclear_Models.ipynb b/Quantum_Physics_Of_Atoms_by_Molecules/15-Nuclear_Models.ipynb new file mode 100644 index 0000000..22269d8 --- /dev/null +++ b/Quantum_Physics_Of_Atoms_by_Molecules/15-Nuclear_Models.ipynb @@ -0,0 +1,166 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 15: Nuclear Models" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 15.2: Calculating_wavelength_and_angle.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Example 15.2, Page 533\n", +"clc;\n", +"c=3*10^8//m/s\n", +"k=500//Mev\n", +"p=(k)/(c*6.2*10^12)\n", +"h=6.63*10^-34//in j-s\n", +"lambda=h/p\n", +"angle=0.53//in rad\n", +"r=lambda/angle\n", +"printf('\n The wavelength is %e m',lambda)\n", +"printf('\n The angle is %e m',r)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 15.4: Atomic_mass.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Example 15.4, Page 540\n", +"clc\n", +"kb=4.44//in Mev\n", +"ka=7.70//in Mev\n", +"mb=1\n", +"mB=17\n", +"ma=4\n", +"Q=(kb*(1+(mb/mB)))-(ka*(1-(ma/mB)))\n", +"disp('Part a')\n", +"printf('\n The value of Q is %f Mev',Q)\n", +"c=3*10^8//m/s\n", +"m=Q/(931.5)\n", +"printf('\n The atomic mass of Q is %e u',m)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 15.5: Binding_energy.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Example 15.5, Page 541\n", +"clc\n", +"M_He=4.0026033//*u, Mass of helium\n", +"M1H1=1.00782525//*u, electron mass\n", +"Mon1=1.0086654//*u, neutron mass\n", +"Mass=(2*M1H1)+(2*Mon1)\n", +"delta_M=(Mass)-M_He\n", +"printf('\n The binding energy of helium is %f *u',delta_M)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 15.7: Blank.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Example 15.7, page 547" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 15.8: Density_and_potential.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Example 15.8, page 550\n", +"clc\n", +"N=0.60\n", +"rho=(N)/((4/3))\n", +"printf('\n The density is %f /pi*a^3',rho)\n", +"h=6.63*10^-34//in j-s\n", +"a=1.1//F\n", +"M=1\n", +"ef=43//in Mev\n", +"En=7//in Mev\n", +"Vo=ef+En\n", +"printf('\n The depth of the net nuclear potential acting on neutron \n is %d Mev', Vo)" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Quantum_Physics_Of_Atoms_by_Molecules/16-Nuclear_decay_and_nuclear_reactions.ipynb b/Quantum_Physics_Of_Atoms_by_Molecules/16-Nuclear_decay_and_nuclear_reactions.ipynb new file mode 100644 index 0000000..a26aba9 --- /dev/null +++ b/Quantum_Physics_Of_Atoms_by_Molecules/16-Nuclear_decay_and_nuclear_reactions.ipynb @@ -0,0 +1,265 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 16: Nuclear decay and nuclear reactions" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 16.10: Events_detected.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Example 16.8, page 615\n", +"clc\n", +"n=(1/10)/(54*1.66*10^-27)\n", +"d_ohm=10^-5/(10^-1)**2\n", +"d_zigma=(1.3*10^-3)*10^-31//m2/nucleus\n", +"P=d_zigma*n\n", +"//disp(P)\n", +"I=(10^-7)/(1.6*10^-19)\n", +"//disp(I)\n", +"dN=I*P\n", +"printf('\n The number of events detected per sec is s %d',dN)\n", +"//The answer differnce is because of round off" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 16.11: Free_electro.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Example 16.11, page 624\n", +"clc\n", +"E=200*1.6*10^-13//j/neutron\n", +"E=10^-11//Rounding off\n", +"p=E/(10^-3)\n", +"P=10^8//in watt\n", +"N=P/p\n", +"printf('\n The number of free electron present is %e',N)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 16.1: Total_energy.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Example 16.1, page 575\n", +"clc\n", +"r=(4**(1/3)+208**(1/3))*1.07\n", +"printf('\n The sum of radii is %f F',r)\n", +"e=1.60*10^-19//in coul\n", +"z=82\n", +"x=1.1*10^-10//coul2/nt-m2\n", +"Vo=(2*z*e*e)/(x*r*10^-15)\n", +"printf('\n The total energy is %e J',Vo)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 16.2: Elapsed_time.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Example 6.2, Page 579\n", +"clc\n", +"x=log(exp(.827))\n", +"t=(log(143))/x\n", +"printf('\n The elapsed time is %f *10^9 year',t)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 16.4: Life_time.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Example 16.4, Page 589\n", +"clc\n", +"// Using formula logb(m)=n\n", +"//n=b^n\n", +"F=10^(-5.7)\n", +"Y=12.3 //yr\n", +"d=365//day/yr\n", +"h=24//hr/day\n", +"m=60//min/hr\n", +"s=60//sec/min\n", +"T=(Y*d*h*m*s)/0.693\n", +"printf('\n The life time is %e s',T)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 16.5: Value_of_beta.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Example 16.5, Page 591\n", +"clc\n", +"h=1.05*10^-34//j-s\n", +"F=1.2\n", +"T=10^3//in s\n", +"m=.91*10^-30//in kg\n", +"c=3*10^8//in m/s\n", +"M=1\n", +"beta_square=(2*%pi*%pi*%pi*(h^7))/(F*T*(m^5)*(c^4))\n", +"beta=sqrt(beta_square)\n", +"printf('\n The value of Beta is %e J^2*m^6',beta)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 16.7: Value_of_delta_and_tou.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Example 16.7, Page no 603\n", +"clc\n", +"E=0.129//in Mev\n", +"x=931//uc^2\n", +"Del_E=(E)**2/(2*x*191)\n", +"printf('\n The value of delta E is %e ev',Del_E*10**6)\n", +"h=6.6*10^-16//ev-sec\n", +"T=1.4*10^-10//sec\n", +"Tou=h/T\n", +"printf('\n The value of Tou is %e ev',Tou)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 16.9: Neutron_produced.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Example 16.9, page 607\n", +"clc\n", +"Z=0+1+4\n", +"A=1+9-1\n", +"printf('\n The value of z is %d',Z)\n", +"printf('\n The value of A is %d',A)\n", +"ka=50\n", +"kb=48.1\n", +"mB=1\n", +"ma=1/9\n", +"mb=1/9\n", +"x=1/9//ma/mB\n", +"y=1/9//mb/mB\n", +"part1=kb*(1+x)\n", +"part2=ka*(1-y)\n", +"part3=(2*sqrt(ka*kb*ma*mb))\n", +"Q=part1-part2-part3\n", +"printf('\n The value of Q is %f Mev',Q)\n", +"sq_kb_plus=(1.36+sqrt(1.36**2+(4*1.11*42.5)))/(2*1.11)\n", +"sq_kb_minus=(1.36-sqrt(1.36**2+(4*1.11*42.5)))/(2*1.11)\n", +"kb_plus=(sq_kb_plus)**2\n", +"kb_minus=(sq_kb_minus)**2\n", +"printf('\n The maximum neutron produced at angle 30 degree is %f Mev',kb_plus)" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Quantum_Physics_Of_Atoms_by_Molecules/17-Introduction_to_elementary_particles.ipynb b/Quantum_Physics_Of_Atoms_by_Molecules/17-Introduction_to_elementary_particles.ipynb new file mode 100644 index 0000000..c1c3493 --- /dev/null +++ b/Quantum_Physics_Of_Atoms_by_Molecules/17-Introduction_to_elementary_particles.ipynb @@ -0,0 +1,127 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 17: Introduction to elementary particles" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 17.1: Kinetic_energy.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Example 17.1, Page 643\n", +"clc\n", +"h=1.05*10^-34//j-s\n", +"M=1.7*10^-27//in kg\n", +"r=2*10^-15//in m\n", +"K=(h**2)/(M*r*r)\n", +"s=K* 6.24150647996E+12//converting to Mev\n", +"K_total_cm=2*s\n", +"k_incident=2*K_total_cm\n", +"printf('\n The kinetic energy of incident nucleon is %d Mev',k_incident)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 17.3: value_of_pi.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Example 17.3, page 653\n", +"clc\n", +"h=1*10^-34//j-s\n", +"r=2*10^-15//m\n", +"c=3*10^8//m/s\n", +"m_pi=h/(r*c)\n", +"printf('The value of m pi is %e kg', m_pi)\n", +"//Answer difference is because of round off" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 17.5: Value_of_K.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Example 17.5, page no 664\n", +"clc;\n", +"Tz=(1-1)/2\n", +"//For K+\n", +"Q=1\n", +"B=0\n", +"S=1\n", +"Tz=1-0.5\n", +"printf('The value of Tz for K+ is %f \n',Tz)\n", +"//For K-\n", +"Q=-1\n", +"B=0\n", +"S=-1\n", +"Tz=-1+0.5\n", +"printf('The value of Tz for K- is %f\n',Tz)\n", +"//For Ko\n", +"Q=0\n", +"B=0\n", +"S=1\n", +"Tz=-0-0.5\n", +"printf('The value of Tz for Ko is %f \n',Tz)\n", +"//For Ko_dash\n", +"Tz=0+0.5\n", +"printf('The value of Tz for Ko- is %f \n',Tz)" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Quantum_Physics_Of_Atoms_by_Molecules/18-More_elementary_particles.ipynb b/Quantum_Physics_Of_Atoms_by_Molecules/18-More_elementary_particles.ipynb new file mode 100644 index 0000000..012a7d5 --- /dev/null +++ b/Quantum_Physics_Of_Atoms_by_Molecules/18-More_elementary_particles.ipynb @@ -0,0 +1,61 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 18: More elementary particles" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 18.2: Variable_values.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Example 18.2, Page 694\n", +"clc\n", +"Q=(2/3)-(1/3)-(1/3)\n", +"B=(1/3)+(1/3)+(1/3)\n", +"S=0+0-1\n", +"T=(1/2)+(1/2)+0\n", +"Tz=(1/2)-(1/2)+0\n", +"printf('The value of Q is %f \n',Q)\n", +"printf('The value of B is %f \n',B)\n", +"printf('The value of S is %f \n',S)\n", +"printf('The value of T is %f \n',T)\n", +"printf('The value of Tz is %f \n',Tz)" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Quantum_Physics_Of_Atoms_by_Molecules/2-Photons_particle_like_properties_of_radiation.ipynb b/Quantum_Physics_Of_Atoms_by_Molecules/2-Photons_particle_like_properties_of_radiation.ipynb new file mode 100644 index 0000000..3768cb0 --- /dev/null +++ b/Quantum_Physics_Of_Atoms_by_Molecules/2-Photons_particle_like_properties_of_radiation.ipynb @@ -0,0 +1,215 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 2: Photons particle like properties of radiation" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.1: Time_to_absorb_energy.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Example 2.1, page 47\n", +"clc\n", +"P=1//power in j/s\n", +"r=10^-10//Radius in m^2\n", +"R=(P*%pi*r^2)/(4*%pi)//Rate at which energy falls in J/sec\n", +"R_e=3.4*10^-19//in Joule, rate at energy removed\n", +"t=R_e/R\n", +"printf('\n Time required for energy to clear is %e sec',t)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.2: Work_function_for_sodium.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Example 2.2, page 49\n", +"clc\n", +"h=6.63*10^-34//Joule-sec\n", +"vo=5.6*10^14\n", +"w=h*vo\n", +"printf('\npower is %e per sec',w)\n", +"ev=(1/(1.6*10^-19))\n", +"wo=w*ev\n", +"printf('\nEnergy is %f ev',wo)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.3: Photons_striking_metal_plate.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Example 2.3, Page no 50\n", +"p=1//j/s\n", +"r=1//radius in m\n", +"h=6.63*10^-34//Joule-sec\n", +"c=3*10^8//m/sec\n", +"lambda=5.89*10^-7//m\n", +"R=p/(4*%pi*r^2)\n", +"E=(h*c)/lambda\n", +"Rate_R=R*(1/E)\n", +"printf('\nRate at which photons strike unit area of place %e photons/m^2-sec',Rate_R)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.4: X_ray_beam.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Example 2.4, page 57\n", +"clc\n", +"disp('Part a')\n", +"h=6.63*10^-34//Joule-sec\n", +"c=3*10^8//m/sec\n", +"m_o=9.11*10^-31//in kg\n", +"delta_h=(h*(1-cosd(90)))/(m_o*c)\n", +"printf('\n Compton shift is %e m',delta_h)\n", +"disp('Part b')\n", +"delta1=1*10^-10\n", +"K=(h*c*delta_h)/(delta1*(delta1+delta_h))\n", +"printf('\n X-ray beam is %e Joule',K)\n", +"delta2=1.88*10^-12\n", +"K=(h*c*delta_h)/(delta2*(delta2+delta_h))\n", +"printf('\n X-ray beam is %e Joule',K)\n", +"disp('Part c')\n", +"E1=(h*c)/delta1\n", +"E1_ev=(6.241509*10^18)*E1\n", +"printf('\n X-ray energy is %f ev',E1_ev)\n", +"E2=(h*c)/delta2\n", +"E2_ev=(6.241509*10^18)*E2\n", +"printf('\n X-ray energy is %f ev',E2_ev)\n", +"Per1=(100*.295*10^3)/E1_ev\n", +"Per2=(100*378*10^3)/E2_ev\n", +"printf('\n Energy lost in percentage %f ',Per1)\n", +"printf('\n Energy lost in percentage %f ',Per2)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.5: Determine_plancks_constant.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Example2.5, page 61\n", +"clc\n", +"e=1.6*10^-19//in coul\n", +"v=4*10^4//in V\n", +"lambda=3*10^-11//in m\n", +"c=3*10^8//m/sec\n", +"h=(e*v*lambda)/c\n", +"printf('\n Plancks constant is %e Joule-sec',h)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.6: Energy_and_wavelength.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//example 2.6, page 62\n", +"clc\n", +"e=1.6*10^-19//in coul\n", +"B=2*10^-1//weber/m2\n", +"r=2.5*10^-2//in m\n", +"p=e*B*r\n", +"printf('\n Momentum of electron %e Kg-m/sec',p)\n", +"x=1.5//in Mev, ie c^2*p^2\n", +"y=.51//in Mev\n", +"E_minus=sqrt(x^2+y^2)\n", +"E=2*E_minus//h*v\n", +"h=6.63*10^-34//Joule-sec\n", +"c=3*10^8//m/sec\n", +"lambda=(h*c)/(10^6*E*1.6*10^-19)\n", +"printf('\n Photons wavelength is %e m',lambda)" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Quantum_Physics_Of_Atoms_by_Molecules/3-De_Broglies_postulate_wave_like_behaviour_of_particles.ipynb b/Quantum_Physics_Of_Atoms_by_Molecules/3-De_Broglies_postulate_wave_like_behaviour_of_particles.ipynb new file mode 100644 index 0000000..abf90fe --- /dev/null +++ b/Quantum_Physics_Of_Atoms_by_Molecules/3-De_Broglies_postulate_wave_like_behaviour_of_particles.ipynb @@ -0,0 +1,158 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 3: De Broglies postulate wave like behaviour of particles" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.1: Find_de_broglie_wavelength.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Example 3.1, page 74\n", +"clc\n", +"m=1//in kg\n", +"h=6.63*10^-34//Joule-sec\n", +"v=10//in m/sec\n", +"lambda=h/(m*v)\n", +"disp('part a')\n", +"printf('\n De broglie wavelength for v=10m/sec %e m',lambda)\n", +"disp('part b')\n", +"//For KE=100ev\n", +"m=9.1*10^-31\n", +"K=100*1.6*10^-19//in Joules\n", +"lambda=h/sqrt(2*m*K)\n", +"printf('\n De broglie wavelength is %e m',lambda)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.2: Mass_of_Helium_and_wavelength.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Example 3.2, Page 80\n", +"clc\n", +"h=6.63*10^-34//Joule-sec\n", +"v=1.635*10^3//m/s\n", +"M=4*10^-3//in kg/mole\n", +"No=6.02*10^23//atom/mole\n", +"m=M/No\n", +"printf('\n Mass of Helium atom is %e kg',m)\n", +"lambda=h/(m*v)\n", +"printf('\n De broglie wavelength is %e m',lambda)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.3: Speed_of_the_bullet.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Example 3.3, Page 87\n", +"clc\n", +"//For electron\n", +"m1=9.1*10^-31//in kg\n", +"v=300//in m/s\n", +"h=6.6*10^-34//in joule-sec\n", +"p1=m1*v//delta v\n", +"delta_p1=.0001*p1//m*delata_v in kg-m/sec\n", +"delta_x1=(h)/(4*%pi*delta_p1)\n", +"printf('\n Position of electron %e m',delta_x1)\n", +"//For bullet\n", +"m2=0.05//in kg\n", +"p2=m2*v\n", +"delta_p2=0.0001*p2//in kg-m/s\n", +"delta_x2=(h)/(4*%pi*delta_p2)\n", +"printf('\n Position of bullet %e m',delta_x2)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.5: Fractional_width_and_uncertainity.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Example 3.5, page no 94\n", +"clc\n", +"disp('part b')\n", +"lambda=5890*10^-8//in cm\n", +"c=3*10^10//in cm/s\n", +"v=c/lambda\n", +"del_v=8*10^6//per s\n", +"x=del_v/v\n", +"h=4.14*10^-15//in ev-sec\n", +"printf('\n Fractional width of either line(del_v/v) %e ',x)\n", +"//Calculate uncertainty\n", +"disp('part c')\n", +"del_t=10^-8\n", +"del_e=(h)/(4*%pi*del_t)\n", +"printf('\n Uncertainty is %e ev ',del_e)" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Quantum_Physics_Of_Atoms_by_Molecules/4-Bohrs_Model_of_the_Atom.ipynb b/Quantum_Physics_Of_Atoms_by_Molecules/4-Bohrs_Model_of_the_Atom.ipynb new file mode 100644 index 0000000..0c4b775 --- /dev/null +++ b/Quantum_Physics_Of_Atoms_by_Molecules/4-Bohrs_Model_of_the_Atom.ipynb @@ -0,0 +1,177 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 4: Bohrs Model of the Atom" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 4.10: Double_nucleus_mass_effect.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Example 4.10, Page 125\n", +"clc\n", +"//For Hydrogen atom\n", +"R_o=109737//in cm\n", +"m=1\n", +"M=1836\n", +"RH=(R_o)/(1+(m/M))\n", +"printf('\n Spectrum line for Hydrogen occur at %f /cm ',RH)\n", +"//For Deuterium atom\n", +"R_o=109737//in cm\n", +"m=1\n", +"M=2*1836\n", +"RD=(R_o)/(1+(m/M))\n", +"printf('\n Spectrum line for Deuterium occur at %f /cm ',RD)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 4.1: Calculating_wavelength.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Example 4.1, Page 105\n", +"clc\n", +"disp('Part b')\n", +"rho=9*10^9//in nt-m2/coul2\n", +"e=1.6*10^-19//coul\n", +"r=1*10^-10//in m\n", +"k=(rho*e^2)/(r^3)//nt/m\n", +"m=9.11*10^-31//in kg\n", +"c=3*10^8//in m/s\n", +"v=(1/(2*%pi))*sqrt(k/m)\n", +"lambda=c/v\n", +"printf('\n The wavelength is %e m ',lambda)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 4.2: Average_deflectio.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Example 4.2, page 107\n", +"clc\n", +"disp('Part a')\n", +"N=10^4//in rad, Number of atoms tarversed\n", +"theta=(2*10^-2)/sqrt(N)\n", +"printf('\n Average deflection %e rad ',theta)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 4.6: Binding_energy_of_hydrogen_atom.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Example 4.6, Page 120\n", +"clc\n", +"rho=9*10^9//in nt-m2/coul2 \n", +"m=9.11*10^-31//in kg\n", +"e=1.6*10^-19//coul\n", +"h=1.05*10^-34//in j-sec\n", +"E=-(rho*m*e^4)/(2*h^2)\n", +"printf('\n Binding energy is %e Joule ',E)\n", +"//Answer given in the book is wrong" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 4.9: Muon_nucleus_seperation.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Example 4.9, page 124\n", +"clc\n", +"disp('Part a')\n", +"mu=207//207*me\n", +"M=1836//183*me\n", +"u=(mu*M)/(mu+M)\n", +"D=(1/u)*5.3*10^-11\n", +"printf('\nMuon nucleus seperation is %e m ',D)\n", +"disp('Part b')\n", +"E=-u*13.6\n", +"printf('\n Binding energy is %f ev ',E)\n", +"disp('Part c')\n", +"R=109737//in cm\n", +"lambda=(1/u)*(1/0.75)*(1/R)\n", +"printf('\n Wavelength is %e cm ',lambda)" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Quantum_Physics_Of_Atoms_by_Molecules/6-Solutions_of_time_independent_schroedinge_equations.ipynb b/Quantum_Physics_Of_Atoms_by_Molecules/6-Solutions_of_time_independent_schroedinge_equations.ipynb new file mode 100644 index 0000000..456670a --- /dev/null +++ b/Quantum_Physics_Of_Atoms_by_Molecules/6-Solutions_of_time_independent_schroedinge_equations.ipynb @@ -0,0 +1,180 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 6: Solutions of time independent schroedinge equations" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 6.1: Kinetic_energy_and_penetration_distance.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Example 6.1, Page 208\n", +"clc\n", +"m=4*10^-14//in kg\n", +"v=10^-2//in m/s\n", +"KE=(0.5*m*v^2)\n", +"h=10^-34\n", +"printf('\n Kinetic energy(Vo-E) at %e Joule',KE)\n", +"delta_x=(h)/sqrt(2*m*KE)\n", +"printf('\n Value of penetration distance is %e m ',delta_x)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 6.2: Penetration_distance.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Example 6.2, page 210\n", +"clc\n", +"//KE=4ev, convert to joule\n", +"KE=4*1.6*10^-19//in j\n", +"m=9*10^-31//in kg\n", +"h=10^-34//in j-s\n", +"delta_x=(h)/sqrt(2*m*KE)\n", +"printf('\n Value of penetration distance is %e m ',delta_x)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 6.3: Probablity_of_neutron.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Example 6.3, page 216\n", +"clc\n", +"v=50//in Mev\n", +"E=55//in Mev\n", +"x=sqrt(1-(v/E))\n", +"//disp(x)\n", +"R=((1-x)/(1+x))^2\n", +"printf('\n Probablity of neutron will be reflected is %f ',R)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 6.4: Calculation_of_number.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Example 6.4, page 220\n", +"clc\n", +"m=9*10^-31//in kg\n", +"h=10^-34//in j-s\n", +"V=10//in ev\n", +"a=1.8*10^-10//in m\n", +"//convert v to joule\n", +"Vo=V*1.6*10^-19//in Joule\n", +"N=(2*m*Vo*a^2)/(h^2)\n", +"printf('\n Numbers given is %d ',N)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 6.6: Value_of_energy.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Example 6.6, page 237\n", +"clc\n", +"h=10^-34//in j-s\n", +"m=10^-30//in kg\n", +"a=10^-14//in m\n", +"c=3*10^8//in m/s\n", +"E=((%pi*h)^2)/(2*m*a*a)\n", +"printf('\n Energy is %e J ',E)\n", +"//convert to ev\n", +"e=E/(1.6*10^-19)\n", +"printf('\n Energy is %e ev ',e)\n", +"//Answer difference is due to round off\n", +"E1=(%pi*c*h)/a\n", +"printf('\n Zero level Energy is %e J ',E1)\n", +"e1=E1/(1.6*10^-19)\n", +"printf('\n Zero level Energy is %e ev ',e1)\n", +"//Answer difference is due to round off\n", +"//when A=100\n", +"A=100\n", +"r=10^-14//in m\n", +"x=10^-10//in coul2/nt-m2\n", +"ec=1.6*10^-19//in c\n", +"Q=(-(A*ec*ec)/(x*r))*(1/ec)\n", +"printf('\n Typical value Energy is %e ev ',Q)" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Quantum_Physics_Of_Atoms_by_Molecules/8-Magnetic_dipoles_moments_spin_and_transition_rates.ipynb b/Quantum_Physics_Of_Atoms_by_Molecules/8-Magnetic_dipoles_moments_spin_and_transition_rates.ipynb new file mode 100644 index 0000000..4965055 --- /dev/null +++ b/Quantum_Physics_Of_Atoms_by_Molecules/8-Magnetic_dipoles_moments_spin_and_transition_rates.ipynb @@ -0,0 +1,135 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 8: Magnetic dipoles moments spin and transition rates" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 8.1: Energy_supplied.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Example 8.1, page 287\n", +"clc\n", +"u=0.927*10^-23//amp-m2\n", +"B=1//in J/amp-m2\n", +"E=2*u*B\n", +"printf('\n Energy supplied to the dipole is %e J ',E)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 8.2: Transverse_deflection.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Example 8.2, page 293\n", +"//From previous derivation of formula\n", +"clc\n", +"delb_by_delz=10//tesla/m\n", +"u=0.927*10^-23//amp-m2\n", +"x=1///in m\n", +"k=1.38*10^-23//j/k\n", +"T=400//in K\n", +"Z=(delb_by_delz*u*x^2)/(8*k*T)\n", +"printf('\n Transverse deflection that occur is + %e m or - %e m ',Z,Z)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 8.3: Energy_deflection.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Example 8.3, page 298\n", +"clc\n", +"m=9*10^-31//in kg\n", +"e=1.6*10^-19//in coul\n", +"c=3*10^8//in m/s2\n", +"four_pi_epsilon=1.1*10^-34//in j-sec\n", +"constant=9*10^9//nt-n2/coul2\n", +"delta_E=(constant^4*m*e^8)/(54*c*c*(four_pi_epsilon)^4)\n", +"printf('\n The energy deflection is %e Joule',delta_E)\n", +"//Answer given in the book is wrong" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 8.4: Deflectio.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Example 8.4, page 299\n", +"clc\n", +"u_s=10^-23//amp-m2\n", +"u_b=10^-23//amp-m2\n", +"B=u_s/u_b\n", +"printf('\n The deflection is %d Tesla ',B)" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Quantum_Physics_Of_Atoms_by_Molecules/9-Multi_electron_atoms_ground_satate_and_xray_excitation.ipynb b/Quantum_Physics_Of_Atoms_by_Molecules/9-Multi_electron_atoms_ground_satate_and_xray_excitation.ipynb new file mode 100644 index 0000000..50ba1fc --- /dev/null +++ b/Quantum_Physics_Of_Atoms_by_Molecules/9-Multi_electron_atoms_ground_satate_and_xray_excitation.ipynb @@ -0,0 +1,142 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 9: Multi electron atoms ground satate and xray excitation" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 9.5: Electric_field.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//example 9.5, page 343\n", +"clc\n", +"Z=[16 8 3]\n", +"//Argon numbers\n", +"for n=1:1:3\n", +"E=(-((Z(n))/n)**2)*13.6\n", +"printf('\n The electric field for n=%d is %f ev',n, E)\n", +"disp(E)\n", +"end\n", +"//Answer differnce is because of round off" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 9.7: ionization_energy.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Example 9.7, page 355\n", +"clc\n", +"Z=92\n", +"n=2\n", +"E=((Z/n)**2)*13.6//in ev\n", +"printf('\n The ionization energy is %e ev',E)\n", +"//Answer difference is because of round off" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 9.8: Calculating_wavelength.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Example 9.8, page 358\n", +"clc\n", +"//Energy of K shell\n", +"z=26\n", +"k=2\n", +"E_k=13.6*(z-k)^2//in ev\n", +"v=7.8*10^3//in V\n", +"//for L shell\n", +"l=10\n", +"E_l=13.6*(z-l)^2//in ev\n", +"h=E_k-E_l\n", +"R_m=1.1*10^7\n", +"x=R_m*(z-2)^2//x=1/lamda\n", +"lambda=1/x\n", +"printf('\n The wavelength is %e m',lambda)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 9.9: Energy_of_K_shell.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//example 9.9, page 360\n", +"//Energy of K shell\n", +"clc\n", +"z=82\n", +"k=2\n", +"E_k=13.6*(z-k)^2//in ev\n", +"printf('\n The energy of K shell is %e ev',E_k)" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} |