summaryrefslogtreecommitdiff
path: root/Power_System_Engineering_by_S_Chakraborthy/46-BRAKING.ipynb
diff options
context:
space:
mode:
Diffstat (limited to 'Power_System_Engineering_by_S_Chakraborthy/46-BRAKING.ipynb')
-rw-r--r--Power_System_Engineering_by_S_Chakraborthy/46-BRAKING.ipynb288
1 files changed, 288 insertions, 0 deletions
diff --git a/Power_System_Engineering_by_S_Chakraborthy/46-BRAKING.ipynb b/Power_System_Engineering_by_S_Chakraborthy/46-BRAKING.ipynb
new file mode 100644
index 0000000..95ef84d
--- /dev/null
+++ b/Power_System_Engineering_by_S_Chakraborthy/46-BRAKING.ipynb
@@ -0,0 +1,288 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 46: BRAKING"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 46.1: Braking_torque.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// A Texbook on POWER SYSTEM ENGINEERING\n",
+"// A.Chakrabarti, M.L.Soni, P.V.Gupta, U.S.Bhatnagar\n",
+"// DHANPAT RAI & Co.\n",
+"// SECOND EDITION \n",
+"\n",
+"// PART IV : UTILIZATION AND TRACTION\n",
+"// CHAPTER 8: BRAKING\n",
+"\n",
+"// EXAMPLE : 8.1 :\n",
+"// Page number 806\n",
+"clear ; clc ; close ; // Clear the work space and console\n",
+"\n",
+"// Given data\n",
+"V = 525.0 // Voltage of motor(V)\n",
+"I_1 = 50.0 // Current(A)\n",
+"T_1 = 216.0 // Torque(N-m)\n",
+"I_2 = 70.0 // Current(A)\n",
+"T_2 = 344.0 // Torque(N-m)\n",
+"I_3 = 80.0 // Current(A)\n",
+"T_3 = 422.0 // Torque(N-m)\n",
+"I_4 = 90.0 // Current(A)\n",
+"T_4 = 500.0 // Torque(N-m)\n",
+"V_m = 26.0 // Speed(kmph)\n",
+"R_b = 5.5 // Resistance of braking rheostat(ohm)\n",
+"R_m = 0.5 // Resistance of motor(ohm)\n",
+"\n",
+"// Calculations\n",
+"I = 75.0 // Current drawn at 26 kmph(A)\n",
+"back_emf = V-I*R_m // Back emf of the motor(V)\n",
+"R_t = R_b+R_m // Total resistance(ohm)\n",
+"I_del = back_emf/R_t // Current delivered(A)\n",
+"T_b = T_3*I_del/I_3 // Braking torque(N-m)\n",
+"\n",
+"// Results\n",
+"disp('PART IV - EXAMPLE : 8.1 : SOLUTION :-')\n",
+"printf('\nBraking torque = %.f N-m', T_b)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 46.2: Current_delivered_when_motor_works_as_generator.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// A Texbook on POWER SYSTEM ENGINEERING\n",
+"// A.Chakrabarti, M.L.Soni, P.V.Gupta, U.S.Bhatnagar\n",
+"// DHANPAT RAI & Co.\n",
+"// SECOND EDITION \n",
+"\n",
+"// PART IV : UTILIZATION AND TRACTION\n",
+"// CHAPTER 8: BRAKING\n",
+"\n",
+"// EXAMPLE : 8.2 :\n",
+"// Page number 806\n",
+"clear ; clc ; close ; // Clear the work space and console\n",
+"\n",
+"// Given data\n",
+"V = 525.0 // Voltage of motor(V)\n",
+"I_1 = 50.0 // Current(A)\n",
+"N_1 = 1200.0 // Speed(rpm)\n",
+"I_2 = 100.0 // Current(A)\n",
+"N_2 = 950.0 // Speed(rpm)\n",
+"I_3 = 150.0 // Current(A)\n",
+"N_3 = 840.0 // Speed(rpm)\n",
+"I_4 = 200.0 // Current(A)\n",
+"N_4 = 745.0 // Speed(rpm)\n",
+"N = 1000.0 // Speed opearting(rpm)\n",
+"R = 3.0 // Resistance(ohm)\n",
+"R_m = 0.5 // Resistance of motor(ohm)\n",
+"\n",
+"// Calculations\n",
+"I = 85.0 // Current drawn at 1000 rpm(A)\n",
+"back_emf = V-I*R_m // Back emf of the motor(V)\n",
+"R_t = R+R_m // Total resistance(ohm)\n",
+"I_del = back_emf/R_t // Current delivered(A)\n",
+"\n",
+"// Results\n",
+"disp('PART IV - EXAMPLE : 8.2 : SOLUTION :-')\n",
+"printf('\nCurrent delivered when motor works as generator = %.f A', I_del)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 46.3: Energy_returned_to_lines.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// A Texbook on POWER SYSTEM ENGINEERING\n",
+"// A.Chakrabarti, M.L.Soni, P.V.Gupta, U.S.Bhatnagar\n",
+"// DHANPAT RAI & Co.\n",
+"// SECOND EDITION \n",
+"\n",
+"// PART IV : UTILIZATION AND TRACTION\n",
+"// CHAPTER 8: BRAKING\n",
+"\n",
+"// EXAMPLE : 8.3 :\n",
+"// Page number 810\n",
+"clear ; clc ; close ; // Clear the work space and console\n",
+"\n",
+"// Given data\n",
+"W = 400.0 // Weight of train(tonne)\n",
+"G = 100.0/70 // Gradient(%)\n",
+"t = 120.0 // Time(sec)\n",
+"V_1 = 80.0 // Speed(km/hr)\n",
+"V_2 = 50.0 // Speed(km/hr)\n",
+"r_kg = 5.0 // Tractive resistance(kg/tonne)\n",
+"I = 7.5 // Rotational inertia(%)\n",
+"n = 0.75 // Overall efficiency\n",
+"\n",
+"// Calculations\n",
+"W_e = W*(100+I)/100 // Accelerating weight of train(tonne)\n",
+"r = r_kg*9.81 // Tractive resistance(N-m/tonne)\n",
+"energy_recuperation = 0.01072*W_e*(V_1**2-V_2**2)/1000 // Energy available for recuperation(kWh)\n",
+"F_t = W*(r-98.1*G) // Tractive effort during retardation(N)\n",
+"distance = (V_1+V_2)*1000*t/(2*3600) // Distance travelled by train during retardation period(m)\n",
+"energy_train = abs(F_t)*distance/(3600*1000) // Energy available during train movement(kWh)\n",
+"net_energy = n*(energy_recuperation+energy_train) // Net energy returned to supply system(kWh)\n",
+"\n",
+"// Results\n",
+"disp('PART IV - EXAMPLE : 8.3 : SOLUTION :-')\n",
+"printf('\nEnergy returned to lines = %.2f kWh\n', net_energy)\n",
+"printf('\nNOTE: ERROR: Calculation mistakes & more approximation in textbook solution')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 46.4: Energy_returned_to_the_line.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// A Texbook on POWER SYSTEM ENGINEERING\n",
+"// A.Chakrabarti, M.L.Soni, P.V.Gupta, U.S.Bhatnagar\n",
+"// DHANPAT RAI & Co.\n",
+"// SECOND EDITION \n",
+"\n",
+"// PART IV : UTILIZATION AND TRACTION\n",
+"// CHAPTER 8: BRAKING\n",
+"\n",
+"// EXAMPLE : 8.4 :\n",
+"// Page number 810\n",
+"clear ; clc ; close ; // Clear the work space and console\n",
+"\n",
+"// Given data\n",
+"W = 355.0 // Weight of train(tonne)\n",
+"V_1 = 80.5 // Speed(km/hr)\n",
+"V_2 = 48.3 // Speed(km/hr)\n",
+"D = 1.525 // Distance(km)\n",
+"G = 100.0/90 // Gradient(%)\n",
+"I = 10.0 // Rotational inertia(%)\n",
+"r = 53.0 // Tractive resistance(N/tonne)\n",
+"n = 0.8 // Overall efficiency\n",
+"\n",
+"// Calculations\n",
+"beta = (V_1**2-V_2**2)/(2*D*3600) // Braking retardation(km phps)\n",
+"W_e = W*(100+I)/100 // Accelerating weight of train(tonne)\n",
+"F_t = 277.8*W_e*beta+98.1*W*G-W*r // Tractive effort(N)\n",
+"work_done = F_t*D*1000 // Work done by this effort(N-m)\n",
+"energy = work_done*n/(1000*3600) // Energy returned to line(kWh)\n",
+"\n",
+"// Results\n",
+"disp('PART IV - EXAMPLE : 8.4 : SOLUTION :-')\n",
+"printf('\nEnergy returned to the line = %.1f kWh', energy)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 46.5: Braking_effect_and_Rate_of_retardation_produced_by_this_braking_effect.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// A Texbook on POWER SYSTEM ENGINEERING\n",
+"// A.Chakrabarti, M.L.Soni, P.V.Gupta, U.S.Bhatnagar\n",
+"// DHANPAT RAI & Co.\n",
+"// SECOND EDITION \n",
+"\n",
+"// PART IV : UTILIZATION AND TRACTION\n",
+"// CHAPTER 8: BRAKING\n",
+"\n",
+"// EXAMPLE : 8.5 :\n",
+"// Page number 811-812\n",
+"clear ; clc ; close ; // Clear the work space and console\n",
+"funcprot(0)\n",
+"\n",
+"// Given data\n",
+"area = 16.13 // Area of brakes(sq.cm/pole face)\n",
+"phi = 2.5*10**-3 // Flux(Wb)\n",
+"u = 0.2 // Co-efficient of friction\n",
+"W = 10.0 // Weight of car(tonnes)\n",
+"\n",
+"// Calculations\n",
+"a = area*10**-4 // Area of brakes(sq.m/pole face)\n",
+"F = phi**2/(2*%pi*10**-7*a) // Force(N)\n",
+"force = F*u // Braking effect considering flux and coefficient of friction(N)\n",
+"beta = u*F/(W*1000)*100 // Rate of retardation produced by braking effect(cm/sec^2)\n",
+"\n",
+"// Results\n",
+"disp('PART IV - EXAMPLE : 8.5 : SOLUTION :-')\n",
+"printf('\nBraking effect, F = %.f N', force)\n",
+"printf('\nRate of retardation produced by this braking effect, β = %.2f cm/sec^2', beta)"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}