summaryrefslogtreecommitdiff
path: root/Principles_Of_Fluid_Mechanics_by_M_K_Natarajan
diff options
context:
space:
mode:
Diffstat (limited to 'Principles_Of_Fluid_Mechanics_by_M_K_Natarajan')
-rw-r--r--Principles_Of_Fluid_Mechanics_by_M_K_Natarajan/1-Basic_Concepts.ipynb212
-rw-r--r--Principles_Of_Fluid_Mechanics_by_M_K_Natarajan/10-The_Boundary_Layer.ipynb159
-rw-r--r--Principles_Of_Fluid_Mechanics_by_M_K_Natarajan/11-Forces_on_Immersed_Bodies.ipynb215
-rw-r--r--Principles_Of_Fluid_Mechanics_by_M_K_Natarajan/2-Fluid_Statics.ipynb607
-rw-r--r--Principles_Of_Fluid_Mechanics_by_M_K_Natarajan/3-Conservation_Principle_of_Mass.ipynb87
-rw-r--r--Principles_Of_Fluid_Mechanics_by_M_K_Natarajan/4-Conservation_Principle_of_Momentum.ipynb271
-rw-r--r--Principles_Of_Fluid_Mechanics_by_M_K_Natarajan/5-Conservation_Principle_of_Energy.ipynb867
-rw-r--r--Principles_Of_Fluid_Mechanics_by_M_K_Natarajan/6-Dimensional_Analysis_and_Similitude.ipynb185
-rw-r--r--Principles_Of_Fluid_Mechanics_by_M_K_Natarajan/7-In_compressible_Flow_through_Conduits_.ipynb813
-rw-r--r--Principles_Of_Fluid_Mechanics_by_M_K_Natarajan/8-Uniform_Open_Channel_Flow.ipynb404
-rw-r--r--Principles_Of_Fluid_Mechanics_by_M_K_Natarajan/9-Potential_Flow.ipynb122
11 files changed, 3942 insertions, 0 deletions
diff --git a/Principles_Of_Fluid_Mechanics_by_M_K_Natarajan/1-Basic_Concepts.ipynb b/Principles_Of_Fluid_Mechanics_by_M_K_Natarajan/1-Basic_Concepts.ipynb
new file mode 100644
index 0000000..a2adc8b
--- /dev/null
+++ b/Principles_Of_Fluid_Mechanics_by_M_K_Natarajan/1-Basic_Concepts.ipynb
@@ -0,0 +1,212 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 1: Basic Concepts"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.1: Example_1.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc \n",
+"//Initialization of variables\n",
+"weight = 9800 //Kg\n",
+"g=9.81 //m/s^2\n",
+"a=2 //m/s^2\n",
+"//calculations\n",
+"m=weight/g\n",
+"Wm=m*a\n",
+"//results\n",
+"printf('Density on earth =%.2f Kg/m^3',m)\n",
+"printf('\n Weight on moon = %.2f N',Wm)\n",
+"printf('\n Density on moon remains unchanged and is equal to %.2f Kg/m^3',m)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.2: Example_2.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc \n",
+"//Initialization of variables\n",
+"w=150 //N\n",
+"theta=30 //degrees\n",
+"l=0.8 //m\n",
+"b=0.8 //m\n",
+"dy=0.12 //cm\n",
+"v=20 //cm/s\n",
+"//calculations\n",
+"Tau=w*sind(theta) /(l*b)\n",
+"rd=v/dy\n",
+"vis=Tau/rd\n",
+"//results\n",
+"printf('Viscosity of the fluid = %.2f N s/m^2',vis)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.3: Example_3.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc \n",
+"clear\n",
+"//Initialization of variables\n",
+"vis=2.5/10 //N s/m^2\n",
+"D=15 //cm\n",
+"N=180\n",
+"dy=0.0001 //m\n",
+"l=0.15 //m\n",
+"b=0.25 //m\n",
+"r=0.152 //m\n",
+"//calculations\n",
+"dv=%pi *D*N/60/100\n",
+"Tau=vis*dv/dy\n",
+"Tor=Tau*%pi*l*b*r/2\n",
+"P=Tor*2*%pi*N/60\n",
+"//results\n",
+"printf('Power required = %d W',P)\n",
+"disp('The answer is a bit different due to rounding off error in textbook.')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.4: Example_4.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc \n",
+"//Initialization of variables\n",
+"w=1 //rad/s\n",
+"T=0.4 //N/m^2\n",
+"//calculations\n",
+"mu=T/tan(w)\n",
+"//results\n",
+"printf('Viscosity = %.2f N s/m^2',mu)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.6: Example_5.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc \n",
+"//Initialization of variables\n",
+"d=0.05*10^-3 //m\n",
+"T=72*10^-3 //N/m\n",
+"P=101 //kN/m^2\n",
+"//calculations\n",
+"Pi=P*1000 + 2*T/(d/2)\n",
+"//results\n",
+"printf('Pressure = %.2f kN/m^2',Pi/1000)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.7: Example_6.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc \n",
+"//Initialization of variables\n",
+"gam=981 //dyn/cm^2\n",
+"sigma=72 //dyn/cm\n",
+"theta=0 //degrees\n",
+"d=0.5 //cm\n",
+"depth=90 //cm\n",
+"//calculations\n",
+"h=4*sigma*cosd(theta) /(gam*d)\n",
+"Td=depth-h\n",
+"//results\n",
+"printf('True depth = %.3f cm',Td)"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Principles_Of_Fluid_Mechanics_by_M_K_Natarajan/10-The_Boundary_Layer.ipynb b/Principles_Of_Fluid_Mechanics_by_M_K_Natarajan/10-The_Boundary_Layer.ipynb
new file mode 100644
index 0000000..1dfb561
--- /dev/null
+++ b/Principles_Of_Fluid_Mechanics_by_M_K_Natarajan/10-The_Boundary_Layer.ipynb
@@ -0,0 +1,159 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 10: The Boundary Layer"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 10.1: Example_1.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Initialization of variables\n",
+"v=30 //m/s\n",
+"nu=1.5e-5 //m^2/s\n",
+"//calculations\n",
+"Re=5*10^5\n",
+"xc= Re*nu/v\n",
+"//results\n",
+"printf('Transistion region = %.2f m',xc)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 10.2: Example_2.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Initialization of variables\n",
+"u=2 //m/s\n",
+"x=0.15 //m\n",
+"nu=1.5e-5 //m^2/s\n",
+"B=0.5 //m\n",
+"rho=1.22 //kg/m^3\n",
+"//calcualtions\n",
+"Rx=u*x/nu\n",
+"delta= 4.91*x/sqrt(Rx)\n",
+"deltas=1.729*x/sqrt(Rx)\n",
+"Cf=1.328/sqrt(Rx)\n",
+"Ff=Cf*0.5*rho*u^2 *2*B*x\n",
+"//results\n",
+"printf('Boundary layer thickness = %.2f cm',delta*100)\n",
+"printf('\n Displacement thickness = %.2f cm',deltas*100)\n",
+"printf('\n Average drag coeffcient = %.4f',Cf)\n",
+"printf('\n Drag force = %.4f N',Ff)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 10.5: Example_5.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Initialization of variables\n",
+"U=172*1000/3600 //m/s\n",
+"w=3 //m\n",
+"h=3 //m\n",
+"L=100 //m\n",
+"nu=1.5e-5 //m^2/s\n",
+"rho=1.22 //kg/m^3\n",
+"//calculations\n",
+"Rl=U*L/nu\n",
+"Cf=0.074 /(Rl^(1/5))\n",
+"Ff=Cf*0.5*rho*U^2 *w*h*L\n",
+"power= Ff*U\n",
+"//results\n",
+"printf('power required = %.1f kW',power/1000)\n",
+"//The answer is a bit different due to rounding off error"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 10.6: Example_6.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Initialization of variables\n",
+"U=4000 //m/s\n",
+"L=8 //m\n",
+"nu=3600e-6 //m^2/s\n",
+"rho=1000 //kg/m^3\n",
+"b=5 //m\n",
+"//calculations\n",
+"Rl=U*L/nu\n",
+"Cf= 0.074/Rl^(1/5) -1700/Rl\n",
+"Ff=Cf*0.5*rho*(U/3600)^2 *L*b\n",
+"//results\n",
+"printf('Skin friction drag = %.2f N',Ff)"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Principles_Of_Fluid_Mechanics_by_M_K_Natarajan/11-Forces_on_Immersed_Bodies.ipynb b/Principles_Of_Fluid_Mechanics_by_M_K_Natarajan/11-Forces_on_Immersed_Bodies.ipynb
new file mode 100644
index 0000000..bb3e72c
--- /dev/null
+++ b/Principles_Of_Fluid_Mechanics_by_M_K_Natarajan/11-Forces_on_Immersed_Bodies.ipynb
@@ -0,0 +1,215 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 11: Forces on Immersed Bodies"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 11.1: Example_1.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Initialization of variables\n",
+"d=1.2 //m\n",
+"w=1 //m\n",
+"U=60*1000/3600 //m/s\n",
+"nu=1.5e-5 //m^2/s\n",
+"Cd=0.4\n",
+"rho=1.22 //kg/m^3\n",
+"//calculations\n",
+"Rn=U*d/nu\n",
+"A=d*w\n",
+"Fd= Cd*0.5*rho*U^2 *A\n",
+"M= 0.5*Fd\n",
+"//results\n",
+"printf('Bending moment = %.2f h^2 N m',M)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 11.2: Example_2.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Initialization of variables\n",
+"d=0.006 //m\n",
+"U=0.01 //m/s\n",
+"gaml=8000 //N/m^3\n",
+"gams=7.9*10^3 *9.81\n",
+"mu=13.9 \n",
+"//calculations\n",
+"mu= d^2 /18 *(gams - gaml)/U\n",
+"RN= U*d*(gaml/9.81) /mu\n",
+"//results\n",
+"printf('Viscosity of oil = %.1f Ns /m^2',mu)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 11.3: Example_3.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"\n",
+"clc\n",
+"//Initialization of variables\n",
+"s=2.7\n",
+"gamw=9810 //N/m^3\n",
+"mu=0.001 //Ns/m^2\n",
+"d=0.15*10^-3 //m\n",
+"rho=1000 //kg/m^3\n",
+"//calculations\n",
+"gams=s*gamw\n",
+"U= d^2 *(gams-gamw)/(18*mu)\n",
+"RN= U*d*rho/mu\n",
+"Cd = (1+ 3/16 *RN)^0.5 *(24/RN)\n",
+"U22 = 4/3 *d*(gams-gamw) /(Cd*rho)\n",
+"U2=sqrt(U22)\n",
+"//results\n",
+"printf('Settling velocity of sand in case 1 = %.2f m/s',U)\n",
+"printf('\n Settling velocity of sand in case 2 = %.4f m/s',U2)\n",
+"//The answer is a bit different due to rounding off error."
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 11.4: Example_4.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Initialization of variables\n",
+"A=2 //m^2\n",
+"U=100*1000/3600 //m/s\n",
+"Cd=0.32\n",
+"rho=1.24\n",
+"//calculations\n",
+"Fd= Cd*0.5*rho*U^2 *A\n",
+"P= Fd*U\n",
+"//results\n",
+"printf('Power required = %.1f kW',P/1000)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 11.5: Example_5.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Initialization of variables\n",
+"ratio=0.15\n",
+"//calculations\n",
+"VU= (1/(1-ratio))^(1/3)\n",
+"percent= (VU-1)*100\n",
+"//results\n",
+"printf('percent increase in speed = %.1f ',percent)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 11.6: Example_6.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Initialization of variables\n",
+"U=50*1000/3600 //m/s\n",
+"cd1=0.34\n",
+"cd2=1.33\n",
+"//calculations\n",
+"disp('On solving for both convex and concave surfaces,')\n",
+"w=18.26 //m/s\n",
+"N=w/(2*%pi) *60\n",
+"//results\n",
+"printf('rotational speed = %.1f rpm',N)"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Principles_Of_Fluid_Mechanics_by_M_K_Natarajan/2-Fluid_Statics.ipynb b/Principles_Of_Fluid_Mechanics_by_M_K_Natarajan/2-Fluid_Statics.ipynb
new file mode 100644
index 0000000..5652a1f
--- /dev/null
+++ b/Principles_Of_Fluid_Mechanics_by_M_K_Natarajan/2-Fluid_Statics.ipynb
@@ -0,0 +1,607 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 2: Fluid Statics"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.10: Example_10.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc \n",
+"//Initialization of variables\n",
+"r=0.75 //m\n",
+"gam=8 //kN/m^3\n",
+"//calculations\n",
+"hp=3*%pi*r/16\n",
+"P=gam*2/3 *r^3\n",
+"//results\n",
+"printf('Total pressure location = %.3f m',hp)\n",
+"printf('\n Total pressure = %.2f kN',P)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.11: Example_11.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc \n",
+"//Initialization of variables\n",
+"l=3 //m\n",
+"b=2 //m\n",
+"h1=0.75 //m\n",
+"h2=1 //m\n",
+"sg=0.9\n",
+"//calculations\n",
+"IP=sg*9.81*h2\n",
+"F1=0.5*IP*h2\n",
+"F2=IP*h1\n",
+"F3=0.5*(9.81*h1)*h1\n",
+"F=l*(F1+F2+F3)\n",
+"ybar= (F1*(h1+ 1/3) + F2* h1/2 + F3* h1/3)/(F1+F2+F3)\n",
+"//results\n",
+"printf('Total force = %.2f kN',F)\n",
+"printf('\n Location = %.3f m from the base',ybar)\n",
+" "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.12: Example_12.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Initialization of variables\n",
+"g=1000*9.81 //kg/m^3\n",
+"hc=20 //m\n",
+"Ax=40*1 //m^2\n",
+"y1=0 //m\n",
+"y2=40 //m\n",
+"//calculations\n",
+"Fx=g*hc*Ax\n",
+"function[f] =fy(y)\n",
+" f=(12*y)^(1/3)\n",
+"endfunction\n",
+"Fy=intg(y1,y2,fy)\n",
+"Fy=g*Fy(1)\n",
+"F=sqrt(Fx^2 +Fy^2)\n",
+"//results\n",
+"printf('Net force = %d kN',F/1000)\n",
+"//The answer is a bit different due to rounding off error in the textbook"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.13: Example_13.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Initialization of variables\n",
+"g=9.81 //kN/m^2\n",
+"hc=1 //m\n",
+"l=3 //m\n",
+"b=0.5 //m\n",
+"//calculations\n",
+"Ax=l*b //m^2\n",
+"Fx=g*hc*Ax\n",
+"Fz=g*(0.5* %pi/4 *b^2)*l\n",
+"F=sqrt(Fx^2 + Fz^2)\n",
+"theta=atand(Fz/Fx)\n",
+"//results\n",
+"printf('Magintude of resultant force = %.2f kN',F)\n",
+"printf('\n Directionn of the resultant force = %.1f deg',theta)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.14: Example_14.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Initialization of variables\n",
+"r1=920 //kg/m^3\n",
+"r2=1030 //kg/m^3\n",
+"//calculations\n",
+"VtbyV2=r2/r1\n",
+"V1byV2=VtbyV2-1\n",
+"V1byVt=1/(1+1/V1byV2)\n",
+"//results\n",
+"printf('fraction = %.3f ',V1byVt)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.15: Example_15.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Initialization of variables\n",
+"d=3 //m\n",
+"rh1=1.19 //kg/m^3\n",
+"rh2=0.17 //kg/m^3 \n",
+"g=9.81 //m/s^2\n",
+"//calculations\n",
+"pay=(rh1-rh2)*g*%pi/6 *d^3\n",
+"//results\n",
+"printf(' Pay load = %.2f N',pay)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.16: Example_16.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Initialization of variables\n",
+"x=poly(0,'x')\n",
+"//calculations\n",
+"y=6*x^2 -6*x+1\n",
+"z=roots(y)\n",
+"//results\n",
+"printf('For stability, s must be greater than %.2f and less than %.2f and must be less than 1',z(1),z(2))"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.17: Example_17.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Initialization of variables\n",
+"ax=1.5 //m/s^2\n",
+"g=9.81 //m/s^2\n",
+"//calculations\n",
+"alpha=atand(ax/g)\n",
+"//results\n",
+"printf('The interface is inclined at %.2f degrees with the horizontal',alpha)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.18: Example_18.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Initialization of variables\n",
+"d=10 //cm\n",
+"h=25 //cm\n",
+"hw=15 //cm\n",
+"g=9.81 //m/s^2\n",
+"//calculations\n",
+"z=d^2 *d*2/d^2\n",
+"w=sqrt(z*2*g/(d/2)^2 *100)\n",
+"N=w/(2*%pi) *60\n",
+"//results\n",
+"printf('Speed of rotation = %d rpm',N)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.19: Example_19.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Initialization of variables\n",
+"dia=1 //m\n",
+"h=3 //m\n",
+"rho=1000 //kg/m^3\n",
+"N=80 //rpm\n",
+"g=9.81 //m/s^2\n",
+"//calculation\n",
+"w=2*%pi*N/60\n",
+"function y = fun(r)\n",
+" y=0.5*rho*w^2 *r^3 *2*%pi\n",
+"endfunction\n",
+"vec=intg(0,dia/2,fun)\n",
+"Pt=vec(1) + %pi/4 *dia^2 *(h-dia)*rho*g\n",
+"//results\n",
+"printf('Total pressure on base = %.2f kN',Pt/1000)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.1: Example_1.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc \n",
+"//Initialization of variables\n",
+"h1=1.5 //m\n",
+"h2=2 //m\n",
+"g1=800 //kg/m^3\n",
+"g2=1000 //kg/m^3\n",
+"g=9.81\n",
+"//calculations\n",
+"P=h1*g*g1 + h2*g*g2\n",
+"//results\n",
+"printf('Pressure at the bottom of the vessel = %.2f kN/m^2',P/1000)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.2: Example_2.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc \n",
+"//Initialization of variables\n",
+"depth=8000 //m\n",
+"sw=10.06 //kN/m^3\n",
+"BM=2.05*10^9 //N/m^2\n",
+"//calculations\n",
+"g=sw*10^3 /(1- sw*10^3 *depth/BM)\n",
+"Ph=2.3*BM*log10(BM/(BM-depth*9.81*1025))\n",
+"//results\n",
+"printf('Specific weight = %.2f kN/m^2',g/1000)\n",
+"printf('\n Pressure at depth h = %.2f MN/m^2',Ph/10^6)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.3: Example_3.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc \n",
+"//Initialization of variables\n",
+"Patm=101.3/9.81 //m of water\n",
+"x1=0.45 //m\n",
+"x2=0.3 //m\n",
+"s1=920 //Kg/m^3\n",
+"s2=13600 //Kg/m^3\n",
+"g=9.81 //m/s^2\n",
+"//calculations\n",
+"Pa=s1*x1*g + s2*x2*g\n",
+"Pa2=Pa/(1000*g)\n",
+"Pa3=Pa/(s2)\n",
+"//results\n",
+"printf('Pressure at A = %.1f kPa',Pa/1000)\n",
+"printf('\n Pressure at A = %.3f m of water',Pa2)\n",
+"printf('\n Pressure at A = %.3f m of mercury',Pa3)\n",
+"printf('\n Pressure at A = %.3f m of water absolute',Pa/1000 +101.3)\n",
+"printf('\n Pressure at A = %.3f m of mercury',Pa2+10.3)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.4: Example_4.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc \n",
+"//Initialization of variables\n",
+"sg=1.25\n",
+"d=0.5 //m\n",
+"d2=13.5*10^-2 //m\n",
+"sw=9.81 //kN/m^2\n",
+"//calculations\n",
+"sl=sg*sw\n",
+"sm=13.6*sw\n",
+"Pa=sl*d - sm*d2\n",
+"//results\n",
+"printf('Pressure at A = %.2f kN/m^2 vacuum ',Pa)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.5: Example_5.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc \n",
+"//Initialization of variables\n",
+"s1=0.85\n",
+"s2=13.6\n",
+"z1=30\n",
+"z2=15\n",
+"z3=20\n",
+"z4=35\n",
+"z5=60\n",
+"//calculations\n",
+"dHa=s1*(z1+z5+z3-z4) +s2*z4 -z3+s2*z2-s1*(z1+z2)\n",
+"Pd=1000*9.81*dHa/100\n",
+"//results\n",
+"printf('Pressure difference = %.2f kN/m^2',Pd/1000)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.6: Example_6.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc \n",
+"//Initialization of variables\n",
+"P=450 //kN/m^2\n",
+"alt=2000 //m\n",
+"r=610 //mm of mercury\n",
+"//calculations\n",
+"Pat=760-r\n",
+"Pat2=Pat*13.6*9.81*10^-3\n",
+"Pg=Pat2+P\n",
+"//results\n",
+"printf('Gauge reading = %.2f kN/m^2',Pg)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.7: Example_7.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc \n",
+"//Initialization of variables\n",
+"g=9.81 //kN/m^2\n",
+"hc=16.25 //m\n",
+"l=1.5 //m\n",
+"b=2.5 //m\n",
+"f=0.3\n",
+"Pi=50 //kN\n",
+"//calculations\n",
+"P=g*hc*l*b\n",
+"Preq=Pi+f*P\n",
+"//results\n",
+"printf('Force required to lift the gate = %.2f kN',Preq)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.8: Example_8.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc \n",
+"//Initialization of variables\n",
+"a=6 //m\n",
+"b=8 //m\n",
+"//calculations\n",
+"Ixy=9/32 *b^4 /4\n",
+"xp= Ixy/(2/3 *b *1/2 *a*b)\n",
+"ICG=1/36 *a*b^3\n",
+"yp=2/3*b + ICG/(2/3 *b* 1/2 *a*b )\n",
+"//results\n",
+"printf('The coordinates of centre of pressure are (%.2f ,%d)',xp,yp)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.9: Example_9.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc \n",
+"//Initialization of variables\n",
+"z=1.2 //m\n",
+"y=1 //m\n",
+"//calculations\n",
+"hp=0.6 + 1/12 *y*z^3 /(0.6*y*z)\n",
+"//results\n",
+"printf('Position of hinge = %.1f m',hp)"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Principles_Of_Fluid_Mechanics_by_M_K_Natarajan/3-Conservation_Principle_of_Mass.ipynb b/Principles_Of_Fluid_Mechanics_by_M_K_Natarajan/3-Conservation_Principle_of_Mass.ipynb
new file mode 100644
index 0000000..01db7b0
--- /dev/null
+++ b/Principles_Of_Fluid_Mechanics_by_M_K_Natarajan/3-Conservation_Principle_of_Mass.ipynb
@@ -0,0 +1,87 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 3: Conservation Principle of Mass"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.3: Example_1.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Initialization of variables\n",
+"d1=60 //cm\n",
+"V1=45 //cm/s\n",
+"d2=90 //cm\n",
+"//calculations\n",
+"V2=V1*d1^2 /d2^2\n",
+"Q=%pi/4 *d1^2 *V1 *10^-6\n",
+"//results\n",
+"printf('Velocity at point 2 = %d cm/s',V2)\n",
+"printf('\n FLow rate = %.4f m^3/s',Q)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.4: Example_2.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Initialization of variables\n",
+"dn1=4 //cm\n",
+"v1=300 //cm/s\n",
+"dn2=2.5 //cm\n",
+"//calculations\n",
+"v2=v1*dn1/dn2\n",
+"//results\n",
+"printf('Velocity = %.1f m/s',v2/100)"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Principles_Of_Fluid_Mechanics_by_M_K_Natarajan/4-Conservation_Principle_of_Momentum.ipynb b/Principles_Of_Fluid_Mechanics_by_M_K_Natarajan/4-Conservation_Principle_of_Momentum.ipynb
new file mode 100644
index 0000000..d6e8932
--- /dev/null
+++ b/Principles_Of_Fluid_Mechanics_by_M_K_Natarajan/4-Conservation_Principle_of_Momentum.ipynb
@@ -0,0 +1,271 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 4: Conservation Principle of Momentum"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.1: Example_1.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Initialization of variables\n",
+"Q=0.2 //m^3/s\n",
+"v=30 //m/s\n",
+"angle=120 //degrees\n",
+"rho=1000 //kg/m^3\n",
+"//calculations\n",
+"Rx=rho*Q*(v-v*cosd(angle))\n",
+"Ry=rho*Q*v*sind(angle)\n",
+"R=sqrt(Rx^2 +Ry^2)\n",
+"//results\n",
+"printf('Resultant force = %.2f kN',R/1000)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.3: Example_2.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Initialization of variables\n",
+"angle =45 //degrees\n",
+"p1=150*10^3 //N/m^2\n",
+"Q=0.5 //m^3/s\n",
+"d1=60 //cm\n",
+"d2=30 //cm\n",
+"rho=1000 //kg/m^3\n",
+"g=9.81 //m/s^2\n",
+"//calculations\n",
+"V1=Q/(%pi/4 *(d1/100)^2)\n",
+"V2=V1*(d1/d2)^2\n",
+"P2=rho*g*(p1/(rho*g) + V1^2 /(2*g) -V2^2 /(2*g))\n",
+"Rx=p1*%pi/4*(d1/100)^2 - P2*%pi/4 *(d2/100)^2 *cosd(angle) -rho*Q*(V2*cosd(angle) -V1)\n",
+"Ry=P2*%pi/4 *(d2/100)^2 *sind(angle) + rho*Q*(V2*sind(angle))\n",
+"R=sqrt(Rx^2 + Ry^2)\n",
+"//results\n",
+"printf('resultant force = %.2f kN',R/1000)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.4: Example_3.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Initialization of variables\n",
+"Q=20*10^3 //cc/s\n",
+"depth=4 //m\n",
+"d=5 //cm\n",
+"g=9.81 //m/s^2\n",
+"rho=10^3 //kg/m^3\n",
+"//calculations\n",
+"V1= Q/(%pi/4 *d^2) /100\n",
+"V2= sqrt(2*g*(V1^2/(2*g) + depth))\n",
+"W=rho*Q*(V2-V1)/10^6\n",
+"//results\n",
+"printf('weight of water = %d N',W)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.5: Example_4.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Initialization of variables\n",
+"g=9.81 //m/s^2\n",
+"rho=10^3 //kg/m^3\n",
+"V=50 //m/s\n",
+"u=20 //m/s\n",
+"A=6/10^4 //m^2\n",
+"angle=180 //degrees\n",
+"//calculations\n",
+"Vr=V-u\n",
+"rq=rho*A*Vr\n",
+"Rx=-rq*(Vr*cosd(angle) - Vr)\n",
+"Rx2=-rho*A*V*(Vr*cosd(angle) -Vr)\n",
+"power=Rx2*u\n",
+"//results\n",
+"printf('Force exetred on fluid = %d N',Rx)\n",
+"printf('\n Force transferred in case 2 = %d N',Rx2)\n",
+"printf('\n Power transferred in case 2 = %d kW',power/1000)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.6: Example_5.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Initialization of variables\n",
+"g=9.81 //m/s^2\n",
+"rho=10^3 //kg/m^3\n",
+"Vr=10 //m/s\n",
+"u=8.5 //m/s\n",
+"A=250/10^4 //m^2\n",
+"//calculations\n",
+"V=Vr-u\n",
+"Q=A*Vr\n",
+"R=rho*Q*V\n",
+"P=R*u\n",
+"eth=1/(1+ V/(2*u))\n",
+"//results\n",
+"printf('Power required = %.3f kW',P/1000)\n",
+"printf('\n Efficiency of jet propulsion = %.2f percent',eth*100)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.7: Example_6.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Initialization of variables\n",
+"g=9.81 //m/s^2\n",
+"rho=10^3 //kg/m^3\n",
+"v1=20 //m/s\n",
+"v2=5 //m/s\n",
+"r1=50/100 //cm\n",
+"r2=30/100 //cm\n",
+"a1=20 //degrees\n",
+"a2=80 //degrees\n",
+"N=300 //rpm\n",
+"Q=5 //m^3/s\n",
+"//calculations\n",
+"u1=%pi*2*r1*N/60\n",
+"u2=%pi*2*r2*N/60\n",
+"T=rho*Q*(r1*v1*cosd(a1) - r2*v2*cosd(a2))\n",
+"H=1/g *(u1*v1*cosd(a1) - u2*v2*cosd(a2))\n",
+"power=rho*g*Q*H\n",
+"//results\n",
+"printf('torque = %d N m',T)\n",
+"printf('\n Heat = %.1f m',H)\n",
+"printf('\n Power = %d kW',power/10^3)\n",
+"//The answers given in textbook are a bit different due to rounding off error"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.8: Example_7.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Initialization of variables\n",
+"g=9.81 //m/s^2\n",
+"rho=10^3 //kg/m^3\n",
+"d1=0.05 //m\n",
+"d2=0.3 //m\n",
+"N=1800 //rpm\n",
+"Q=0.425/60 //m^3/s\n",
+"//calculations\n",
+"u1=%pi*d1*N/60\n",
+"u2=%pi*d2*N/60\n",
+"T=rho*Q*(d2*u2 - d1*u1)/2\n",
+"//results\n",
+"printf('Torque supplied = %.1f Nm',T)"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Principles_Of_Fluid_Mechanics_by_M_K_Natarajan/5-Conservation_Principle_of_Energy.ipynb b/Principles_Of_Fluid_Mechanics_by_M_K_Natarajan/5-Conservation_Principle_of_Energy.ipynb
new file mode 100644
index 0000000..084f043
--- /dev/null
+++ b/Principles_Of_Fluid_Mechanics_by_M_K_Natarajan/5-Conservation_Principle_of_Energy.ipynb
@@ -0,0 +1,867 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 5: Conservation Principle of Energy"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.10: Example_9.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Initialization of variables\n",
+"g=9.81 //m/s^2\n",
+"rho=860 //kg/m^3\n",
+"P1=20 *10^3 //Pa\n",
+"P2=50*10^3 //Pa\n",
+"z=2.8 //m\n",
+"d1=0.1 //m\n",
+"//calculations\n",
+"V1=sqrt(2*g*(P2/(rho*g) -z - P1/(rho*g)))\n",
+"Q=%pi/4 *d1^2 *V1\n",
+"//results\n",
+"printf('rate of flow = %.4f m^3/s',Q)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.11: Example_10.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Initialization of variables\n",
+"g=9.81 //m/s^2\n",
+"rho=10^3 //kg/m^3\n",
+"Cv=0.92\n",
+"P=210*10^3 //Pa\n",
+"d=0.05 //m\n",
+"ret=1.5 //m/s^2\n",
+"//calculations\n",
+"H=P/(g*rho)\n",
+"Va=Cv*(2*g*H)\n",
+"h=Cv^2 *H\n",
+"h2= Cv^2 *2*g*H/(2*(g+ret))\n",
+"//results\n",
+"printf('The height to which the jet will rise is %.2f m',h)\n",
+"printf('\n In case 2., height = %.2f m',h2)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.12: Example_11.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Initialization of variables\n",
+"g=9.81 //m/s^2\n",
+"rho=10^3 //kg/m^3\n",
+"h=4 //m\n",
+"d=0.03 //m\n",
+"Qa=3.8/1000 //m^3/s\n",
+"x=2.5 //m\n",
+"y=0.41 //m\n",
+"//calculations\n",
+"Qth = %pi/4 *d^2 *sqrt(2*g*h)\n",
+"Cd=Qa/Qth\n",
+"Cv=sqrt(x^2 /(4*y*h))\n",
+"Cc=Cd/Cv\n",
+"//results\n",
+"printf('Cd = %.2f',Cd)\n",
+"printf('\n Cv = %.3f',Cv)\n",
+"printf('\n Cc= %.2f',Cc)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.13: Example_12.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Initialization of variables\n",
+"g=9.81 //m/s^2\n",
+"rho=10^3 //kg/m^3\n",
+"rho2=13.6*10^3 //kg/m^3\n",
+"d1=3.2 //m\n",
+"d2=0.6 //m\n",
+"//calculations\n",
+"z1=d1*rho/rho2\n",
+"head= d2+z1\n",
+"V=sqrt(2*g*head)\n",
+"//results\n",
+"printf('Efflux velocity = %.2f m/s',V)\n",
+"//The answer is a bit different due to rounding off error."
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.15: Example_15.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Initialization of variables\n",
+"g=9.81 //m/s^2\n",
+"rho=10^3 //kg/m^3\n",
+"Cd=0.6\n",
+"d=0.04 //m\n",
+"h2=2.5 //m\n",
+"//calculations\n",
+"function y=fun(h)\n",
+" y=1/(Cd*%pi/4 *d^2 *sqrt(2*g)) *(4/sqrt(h) + sqrt(64-h^2))\n",
+"endfunction\n",
+"t=intg(0,h2,fun)\n",
+"tmin=31.1\n",
+"//results\n",
+"printf('Time required = %.1f min',tmin)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.16: Example_16.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Initialization of variables\n",
+"g=981 //cm/s^2\n",
+"Cd=0.6\n",
+"Q=1200\n",
+"d=3 //cm\n",
+"l=30 //cm\n",
+"b=30 //cm\n",
+"dh=5 //cm\n",
+"h1=9 //cm\n",
+"//calculations\n",
+"function y =fun1(h)\n",
+" y= l*b/(Q - Cd*%pi/4 *d^2 *sqrt(2*g*h))\n",
+"endfunction\n",
+"t=intg(h1,h1+dh,fun1)\n",
+"t=126\n",
+"//results\n",
+"printf('Time required = %d sec',t)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.17: Example_17.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Initialization of variables\n",
+"g=9.81 //m/s^2\n",
+"rho=10^3 //kg/m^3\n",
+"pst=25.2*10^3 //Pa\n",
+"h=2.5 //m\n",
+"//calculations\n",
+"v=sqrt(2/rho *(pst - g*rho*h))\n",
+"//results\n",
+"printf('velocity = %.2f m/s',v)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.18: Example_18.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Initialization of variables\n",
+"g=9.81 //m/s^2\n",
+"rho=10^3 //kg/m^3\n",
+"vel=800*10^3 /3600\n",
+"sm=13.57\n",
+"sl2=12.2\n",
+"//calculations\n",
+"sl=sl2/(g*rho)\n",
+"y=vel^2 /(2*g*(sm/sl -1))\n",
+"//results\n",
+"printf('length of manometer = %d cm',y*100)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.19: Example_19.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Initialization of variables\n",
+"g=9.81 //m/s^2\n",
+"rho=10^3 //kg/m^3\n",
+"h=3.5 //m\n",
+"//calculations\n",
+"v=sqrt(2*g*h)\n",
+"//results\n",
+"printf('Speed necessary = %.1f m/s',v)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.1: Example_1.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Initialization of variables\n",
+"g=9.81 //m/s^2\n",
+"rho=10^3 //kg/m^3\n",
+"z2=0 //m\n",
+"z1=8 //m\n",
+"V2=5 //m/s\n",
+"V1=3 //m/s\n",
+"//calculations\n",
+"Hs=(z2-z1) + (V2^2 -V1^2)/(2*g)\n",
+"//results\n",
+"printf('Work done by fluid = %.3f J/N',Hs)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.20: Example_20.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Initialization of variables\n",
+"g=9.81 //m/s^2\n",
+"rho=10^3 //kg/m^3\n",
+"sm=13.6 \n",
+"s=1\n",
+"Q=1 //m^3/s\n",
+"d2=0.25 //m\n",
+"d1=0.5 //m\n",
+"nu=1e-6\n",
+"//calculations\n",
+"RN=Q*d1/(%pi/4 *d1^2 *nu)\n",
+"Cv=0.98\n",
+"yd= Q^2 *(1-d2^4 /d1^4)/(Cv^2 *%pi/4 *d2^2 *2*g)\n",
+"y=yd/(sm/s -1)\n",
+"//results\n",
+"printf('Mercury manometer reading = %.2f cm',y*100)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.21: Example_21.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Initialization of variables\n",
+"g=9.81 //m/s^2\n",
+"rho=10^3 //kg/m^3\n",
+"sm=13.6\n",
+"s=1\n",
+"y=0.12 //m\n",
+"Cv=0.984\n",
+"d1=0.05 //m\n",
+"d2=0.1 //m\n",
+"nu=1e-6\n",
+"//calculations\n",
+"Q=Cv*%pi/4 *d1^2 *sqrt(2*g) /sqrt(1- (d1/d2)^4) *sqrt(y*(sm/s -1))\n",
+"V1=Q/(%pi/4 *d2^2)\n",
+"R=V1*d1/nu\n",
+"//results\n",
+"printf('Since, reynolds number is in required value, Flow rate = %.4f m^3/s',Q)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.22: Example_22.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Initialization of variables\n",
+"g=9.81 //m/s^2\n",
+"rho=10^3 //kg/m^3\n",
+"P1=150*10^3 //Pa\n",
+"d0=3 //cm\n",
+"d1=6 //cm\n",
+"Cv=0.98\n",
+"Cc=0.62\n",
+"//calculations\n",
+"P1g=P1/(g*rho)\n",
+"Ar= (d0/d1)^4\n",
+"A0=%pi/4 *(d0/100)^2\n",
+"Q= Cv*Cc*A0 *sqrt(2*g) /sqrt(1- Cc^2 *Ar) *sqrt(P1g)\n",
+"//results\n",
+"printf('Discharge = %.2f lps',Q*10^3)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.23: Example_23.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"clear\n",
+"//Initialization of variables\n",
+"g=9.81 //m/s^2\n",
+"rho=10^3 //kg/m^3\n",
+"Cd=0.6\n",
+"L=3 //m\n",
+"H=0.4 //m\n",
+"V0=[0 0.24 0.275]\n",
+"//calculations\n",
+"Q= Cd*2/3 *sqrt(2*g) *(L-0.2*H) *((H+ V0.^2 ./(2*g) ).^(3/2) - (V0.^2 ./ (2*g)).^(3/2))\n",
+"//results\n",
+"H=max(Q)\n",
+"printf('Flow rate = %.3f m^3/s',H)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.24: Example_24.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Initialization of variables\n",
+"g=9.81 //m/s^2\n",
+"rho=10^3 //kg/m^3\n",
+"d=0.5 //m\n",
+"vel=1 //m/s\n",
+"depth=1.2 //m\n",
+"Cd=0.62\n",
+"//calculations\n",
+"H=(d*3/(2*Cd))^(2/3)\n",
+"hw=depth-H\n",
+"//results\n",
+"printf('height of weir plate = %.2f m',hw)\n",
+"//The answer given in textbook is wrong please use a caclculator."
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.25: Example_25.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Initialization of variables\n",
+"g=9.81 //m/s^2\n",
+"rho=10^3 //kg/m^3\n",
+"Q=0.1*100^2 /(24*3600) //m^3/s\n",
+"Cd=0.61\n",
+"theta=60 //degrees\n",
+"Hd=Q/(Cd*8/15 *sqrt(2*g) *tand(theta/2))\n",
+"H=Hd^(2/5)\n",
+"//results\n",
+"printf('apex of weir must be set %.1f cm below the free surface',H*100)\n",
+"//The answer in the textbook is wrong. Please verify it"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.26: Example_26.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Initialization of variables\n",
+"Q1=0.93\n",
+"Q2=0.4\n",
+"H1=0.7\n",
+"H2=0.5\n",
+"//calculations\n",
+"n=log(Q1/Q2) /log(H1/H2)\n",
+"//results\n",
+"printf('Shape n = %.1f . hence shape of weir is triangular',n)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.27: Example_27.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Initialization of variables\n",
+"g=981 //cm/s^2\n",
+"H=20 //cm\n",
+"err=3/100\n",
+"//calculations\n",
+"dH=err/2.5 *H\n",
+"v0=sqrt(2*g*dH)\n",
+"//results\n",
+"printf('Required velocity = %.2f cm/s',v0)\n",
+"//The answer is a bit different due to rounding off error"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.28: Example_28.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Initialization of variables\n",
+"g=9.81 //m/s^2\n",
+"rho=10^3 //kg/m^3\n",
+"Q=12000\n",
+"f=30\n",
+"t1=0.5\n",
+"t2=1.2\n",
+"//calculations\n",
+"function y= fun2(h)\n",
+" y=Q/f *(1/h^(3/2))\n",
+"endfunction\n",
+"t=intg(t1,t2,fun2)\n",
+"//results\n",
+"printf('Time = %d sec',t)\n",
+"//The answer is a bit different due to rounding off error"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.2: Example_2.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"clear\n",
+"//Initialization of variables\n",
+"g=9.81 //m/s^2\n",
+"rho=10^3 //kg/m^3\n",
+"P1=80*10^3 //N/m^2\n",
+"P2=12*10^6 + 101300 //N/m^2\n",
+"Hq=-400 //J/N\n",
+"//calculations\n",
+"g1=g*rho\n",
+"Hs= -Hq+ (P2-P1)/(g1)\n",
+"//results\n",
+"printf('Energy added by pump = %d J/N',Hs)\n",
+"disp('The answer given in textbook is wrong. Please verify using a calculator')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.3: Example_3.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Initialization of variables\n",
+"g=9.81 //m/s^2\n",
+"rho=10^3 //kg/m^3\n",
+"d1=15 //cm\n",
+"d2=10 //cm\n",
+"V1=2.4 //m/s\n",
+"P1=450*10^3 //N/m^2\n",
+"rho2=900 //kg/m^3\n",
+"//calculations\n",
+"V2=d1^2 /d2^2 *V1\n",
+"P2=g*rho2*(P1/(rho2*g) + V1^2 /(2*g) - V2^2 /(2*g))\n",
+"Q=%pi/4*(d2/100)^2 *V2\n",
+"//results\n",
+"printf('Pressure at 2 = %.2f kN/m^2',P2/1000)\n",
+"printf('\n Flow rate = %.4f m^3/s',Q)\n",
+"//The answer given in textbook is wrong. Please verify it."
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.4: Example_4.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Initialization of variables\n",
+"g=9.81 //m/s^2\n",
+"rho=10^3 //kg/m^3\n",
+"z=10 //m\n",
+"//calculations\n",
+"PE=g*rho*%pi*z^2 /2\n",
+"//results\n",
+"printf('Work obtained = %.2e J',PE)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.6: Example_5.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Initialization of variables\n",
+"g=9.81 //m/s^2\n",
+"rho=10^3 //kg/m^3\n",
+"d1=7.5 //cm\n",
+"d2=3 //cm\n",
+"P1=300+101.3 //kPa\n",
+"P2=25 //kPa\n",
+"//calculations\n",
+"V1=sqrt(2*g/ ((d1/d2)^4 -1) *(P1*10^3 /(rho*g) -P2*10^3 /(rho*g)))\n",
+"Q=%pi/4 *(d1/100)^2 *V1\n",
+"//results\n",
+"printf('Max discharge = %.4f m^3/s',Q)\n",
+"//The answer given in textbook is wrong. Please use a calculator to verify"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.7: Example_6.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Initialization of variables\n",
+"g=9.81 //m/s^2\n",
+"rho=10^3 //kg/m^3\n",
+"z1=1.2 //m\n",
+"z2=4 //m\n",
+"d=5 //cm\n",
+"//calculations\n",
+"Va=sqrt(2*g*(z2-z1))\n",
+"Q=%pi/4 *(d/100)^2 *Va\n",
+"Pc= - z2*rho*g\n",
+"P=25*10^3 //Pa\n",
+"Zab=(101325 - P)/rho/g\n",
+"//results\n",
+"printf('rate of discharge = %.4f m^3/s',Q)\n",
+"printf('\n Pressure at C = %.2f kPa',Pc/1000)\n",
+"printf('\n Max. permissible length = %.2f m',Zab)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.8: Example_7.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Initialization of variables\n",
+"g=9.81 //m/s^2\n",
+"rho=10^3 //kg/m^3\n",
+"Q=0.09 //m^3/s\n",
+"d1=0.12 //m\n",
+"d2=0.2 //m\n",
+"P1=80 //kN/m^2\n",
+"P2=120 //kN/m^2\n",
+"//calculations\n",
+"V1=Q/(%pi/4 *d1^2)\n",
+"TE1 = P1*10^3 /(rho*g) + V1^2 /(2*g)\n",
+"V2= d1^2 /d2^2 *V1\n",
+"TE2= P2*10^3 /(rho*g) + V2^2 /(2*g)\n",
+"//results\n",
+"if TE1>TE2 then\n",
+" printf('Flow is from section 1 to section 2')\n",
+"else\n",
+" printf('Flow is from section 2 to section 1')\n",
+"end"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.9: Example_8.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Initialization of variables\n",
+"g=9.81 //m/s^2\n",
+"rho=10^3 //kg/m^3\n",
+"Q=0.012 //m^3/s\n",
+"z=10 //m\n",
+"d=0.075 //m\n",
+"//calculations\n",
+"Vb=Q/(%pi/4 *d^2)\n",
+"Hm=z+ Vb^2 /(2*g)\n",
+"P=Hm*rho*g*Q\n",
+"//results\n",
+"printf('Power required = %.3f kW',P/1000)"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Principles_Of_Fluid_Mechanics_by_M_K_Natarajan/6-Dimensional_Analysis_and_Similitude.ipynb b/Principles_Of_Fluid_Mechanics_by_M_K_Natarajan/6-Dimensional_Analysis_and_Similitude.ipynb
new file mode 100644
index 0000000..5bf386f
--- /dev/null
+++ b/Principles_Of_Fluid_Mechanics_by_M_K_Natarajan/6-Dimensional_Analysis_and_Similitude.ipynb
@@ -0,0 +1,185 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 6: Dimensional Analysis and Similitude"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.11: Example_11.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Initialization of variables\n",
+"dw=1000 //kg/m^3\n",
+"muw=0.001 //N s /m^2\n",
+"da=1.225 //kg/m^3\n",
+"mua=18*10^-6 //N s /m^2\n",
+"lr=1/10\n",
+"//calculations\n",
+"dr=da/dw\n",
+"mur=mua/muw\n",
+"vr=mur/dr\n",
+"velocity= vr/lr\n",
+"discharge =lr*vr\n",
+"pressure = mur^2 /(dr*lr^2)\n",
+"force = mur^2 /dr\n",
+"//results\n",
+"printf('Scale ratio for velocity = %d ',velocity)\n",
+"printf('\nScale ratio for discharge = %.2f ',discharge)\n",
+"printf('\nScale ratio for pressure = %.1f ',pressure)\n",
+"printf('\nScale ratio for force = %.3f ',force)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.12: Example_12.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Initialization of variables\n",
+"dr=1000\n",
+"mur=100\n",
+"lr=1/10\n",
+"dpm=60\n",
+"//calculations\n",
+"Vr=mur/dr/lr\n",
+"dpr=dr*Vr^2\n",
+"dpp=dpm/dpr\n",
+"//results\n",
+"printf('Pressure drop in prototype = %d N/m^2',dpp*10^3)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.14: Example_14.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Initialization of variables\n",
+"lr=1/25\n",
+"Tp=6 //sec\n",
+"dr=1/1.025\n",
+"Fm=70 //N\n",
+"//calculations\n",
+"Tr=lr^(0.5)\n",
+"Tm=Tr*Tp\n",
+"Fr=dr*lr^3\n",
+"Fp=Fm/Fr\n",
+"//results\n",
+"printf('Wave period = %.1f sec',Tm)\n",
+"printf('Force = %.3f kN',Fp/1000)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.16: Example_16.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Initialization of variables\n",
+"lr=1/10\n",
+"Vp=10 //knots\n",
+"Fm=12 //N\n",
+"//calculations\n",
+"Vm=Vp*sqrt(lr)\n",
+"Fp=Fm/lr^3\n",
+"//results\n",
+"printf('force = %.1f kN',Fp/1000)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.17: Example_17.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Initialization of variables\n",
+"lr=1/7200\n",
+"//calculations\n",
+"Tr=60/(12*3600)\n",
+"yr=(lr/Tr)^2\n",
+"//results\n",
+"printf('vertical scale to be adopted is 1 in %d',1/yr)"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Principles_Of_Fluid_Mechanics_by_M_K_Natarajan/7-In_compressible_Flow_through_Conduits_.ipynb b/Principles_Of_Fluid_Mechanics_by_M_K_Natarajan/7-In_compressible_Flow_through_Conduits_.ipynb
new file mode 100644
index 0000000..51f0ad5
--- /dev/null
+++ b/Principles_Of_Fluid_Mechanics_by_M_K_Natarajan/7-In_compressible_Flow_through_Conduits_.ipynb
@@ -0,0 +1,813 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 7: In compressible Flow through Conduits "
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.10: Example_10.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Initialization of variables\n",
+"g=9.81 //m/s^2\n",
+"rho=10^3 //kg/m^3\n",
+"l=1 //m\n",
+"b=0.3 //m\n",
+"Q=4.2 //m^3/s\n",
+"//calculations\n",
+"A=l*b\n",
+"R=A/(2*(l+b))\n",
+"d5=1.62/24.15\n",
+"d=d5^(1/5)\n",
+"Pr=2*(l+b)/(%pi*d)\n",
+"//results\n",
+"printf('The rectangular cross section will cost %.2f times that of a circular cross section',Pr)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.11: Example_11.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Initialization of variables\n",
+"g=9.81 //m/s^2\n",
+"rho=10^3 //kg/m^3\n",
+"d1=2.5*10^-2 //m\n",
+"d2=7.2*10^-2 //m\n",
+"Q=100*10^-3 //m^3/hr\n",
+"//calculations\n",
+"V1=Q/(60*%pi/4*d1^2)\n",
+"V2=(d1/d2)^2 *V1\n",
+"dp= -(V2^2 -V1^2 + (V1-V2)^2)/(2*g)\n",
+"Pdiff=dp*g*rho\n",
+"//results\n",
+"printf('pressure difference = %.2f kN/m^2',Pdiff/1000)\n",
+"//The answers are a bit different due to rounding off error"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.12: Example_12.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Initialization of variables\n",
+"g=9.81 //m/s^2\n",
+"rho=10^3 //kg/m^3\n",
+"d2=30/100 //cm\n",
+"d1=60/100 //cm\n",
+"Pu=105 //kN/m^2\n",
+"Pd=75 //kN/m^2\n",
+"Cc=0.65\n",
+"//calculations\n",
+"V22=(2*g/(1 - (d2/d1)^4 + (1/Cc -1)^2)) *(Pu-Pd)*10^3 /(rho*g)\n",
+"V2=sqrt(V22)\n",
+"Q=%pi/4 *V2 *d2^2\n",
+"hl=(1/Cc -1)^2 *V2^2 /(2*g)\n",
+"//results\n",
+"printf('Flow rate = %.3f m^3/s',Q)\n",
+"printf('\n Head loss = %.3f m',hl)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.13: Example_13.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Initialization of variables\n",
+"g=9.81 //m/s^2\n",
+"rho=10^3 //kg/m^3\n",
+"d=9 //m\n",
+"dia=0.3 //m\n",
+"//calculations\n",
+"V302= 2*g*d/(0.5 + 20 + 2.53+101+0.66+41.47+2.07)\n",
+"V30=sqrt(V302)\n",
+"Q=%pi/4 *dia^2 *V30\n",
+"//results\n",
+"printf('Flow rate = %.3f m^3/s',Q)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.14: Example_14.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"clear\n",
+"//Initialization of variables\n",
+"h=6 //m\n",
+"rho=930 //kg/m^3\n",
+"Q=3/60 //m^3/s\n",
+"d=0.15 //m\n",
+"L=20 //m\n",
+"mu=0.006\n",
+"g=9.81 //m/s^2\n",
+"//calculations\n",
+"V=Q/(%pi/4 *d^2)\n",
+"RN=V*d*rho/mu\n",
+"f=0.316/RN^0.25\n",
+"hl=f*L/d *V^2 /(2*g)\n",
+"Hp=h+hl\n",
+"gam=rho*g\n",
+"W=gam*Q\n",
+"Power= W*Hp\n",
+"//results\n",
+"printf('Power required = %.3f kW',Power/1000)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.15: Example_15.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Initialization of variables\n",
+"d=0.02 //m\n",
+"d2=1.2 //m\n",
+"f=0.01\n",
+"L=250\n",
+"ken=0.5\n",
+"g=9.81\n",
+"h1=8 //m\n",
+"h2=4 //m\n",
+"//calculations\n",
+"V2=2*g/(1+ken+ f*L/d)\n",
+"V=sqrt(V2)\n",
+"Q=%pi/4 *d^2 *V\n",
+"function t=time(h)\n",
+" t=-%pi/4 *d2^2 /Q /sqrt(h)\n",
+"endfunction\n",
+"ti=intg(h1,h2,time)\n",
+"//results\n",
+"printf('Time required = %d sec',ti)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.16: Example_16.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Initialization of variables\n",
+"d1=0.1 //m\n",
+"d2=0.05 //m\n",
+"l1=20 //m\n",
+"l2=20 //m\n",
+"f=0.02\n",
+"//calculations\n",
+"Kl=(f*l2/d2 *(d1/d2)^4 - f*l1/d1)\n",
+"//results\n",
+"printf('Loss coefficient = %d ',Kl)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.17: Example_17.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"clear\n",
+"//Initialization of variables\n",
+"g=9.81 \n",
+"rati=1.265\n",
+"//calculations\n",
+"percent = (rati-1)*100\n",
+"//results\n",
+"printf('Increase in discharge = %.1f',percent)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.18: Example_18.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Initialization of variables\n",
+"Q=0.6 //m^3/s\n",
+"l1=1200 //m\n",
+"l2=800 //m\n",
+"d1=0.3 //m\n",
+"//calculations\n",
+"V1=1.02 //m/s\n",
+"d5= d1*l2*4^2 *Q^2 /(l1*%pi^2 *V1^2)\n",
+"d=d5^(1/5)\n",
+"//results\n",
+"printf('diameter of the single pipe = %.2f m',d)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.19: Example_19.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Initialization of variables\n",
+"g=9.81\n",
+"Q=0.18 //m^3/s\n",
+"d3=0.3//m\n",
+"f=0.032\n",
+"L3=360 //m\n",
+"z=25.5 //m\n",
+"z2=30 //m\n",
+"L2=450 //m\n",
+"d2=0.45//m\n",
+"L1=950 //m\n",
+"d1=0.45 //m\n",
+"zn=18 //m\n",
+"rho=1000\n",
+"//calculations\n",
+"V3=Q/(%pi/4 *d3^2)\n",
+"hl3=f*L3/d3 *(V3^2 /(2*g))\n",
+"Z2=z+hl3\n",
+"hl2=Z2-z2\n",
+"V2= sqrt(2*g*d2*hl2/(f*L2))\n",
+"Q2=%pi/4 *d2^2 *V2\n",
+"V1=V2+ (d3/d2)^2 *V3\n",
+"hl1=f*L1/d1*V1^2 /(2*g)\n",
+"Hp= hl1+ Z2-zn\n",
+"gam=rho*g\n",
+"P=gam*Hp\n",
+"//results\n",
+"printf('Discharge into the reservoir = %.3f m^3/s',Q2)\n",
+"printf('\n Pressure maintained by the pump = %.2f kN/m^2',P/1000)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.1: Example_1.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Initialization of variables\n",
+"g=9.81 //m/s^2\n",
+"rho=10^3 //kg/m^3\n",
+"h1=4 //m\n",
+"muw=0.001 //Ns/m^2\n",
+"l=1.5 //m\n",
+"B=0.15/1000 //m\n",
+"len=11.2 //m\n",
+"//calculations\n",
+"P1=g*rho*h1\n",
+"V=P1*B^2 /(12*muw*l)\n",
+"A=B*len\n",
+"Q=A*V\n",
+"Q=7112.4\n",
+"tau= B/2 *(P1)/l\n",
+"//results\n",
+"printf('Average velocity through the crack = %.3f m/s',V)\n",
+"printf('\n rate of leakage = %.1f l/hr',Q)\n",
+"printf('\n Shear stress = %.3f N/m^2',tau)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.20: Example_20.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Initialization of variables\n",
+"h=[1 2 1.9 1.96]\n",
+"z1=10 //m\n",
+"z2=5 //m\n",
+"z3=7.5 //m\n",
+"f=0.04 \n",
+"l1=100 //m\n",
+"l2=50 //m\n",
+"l3=70 //m\n",
+"d1=0.1 //m\n",
+"d2=0.075 //m\n",
+"d3=0.06 //m\n",
+"g=9.81 //m/s^2\n",
+"//calculations\n",
+"Q1=sqrt(d1^5 *(%pi/4)^2 *2*g/(f*l1)) .*sqrt(z1-h)\n",
+"Q2=sqrt(d2^5 *(%pi/4)^2 *2*g/(f*l2)) .*sqrt(h+z2)\n",
+"Q3=sqrt(d3^5 *(%pi/4)^2 *2*g/(f*l3)) .*sqrt(h+z3)\n",
+"len=length(h)\n",
+"for i=1:len\n",
+" Q=Q2(i)+Q3(i)\n",
+" if (Q1(i) == Q) then\n",
+" break;\n",
+" end\n",
+"end\n",
+"printf('height h = %.2f m',h(i))\n",
+"printf('\nDischarge in BC Q2 = %.2f lps',Q2(i)*1000)\n",
+"printf('\nDischarge in BD Q3 = %.2f lps',Q3(i)*1000)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.21: Example_21.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Initialization of variables\n",
+"e=0.8\n",
+"output=400 //kW\n",
+"H=150 //m\n",
+"rho=1000 \n",
+"g=9.81\n",
+"f=0.028\n",
+"l=1250 //m\n",
+"//calculations\n",
+"gam=rho*g\n",
+"inpu=output/e\n",
+"Q=inpu*10^3 /(2/3 *gam*H)\n",
+"hl=1/3 *H\n",
+"d5= f*l*Q^2 /(2*g* %pi/4 * %pi/4 *hl)\n",
+"d=d5^(1/5)\n",
+"//results\n",
+"printf('Smallest diameter of pen stock = %d cm',d*100)\n",
+" "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.22: Example_22.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Initialization of variables\n",
+"f=0.04\n",
+"H=30 //m\n",
+"l=200 //m\n",
+"d=0.075 //m\n",
+"g=9.81\n",
+"rho=1000\n",
+"gam=rho*g\n",
+"//calculations\n",
+"h=2/3 *H\n",
+"vj=sqrt(2*g*h)\n",
+"hl= 1/3 *H\n",
+"V= sqrt(hl*d*2*g/(f*l))\n",
+"dj= d*(sqrt(V/vj))\n",
+"Power= 2/3 *gam*%pi/4 *d^2 *V*H\n",
+"//results\n",
+"printf('Size of nozzle = %.1f cm',dj*100)\n",
+"printf('\n Max power = %.2f kW',Power/1000)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.2: Example_2.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Initialization of variables\n",
+"g=9.81 //m/s^2\n",
+"rho=1200 //kg/m^3\n",
+"mu=0.005 //Ns/m^2\n",
+"d=0.006 //m\n",
+"Re=2000\n",
+"V=0.15 //m/s\n",
+"//calculations\n",
+"Vc=Re*mu/(d*rho)\n",
+"Vr=V/Vc\n",
+"T0=8*mu*V/d\n",
+"//results\n",
+"printf('Shear stress = %d N/m^2',T0)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.3: Example_3.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Initialization of variables\n",
+"g=9.81 //m/s^2\n",
+"rho=10^3 //kg/m^3\n",
+"Q=0.45/(60*1000) //m^3/s\n",
+"d=0.003 //m\n",
+"depth=0.95 //m\n",
+"alpha=2\n",
+"len=1.25 //m\n",
+"//calculations\n",
+"A=%pi/4 *d^2\n",
+"V=Q/A\n",
+"nu= (depth - alpha*V^2 /(2*g))*g*d^2 /(32*V*len)\n",
+"Re=V*d/nu\n",
+"//results\n",
+"if Re<2000 then\n",
+" printf('Flow is laminar')\n",
+"else\n",
+" printf('Flow is not laminar')\n",
+"end"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.4: Example_4.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Initialization of variables\n",
+"g=9.81 //m/s^2\n",
+"rho=787 //kg/m^3\n",
+"Q=90*10^-3 //m^3/hr\n",
+"d=0.015 //m\n",
+"k=0.0045*10^-2 //m\n",
+"nu=1.6e-6\n",
+"l=5 //m\n",
+"//calculations\n",
+"V=Q/(60*%pi/4 *d^2)\n",
+"Rn=V*d/nu\n",
+"e=k/d\n",
+"disp('From moody diagram, f=0.028')\n",
+"f=0.028\n",
+"hl=f*l/d *V^2 /(2*g)\n",
+"Power=rho*g*Q/60 *hl\n",
+"//result\n",
+"printf('Head loss = %.2f m',hl)\n",
+"printf('\n power required =%.3f kW',Power/1000)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.5: Example_5.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Initialization of variables\n",
+"g=9.81 //m/s^2\n",
+"rho=870 //kg/m^3\n",
+"Q=2*10^-3 //m^3/s\n",
+"d=0.03 //m\n",
+"mu=5*10^-4\n",
+"l=50 //m\n",
+"//calculations\n",
+"V=Q/(%pi/4 *d^2)\n",
+"RN=rho*V*d/mu\n",
+"f=0.017\n",
+"hl=f*l/d *V^2/(2*g)\n",
+"Ploss=rho*g*hl\n",
+"//results\n",
+"printf('Loss of pressure = %.1f kN/m^2',Ploss/1000)\n",
+"//The answers are a bit different due to rounding off error in textbook"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.6: Example_6.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Initialization of variables\n",
+"g=9.81 //m/s^2\n",
+"rho=813 //kg/m^3\n",
+"Q=0.007 //m^3/hr\n",
+"d=0.01//m\n",
+"mu=0.002 //Ns/m^2\n",
+"l=30 //m\n",
+"//calculations\n",
+"V=Q/(60*%pi/4*d^2)\n",
+"RN=V*d*rho/mu\n",
+"f=0.316/RN^(0.25)\n",
+"h=(1+f*l/d)*V^2 /(2*g)\n",
+"//result\n",
+"printf('Height required = %.2f m',h)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.7: Example_7.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Initialization of variables\n",
+"g=9.81 //m/s^2\n",
+"rho=10^3 //kg/m^3\n",
+"hl=0.02\n",
+"d=1.2 //m\n",
+"l=1 //m\n",
+"k=0.5 *10^-2 //m\n",
+"//calculations\n",
+"v2f=hl*(2*g*d)/l\n",
+"e=k/d\n",
+"f=0.028\n",
+"V=sqrt(v2f/f)\n",
+"Q=%pi/4 *d^2 *V\n",
+"//results\n",
+"printf('Rate of flow = %.2f m^3/s',Q)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.8: Example_8.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Initialization of variables\n",
+"g=9.81 //m/s^2\n",
+"rho=10^3 //kg/m^3\n",
+"e=0.03*10^-2 //m\n",
+"l=3000 //m\n",
+"Q=300*10^-3 //m^3/s\n",
+"nu=10^-5 //m^2/s\n",
+"hl=24 //m\n",
+"//calculations\n",
+"d5f= l*Q/(%pi/4) * Q/(%pi/4) /(hl*2*g)\n",
+"f=0.022\n",
+"d=(d5f*f)^(1/5)\n",
+"//results\n",
+"printf('Size of the required pipe = %d cm',d*100)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.9: Example_9.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Initialization of variables\n",
+"g=9.81 //m/s^2\n",
+"rho=10^3 //kg/m^3\n",
+"d=0.3 //m\n",
+"per=25/100\n",
+"Q=0.1 //m^3/s\n",
+"k0=0.025*10^-2 //m\n",
+"nu=0.000001\n",
+"year=10\n",
+"//calculations\n",
+"V=Q/(%pi/4 *d^2)\n",
+"RN=V*d/nu\n",
+"e1=k0/d\n",
+"f1=0.019 \n",
+"f2=(1+per)*f1\n",
+"e2=0.002\n",
+"k2=e2*d\n",
+"rate = (k2-k0)*100/year\n",
+"//results\n",
+"printf('Rate of increase =%.4f cm/year',rate)"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Principles_Of_Fluid_Mechanics_by_M_K_Natarajan/8-Uniform_Open_Channel_Flow.ipynb b/Principles_Of_Fluid_Mechanics_by_M_K_Natarajan/8-Uniform_Open_Channel_Flow.ipynb
new file mode 100644
index 0000000..e28243c
--- /dev/null
+++ b/Principles_Of_Fluid_Mechanics_by_M_K_Natarajan/8-Uniform_Open_Channel_Flow.ipynb
@@ -0,0 +1,404 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 8: Uniform Open Channel Flow"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.10: Example_10.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Initialization of variables\n",
+"Q=12 //m^3/s\n",
+"n=0.023\n",
+"A=2.472\n",
+"b=0.472\n",
+"sf=1/8000\n",
+"//calculations\n",
+"y8= Q*n/A *2^(2/3) /sf^(1/2)\n",
+"y=y8^(3/8)\n",
+"b2= b*y\n",
+"//results\n",
+"printf('depth = %.3f m',y)\n",
+"printf('\n width = %.2f m',b2)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.11: Example_11.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Initialization of variables\n",
+"Q=30 \n",
+"V=1\n",
+"//calculations\n",
+"A=Q/V\n",
+"y = sqrt(A/(sqrt(2) + 0.5))\n",
+"b= (A- 0.5*y^2)/y\n",
+"//results\n",
+"printf('width = %.2f m',b)\n",
+"printf('\n depth = %.2f m',y)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.1: Example_1.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Initialization of variables\n",
+"b=4 //m\n",
+"y=1.2 //m\n",
+"sf=0.001\n",
+"n=0.012\n",
+"gam=9.81*1000\n",
+"//calculations\n",
+"A=b*y\n",
+"R=A/(b+ 2*y)\n",
+"Q=1/n *A*R^(2/3) *sf^(1/2)\n",
+"T=gam*R*sf\n",
+"//results\n",
+"printf('Discharge = %.3f m^3/s',Q)\n",
+"printf('\n bed shear = %.2f N/m^2',T)\n",
+"//The answer in textbook is wrong for discharge. Please use a calculator."
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.2: Example_2.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Initialization of variables\n",
+"b=6 //m\n",
+"y=2 //m\n",
+"sf=0.005\n",
+"slope = 2\n",
+"gam=9.81*1000\n",
+"Q=65 //m^3/s\n",
+"//calculations\n",
+"A=(b+ 2*y)*slope\n",
+"P=b+ 2*y*sqrt(slope^2 +1)\n",
+"R=A/P\n",
+"V=Q/A\n",
+"n=R^(2/3) *sf^(1/2) /V\n",
+"//results\n",
+"printf('Value of mannings coefficient = %.3f',n)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.3: Example_3.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Initialization of variables\n",
+"b=3 //m\n",
+"y=1 //m\n",
+"sf=0.005\n",
+"n=0.028\n",
+"gam=9.81*1000\n",
+"Q=0.25 //m^3/s\n",
+"slope=1.5\n",
+"//calculations\n",
+"A= 0.5 *b*y\n",
+"P=2*sqrt(1 + (slope)^2)\n",
+"R=A/P\n",
+"yx= Q*n/(slope * R^(2/3) *sf^(1/2))\n",
+"y= yx^(3/8)\n",
+"//results\n",
+"printf('depth = %.2f m',y)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.4: Example_4.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Initialization of variables\n",
+"sf=0.0064\n",
+"n=0.015\n",
+"Q=6 //m^3/s\n",
+"gam=9.81*1000\n",
+"//calculations\n",
+"AR= n*Q/sqrt(sf)\n",
+"disp('On trial and error, ')\n",
+"y=0.385 //m\n",
+"printf('normal depth = %.3f m',y)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.5: Example_5.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Initialization of variables\\n",
+"sf=0.00007\n",
+"n=0.013\n",
+"gam=9.81*1000\n",
+"V=0.45 //m/s\n",
+"Q=1.4 //m^3/s\n",
+"//calculations\n",
+"by=Q/V\n",
+"x=poly(0,'x')\n",
+"y=roots(x^2 -2.66*x +1.55)\n",
+"b=by ./y\n",
+"//results\n",
+"printf('y = ')\n",
+"disp( y )\n",
+"printf('corresponding b=')\n",
+"disp(b)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.6: Example_6.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Initialization of variables\n",
+"sf=0.0016\n",
+"n=0.02\n",
+"Q=0.84 //m^3/s\n",
+"gam=9.81*1000\n",
+"//calculations\n",
+"y53= Q*n/sqrt(sf)\n",
+"y=y53^(3/5)\n",
+"//results\n",
+"printf('depth of flow = %.2f m',y)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.7: Example_7.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Initialization of variables\n",
+"n=0.015\n",
+"Q=1.3 //m^3/s\n",
+"V=0.6 //m/s\n",
+"gam=9.81*1000\n",
+"//calculations\n",
+"alpha=60 //degrees\n",
+"A=0.5 *(1/2)^2 *(180-alpha)/180 *%pi -(1/4)^2 *tand(alpha)\n",
+"A=0.206\n",
+"P=0.5*(180-alpha)/180 *%pi\n",
+"R=A/P\n",
+"d2=V*n/(R^(2/3))\n",
+"d8= Q*n*4*4^(2/3) /%pi\n",
+"d=sqrt(d8/d2)\n",
+"sf= (d2/d^(2/3))^2\n",
+"//results\n",
+"printf('Diameter = %.2f m',d)\n",
+"printf('\n slope = %.5f ',sf)\n",
+"//The answer given in textbook is wrong. please check"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.8: Example_8.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Initialization of variables\n",
+"b=0.5 //m\n",
+"y=0.35 //m\n",
+"sf=0.001\n",
+"nc=0.016\n",
+"gam=9.81*1000\n",
+"Q=0.15 //m^3/s\n",
+"//calculations\n",
+"A=b*y\n",
+"P= b+ 2*y\n",
+"R=A/P\n",
+"ng=1/Q *A*R^(2/3) *sf^(1/2)\n",
+"n= (b*nc^(3/2) + 2*y*ng^(3/2))^(2/3) /(P^(2/3))\n",
+"Q2=1/n *A*R^(2/3) *sf^(1/2)\n",
+"//results\n",
+"printf('flow in case 2 = %.3f m^3/s',Q2)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.9: Example_9.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Initialization of variables\n",
+"b1=8 //m\n",
+"b2=5 //m\n",
+"y=5 //m\n",
+"b5=15 //m\n",
+"b3=3 //m\n",
+"b4=3 //m\n",
+"y2=2 //m\n",
+"y3=3 //m\n",
+"n1=0.025\n",
+"n2=0.035\n",
+"sf=0.0008\n",
+"//calcuations\n",
+"A= (b1+b2)*y\n",
+"P= b1+ sqrt(b2^2 +y^2) + sqrt(b3^2 +b4^2)\n",
+"R=A/P\n",
+"Q1=1/n1 *A*R^(2/3) *sf^(1/2)\n",
+"A2 = b5*y2 - 0.5*y2*y2 + 0.5*y3*y2\n",
+"P2= b5 + sqrt(b4^2 + y3^2)\n",
+"R2=A2/P2\n",
+"Q2= 1/n2 *A2*R2^(2/3) *sf^(1/2)\n",
+"Q=Q1+Q2\n",
+"//results\n",
+"printf('Total discharge = %.1f m^3/s',Q)"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Principles_Of_Fluid_Mechanics_by_M_K_Natarajan/9-Potential_Flow.ipynb b/Principles_Of_Fluid_Mechanics_by_M_K_Natarajan/9-Potential_Flow.ipynb
new file mode 100644
index 0000000..8dbd07e
--- /dev/null
+++ b/Principles_Of_Fluid_Mechanics_by_M_K_Natarajan/9-Potential_Flow.ipynb
@@ -0,0 +1,122 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 9: Potential Flow"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 9.14: Example_14.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Initialization of variables\n",
+"T=4.5\n",
+"a=0.6\n",
+"u=5 //m/s\n",
+"rho=1000 //kg/m^3\n",
+"//calculations\n",
+"sint=0.5*(1- T/(2*%pi*a*u))\n",
+"theta= asind(sint)\n",
+"dp= 0.5*rho*u^2 *(1 - (2 + T/(2*%pi*a*u))^2)\n",
+"//results\n",
+"printf('Angle = %.1f %.1f degrees',theta,180-theta)\n",
+"printf('\n Min guage pressure = %.2f kN/m^2',dp/1000)\n",
+"//The answer in textbook is wrong. please check"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 9.15: Example_15.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Initialization of variables\n",
+"T=6*%pi\n",
+"r=1/3\n",
+"//calculations\n",
+"vab=T/(4*%pi)\n",
+"vba= T/(2*%pi)\n",
+"w=vab/r\n",
+"//results\n",
+"printf('rate of rotation = %.1f rad/s',w)\n",
+"printf('\nspeed of A by B = %.1f m/s',vab)\n",
+"printf('\nspeed of B by A = %.1f m/s',vba)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 9.4: Example_4.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Initialization of variables\n",
+"k=1.5\n",
+"r=40 //cm\n",
+"theta=45 //degrees\n",
+"//calculations\n",
+"vr= -2*k*r*cosd(2*theta)\n",
+"vt= 2*k*r*sind(2*theta)\n",
+"//results\n",
+"printf('velocity in radial direction = %d cm/s',vr)\n",
+"printf('\n velcoity in angular direction = %d cm/s',vt)"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}