diff options
Diffstat (limited to 'Process_Heat_Transfer_by_D_Q_Kern/6-CounterflowDouble_pipe_exchangers.ipynb')
-rw-r--r-- | Process_Heat_Transfer_by_D_Q_Kern/6-CounterflowDouble_pipe_exchangers.ipynb | 349 |
1 files changed, 349 insertions, 0 deletions
diff --git a/Process_Heat_Transfer_by_D_Q_Kern/6-CounterflowDouble_pipe_exchangers.ipynb b/Process_Heat_Transfer_by_D_Q_Kern/6-CounterflowDouble_pipe_exchangers.ipynb new file mode 100644 index 0000000..78cd86a --- /dev/null +++ b/Process_Heat_Transfer_by_D_Q_Kern/6-CounterflowDouble_pipe_exchangers.ipynb @@ -0,0 +1,349 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 6: CounterflowDouble pipe exchangers" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 6.1: Double_Pipe_Benzene_Toluene_Exchanger.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"printf('\t example 6.1 \n');\n", +"printf('\t approximate values are mentioned in the book \n');\n", +"T1=160; // inlet hot fluid,F\n", +"T2=100; // outlet hot fluid,F\n", +"t1=80; // inlet cold fluid,F\n", +"t2=120; // outlet cold fluid,F\n", +"w=9820; // lb/hr\n", +"printf('\t 1.for heat balance \n');\n", +"printf('\t for benzene \n');\n", +"tav=((t1+t2)/2); // F\n", +"printf('\t average temperature of benzene is : %.0f F \n',tav);\n", +"c=0.425; // Btu/(lb)*(F)\n", +"Q=((w)*(c)*(t2-t1)); // Btu/hr\n", +"printf('\t total heat required for benzene is : %.2e Btu/hr \n',Q);\n", +"printf('\t for toulene \n');\n", +"Tav=((T1+T2)/2); //F\n", +"printf('\t average temperature of toulene is : %.0f F \n',Tav);\n", +"c=0.44; // Btu/(lb)*(F)\n", +"W=((Q)/((c)*(T1-T2))); // lb/hr\n", +"printf('\t W is :%.2e lb/hr \n',W);\n", +"printf('\t 2.LMTD \n');\n", +"printf('\t for counter current flow \n');\n", +"delt1=T2-t1; //F\n", +"delt2=T1-t2; // F\n", +"printf('\t delt1 is : %.0f F \n',delt1);\n", +"printf('\t delt2 is : %.0f F \n',delt2);\n", +"LMTD=((delt2-delt1)/((2.3)*(log10(delt2/delt1))));\n", +"printf('\t LMTD is :%.1f F \n',LMTD);\n", +"printf('\t 3.caloric temperatures \n');\n", +"printf('\t both streams will show that neither is viscous at the cold terminal (the viscosities less than 1 centipoise) and the temperature ranges and temperature difference are moderate. The coefficients may accordingly be evaluated from properties at the arithmetic mean, and the value of (mu/muw)^0.14 may be assumed equal to 1.0 \n');\n", +"tav=((t1+t2)/2); // F\n", +"printf('\t average temperature of benzene is : %.0f F \n',tav);\n", +"Tav=((T1+T2)/2); //F\n", +"printf('\t average temperature of toulene is : %.0f F \n',Tav);\n", +"printf('\t hot fluid:annulus,toulene \n');\n", +"D1=0.138; // ft\n", +"D2=0.1725; // ft\n", +"aa=((%pi)*(D2^2-D1^2)/4); // flow area,ft^2\n", +"printf('\t flow area is : %.5f ft^2 \n',aa);\n", +"De=(D2^2-D1^2)/D1; // equiv diameter,ft\n", +"printf('\t equiv diameter is : %.4f ft \n',De);\n", +"Ga=(W/aa); // mass velocity,lb/(hr)*(ft^2)\n", +"printf('\t mass velocity is : %.2e lb/(hr)*(ft^2) \n',Ga);\n", +"mu1=0.41*2.42; // at 130 F,lb/(ft)*(hr)\n", +"Rea=((De)*(Ga)/mu1); // reynolds number\n", +"printf('\t reynolds number is : %.1e \n',Rea);\n", +"jH=167; // from fig.24\n", +"c=0.44; // Btu/(lb)*(F),at 130F\n", +"k=0.085; // Btu/(hr)*(ft^2)*(F/ft), from table 4\n", +"Pr=((c)*(mu1)/k)^(1/3); // prandelt number raised to power 1/3\n", +"printf('\t Pr is : %.3f \n',Pr);\n", +"ho=((jH)*(k/De)*(Pr)*(1^0.14)); // using eq.6.15b,Btu/(hr)*(ft^2)*(F)\n", +"printf('\t individual heat transfer coefficient is : %.0f Btu/(hr)*(ft^2)*(F) \n',ho);\n", +"printf('\t cold fluid:inner pipe,benzene \n');\n", +"D=0.115; // ft\n", +"ap=((%pi)*(D^2)/4); // flow area, ft^2\n", +"printf('\t flow area is : %.4f ft^2 \n',ap);\n", +"Gp=(w/ap); // mass velocity,lb/(hr)*(ft^2)\n", +"printf('\t mass velocity is : %.2e lb/(hr)*(ft^2) \n',Gp);\n", +"mu2=0.5*2.42; // at 130 F,lb/(ft)*(hr)\n", +"Rep=((D)*(Gp)/mu2); // reynolds number\n", +"printf('\t reynolds number is : %.2e \n',Rep);\n", +"jH=236; // from fig.24\n", +"c=0.425; // Btu/(lb)*(F),at 130F\n", +"k=0.091; // Btu/(hr)*(ft^2)*(F/ft), from table 4\n", +"Pr=((c)*(mu2)/k)^(1/3); // prandelt number raised to power 1/3\n", +"printf('\t Pr is : %.3f \n',Pr);\n", +"hi=((jH)*(k/D)*(Pr)*(1^0.14)); // using eq.6.15a,Btu/(hr)*(ft^2)*(F)\n", +"printf('\t individual heat transfer coefficient is : %.0f Btu/(hr)*(ft^2)*(F) \n',hi);\n", +"ID=1.38; // ft\n", +"OD=1.66; //ft\n", +"hio=((hi)*(ID/OD)); // using eq.6.5\n", +"printf('\t Correct hi to the surface at the OD is : %.0f Btu/(hr)*(ft^2)*(F) \n',hio);\n", +"Uc=((hio)*(ho)/(hio+ho)); // clean overall coefficient,Btu/(hr)*(ft^2)*(F)\n", +"printf('\t clean overall coefficient is : %.0f Btu/(hr)*(ft^2)*(F) \n',Uc);\n", +"Rd=0.002; // required by problem,(hr)*(ft^2)*(F)/Btu\n", +"UD=((Uc)/((1)+(Uc*Rd))); // design overall coefficient,Btu/(hr)*(ft^2)*(F)\n", +"printf('\t design overall coefficient is : %.0f Btu/(hr)*(ft^2)*(F) \n',UD);\n", +"A=((Q)/((UD)*(LMTD))); // required surface,ft^2\n", +"printf('\t required surface is : %.1f ft^2 \n',A);\n", +"A1=0.435; // From Table 11 for 1(1/4)in IPS standard pipe there are 0.435 ft2 of external surface per foot length,ft^2\n", +"L=(A/A1); // required length;lin ft\n", +"printf('\t required length is : %.0f lin ft \n',L);\n", +"printf('\t This may be fulfilled by connecting three 20-ft hairpins in series \n');\n", +"A2=120*0.435; // actual surface supplied,ft^2\n", +"printf('\t actual surface supplied is : %.1f ft^2 \n',A2);\n", +"UD=((Q)/((A2)*(LMTD)));\n", +"printf('\t actual design overall coefficient is : %.0f Btu/(hr)*(ft^2)*(F) \n',UD);\n", +"Rd=((Uc-UD)/((UD)*(Uc))); // (hr)*(ft^2)*(F)/Btu\n", +"printf('\t actual Rd is : %.4f (hr)*(ft^2)*(F)/Btu \n',Rd);\n", +"printf('\t pressure drop for annulus \n');\n", +"De1=(D2-D1); //ft\n", +"printf('\t De1 is : %.4f ft \n',De1);\n", +"Rea1=((De1)*(Ga)/mu1); // reynolds number\n", +"printf('\t reynolds number is : %.2e \n',Rea1);\n", +"f=(0.0035)+((0.264)/(Rea1^0.42)); // friction factor, using eq.3.47b\n", +"printf('\t friction factor is : %.4f \n',f);\n", +"s=0.87;\n", +"row=62.5*0.87; // from table 6\n", +"delFa=((4*f*(Ga^2)*L)/(2*4.18*(10^8)*(row^2)*(De1))); // ft\n", +"printf('\t delFa is : %.1f ft \n',delFa);\n", +"V=((Ga)/(3600*row)); //fps\n", +"printf('\t V is : %.2f fps \n',V);\n", +"Fl=((3*(V^2))/(2*32.2)); //ft\n", +"printf('\t Fl is : %.1f ft \n',Fl);\n", +"delPa=((delFa+Fl)*(row)/144); // psi\n", +"printf('\t delPa is : %.1f psi \n',delPa);\n", +"printf('\t allowable delPa is 10 psi \n');\n", +"printf('\t pressure drop for inner pipe \n');\n", +"f=(0.0035)+((0.264)/(Rep^0.42)); // friction factor, using eq.3.47b\n", +"printf('\t friction factor is : %.4f \n',f);\n", +"s=0.88;\n", +"row=62.5*0.88; // from table 6\n", +"delFp=((4*f*(Gp^2)*L)/(2*4.18*(10^8)*(row^2)*(D))); // ft\n", +"printf('\t delFp is : %.1f ft \n',delFp);\n", +"delPp=((delFp)*(row)/144); // psi\n", +"printf('\t delPp is : %.1f psi \n',delPp);\n", +"printf('\t allowable delPp is 10 psi \n');\n", +"//end" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 6.2: Calculation_of_the_True_Temperature_Difference.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"printf('\t example 6.2 \n');\n", +"printf('\t approximate values are mentioned in the book \n');\n", +"T1=300; // inlet hot fluid,F\n", +"T2=200; // outlet hot fluid,F\n", +"t1=190; // inlet cold fluid,F\n", +"t2=220; // outlet cold fluid,F\n", +"n=6; // number of parallel streams\n", +"P=((T2-t1)/(T1-t1));\n", +"printf('\t P is : %.3f \n',P);\n", +"R=((T1-T2)/((n)*(t2-t1)));\n", +"printf('\t R is : %.3f \n',R);\n", +"gama=((1-P)/((2.3)*((n*R)/(R-1))*log10(((R-1)/R)*(1/P)^(1/n)+(1/R)))); // using eq.6.35a\n", +"printf('\t gama is : %.3f \n',gama);\n", +"delt=(gama*(T1-t1)); // true temperature difference,F\n", +"printf('\ true temperature difference is : %.1f F \n',delt);\n", +"//end" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 6.3: Double_Pipe_Lube_Oil_Crude_Oil_Exchanger.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"printf('\t example 6.3 \n');\n", +"printf('\t approximate values are mentioned in the book \n');\n", +"T1=450; // inlet hot fluid,F\n", +"T2=350; // outlet hot fluid,F\n", +"t1=300; // inlet cold fluid,F\n", +"t2=310; // outlet cold fluid,F\n", +"W=6900; // lb/hr\n", +"w=72500; // lb/hr\n", +"printf('\t 1.for heat balance \n');\n", +"printf('\t for lube oil \n');\n", +"c=0.62; // Btu/(lb)*(F)\n", +"Q=((W)*(c)*(T1-T2)); // Btu/hr\n", +"printf('\t total heat required for lube oil is : %.2e Btu/hr \n',Q);\n", +"printf('\t for crude oil \n');\n", +"c=0.585; // Btu/(lb)*(F)\n", +"Q1=((w)*(c)*(t2-t1)); // Btu/hr\n", +"printf('\t total heat required for crude oil is : %.2e Btu/hr \n',Q1); // calculation mistake in book\n", +"delt1=T2-t1; //F\n", +"delt2=T1-t2; // F\n", +"printf('\t delt1 is : %.0f F \n',delt1);\n", +"printf('\t delt2 is : %.0f F \n',delt2);\n", +"LMTD=((delt2-delt1)/((2.3)*(log10(delt2/delt1))));\n", +"printf('\t LMTD is :%.1f F \n',LMTD);\n", +"A=((delt1)/(delt2));\n", +"printf('\t ratio of two local temperature difference is : %.3f \n',A);\n", +"Fc=0.395; // from fig.17\n", +"Tc=((T2)+((Fc)*(T1-T2))); // caloric temperature of hot fluid,F\n", +"printf('\t caloric temperature of hot fluid is : %.1f F \n',Tc);\n", +"tc=((t1)+((Fc)*(t2-t1))); // caloric temperature of cold fluid,F\n", +"printf('\t caloric temperature of cold fluid is : %.0f F \n',tc);\n", +"printf('\t hot fluid:annulus,lube oil \n');\n", +"D1=0.199; // ft\n", +"D2=0.256; // ft\n", +"aa=((%pi)*(D2^2-D1^2)/4); // flow area,ft^2\n", +"printf('\t flow area is : %.4f ft^2 \n',aa);\n", +"De=(D2^2-D1^2)/D1; // equiv diameter,ft\n", +"printf('\t equiv diameter is : %.2f ft \n',De);\n", +"Ga=(W/aa); // mass velocity,lb/(hr)*(ft^2)\n", +"printf('\t mass velocity is : %.2e lb/(hr)*(ft^2) \n',Ga);\n", +"mu1=3*2.42; // at 389.5F,lb/(ft)*(hr), from fig.14\n", +"Rea=((De)*(Ga)/mu1); // reynolds number\n", +"printf('\t reynolds number is : %.0e \n',Rea);\n", +"jH=20.5; // from fig.24\n", +"c=0.615; // Btu/(lb)*(F),at 130F\n", +"k=0.067; // Btu/(hr)*(ft^2)*(F/ft), from table 4\n", +"Pr=((c)*(mu1)/k)^(1/3); // prandelt number raised to power 1/3\n", +"printf('\t Pr is : %.3f \n',Pr);\n", +"Ho=((jH)*(k/De)*(Pr)); // H0=(h0/phya),using eq.6.15,Btu/(hr)*(ft^2)*(F)\n", +"printf('\t individual heat transfer coefficient is : %.1f Btu/(hr)*(ft^2)*(F) \n',Ho);\n", +"printf('\t cold fluid:inner pipe,crude oil \n');\n", +"D=0.172; // ft\n", +"ap=((%pi)*(D^2)/4); // flow area, ft^2\n", +"printf('\t flow area is : %.4f ft^2 \n',ap);\n", +"Gp=(w/(2*ap)); // mass velocity,lb/(hr)*(ft^2)\n", +"printf('\t mass velocity is : %.2e lb/(hr)*(ft^2) \n',Gp);\n", +"mu2=0.83*2.42; // at 304 F,lb/(ft)*(hr)\n", +"Rep=((D)*(Gp)/mu2); // reynolds number\n", +"printf('\t reynolds number is : %.2e \n',Rep);\n", +"jH=320; // from fig.24\n", +"c=0.585; // Btu/(lb)*(F),at 304F,from fig.4\n", +"k=0.073; // Btu/(hr)*(ft^2)*(F/ft), from fig.1\n", +"Pr=((c)*(mu2)/k)^(1/3); // prandelt number raised to power 1/3\n", +"printf('\t Pr is : %.3f \n',Pr);\n", +"Hi=((jH)*(k/D)*(Pr)*(1^0.14)); //Hi=(hi/phyp),using eq.6.15a,Btu/(hr)*(ft^2)*(F)\n", +"printf('\t Hi is : %.0f Btu/(hr)*(ft^2)*(F) \n',Hi);\n", +"ID=2.067; // ft\n", +"OD=2.38; //ft\n", +"Hio=((Hi)*(ID/OD)); //Hio=(hio/phyp), using eq.6.5\n", +"printf('\t Correct Hi0 to the surface at the OD is : %.0f Btu/(hr)*(ft^2)*(F) \n',Hio);\n", +"muw=0.77*2.42; // lb/(ft)*(hr), from fig.14\n", +"phyp=(mu2/muw)^0.14;\n", +"printf('\t phyp is : %.0f \n',phyp); // from fig.24\n", +"hio=(Hio)*(1); // from eq.6.37\n", +"printf('\t Correct hio to the surface at the OD is : %.0f Btu/(hr)*(ft^2)*(F) \n',hio);\n", +"tw=(tc)+(((Ho)/(Hio+Ho))*(Tc-tc)); // from eq.5.31\n", +"printf('\t tw is : %.0f F \n',tw);\n", +"muw=6.6*2.42; // lb/(ft)*(hr), from fig.14\n", +"phya=(mu1/muw)^0.14;\n", +"printf('\t phya is : %.1f \n',phya); // from fig.24\n", +"ho=(Ho)*(phya); // from eq.6.36\n", +"printf('\t Correct h0 to the surface at the OD is : %.1f Btu/(hr)*(ft^2)*(F) \n',ho);\n", +"Uc=((hio)*(ho)/(hio+ho)); // clean overall coefficient,Btu/(hr)*(ft^2)*(F)\n", +"printf('\t clean overall coefficient is : %.0f Btu/(hr)*(ft^2)*(F) \n',Uc);\n", +"Rd=0.006; // required by problem,(hr)*(ft^2)*(F)/Btu\n", +"UD=((Uc)/((1)+(Uc*Rd))); // design overall coefficient,Btu/(hr)*(ft^2)*(F)\n", +"printf('\t design overall coefficient is : %.1f Btu/(hr)*(ft^2)*(F) \n',UD);\n", +"A=((Q)/((UD)*(LMTD))); // required surface,ft^2\n", +"printf('\t required surface is : %.0f ft^2 \n',A);\n", +"A1=0.622; // From Table 11,ft^2\n", +"Lr=(A/A1); // required length;lin ft\n", +"printf('\t required length is : %.0f lin ft \n',Lr);\n", +"printf('\t Since two parallel streams are employed, use eight 20 ft hairpins or 320 lin. feet \n');\n", +"L=320;\n", +"A2=320*0.622; // actual surface supplied,ft^2\n", +"printf('\t actual surface supplied is : %.1f ft^2 \n',A2);\n", +"UD=((Q)/((A2)*(LMTD)));\n", +"printf('\t actual design overall coefficient is : %.1f Btu/(hr)*(ft^2)*(F) \n',UD);\n", +"Rd=((Uc-UD)/((UD)*(Uc))); // (hr)*(ft^2)*(F)/Btu\n", +"printf('\t actual Rd is : %.4f (hr)*(ft^2)*(F)/Btu \n',Rd);\n", +"printf('\t pressure drop for annulus \n');\n", +"De1=.058; //ft\n", +"printf('\t De1 is : %.3f ft \n',De1);\n", +"Rea1=((De1)*(Ga)/7.25); // reynolds number\n", +"printf('\t reynolds number is : %.2e \n',Rea1);\n", +"f=(0.0035)+((0.264)/(2680^0.42)); // friction factor, using eq.3.47b\n", +"printf('\t friction factor is : %.4f \n',f);\n", +"s=0.775;\n", +"row=62.5*0.775; // from fig 6\n", +"delFa=((4*f*(Ga^2)*L)/(2*4.18*(10^8)*(row^2)*(De1))); // ft\n", +"printf('\t delFa is : %.1f ft \n',delFa);\n", +"V=((Ga)/(3600*row)); //fps\n", +"printf('\t V is : %.1f fps \n',V);\n", +"delFl=((8*(V^2))/(2*32.2)); //ft\n", +"printf('\t delFl is : %.2f ft \n',delFl);\n", +"delPa=((delFa+delFl)*(row)/144); // psi\n", +"printf('\t delPa is : %.1f psi \n',delPa);\n", +"printf('\t allowable delPa is 10 psi \n');\n", +"printf('\t pressure drop for inner pipe \n');\n", +"f=(0.0035)+((0.264)/(Rep^0.42)); // friction factor, using eq.3.47b\n", +"printf('\t friction factor is : %.5f \n',f);\n", +"s=0.76;\n", +"row=62.5*0.76; // from table 6\n", +"Lp=160;\n", +"delFp=((4*f*(Gp^2)*Lp)/(2*4.18*(10^8)*(row^2)*(D))); // ft\n", +"printf('\t delFp is : %.1f ft \n',delFp);\n", +"delPp=((delFp)*(row)/144); // psi\n", +"printf('\t delPp is : %.1f psi \n',delPp);\n", +"printf('\t allowable delPp is 10 psi \n');\n", +"// end" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} |