summaryrefslogtreecommitdiff
path: root/Power_System_Engineering_by_S_Chakraborthy/44-MOTORS_FOR_ELECTRIC_TRACTION.ipynb
diff options
context:
space:
mode:
Diffstat (limited to 'Power_System_Engineering_by_S_Chakraborthy/44-MOTORS_FOR_ELECTRIC_TRACTION.ipynb')
-rw-r--r--Power_System_Engineering_by_S_Chakraborthy/44-MOTORS_FOR_ELECTRIC_TRACTION.ipynb352
1 files changed, 352 insertions, 0 deletions
diff --git a/Power_System_Engineering_by_S_Chakraborthy/44-MOTORS_FOR_ELECTRIC_TRACTION.ipynb b/Power_System_Engineering_by_S_Chakraborthy/44-MOTORS_FOR_ELECTRIC_TRACTION.ipynb
new file mode 100644
index 0000000..5ce578f
--- /dev/null
+++ b/Power_System_Engineering_by_S_Chakraborthy/44-MOTORS_FOR_ELECTRIC_TRACTION.ipynb
@@ -0,0 +1,352 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 44: MOTORS FOR ELECTRIC TRACTION"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 44.1: Speed_current_of_the_motor.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// A Texbook on POWER SYSTEM ENGINEERING\n",
+"// A.Chakrabarti, M.L.Soni, P.V.Gupta, U.S.Bhatnagar\n",
+"// DHANPAT RAI & Co.\n",
+"// SECOND EDITION \n",
+"\n",
+"// PART IV : UTILIZATION AND TRACTION\n",
+"// CHAPTER 6: MOTORS FOR ELECTRIC TRACTION\n",
+"\n",
+"// EXAMPLE : 6.1 :\n",
+"// Page number 788\n",
+"clear ; clc ; close ; // Clear the work space and console\n",
+"\n",
+"// Given data\n",
+"I_1 = 10.0 // Current(A)\n",
+"T_1 = 54.0 // Torque(N-m)\n",
+"I_2 = 20.0 // Current(A)\n",
+"T_2 = 142.0 // Torque(N-m)\n",
+"I_3 = 30.0 // Current(A)\n",
+"T_3 = 250.0 // Torque(N-m)\n",
+"I_4 = 40.0 // Current(A)\n",
+"T_4 = 365.0 // Torque(N-m)\n",
+"I_5 = 50.0 // Current(A)\n",
+"T_5 = 480.0 // Torque(N-m)\n",
+"I_6 = 60.0 // Current(A)\n",
+"T_6 = 620.0 // Torque(N-m)\n",
+"I_7 = 70.0 // Current(A)\n",
+"T_7 = 810.0 // Torque(N-m)\n",
+"E = 500.0 // Operating voltage(V)\n",
+"R_a = 0.6 // Armature resistance(ohm)\n",
+"\n",
+"// Calculations\n",
+"N_1 = 9.55*(E-I_1*R_a)*I_1/T_1 // Speed(rpm)\n",
+"N_2 = 9.55*(E-I_2*R_a)*I_2/T_2 // Speed(rpm)\n",
+"N_3 = 9.55*(E-I_3*R_a)*I_3/T_3 // Speed(rpm)\n",
+"N_4 = 9.55*(E-I_4*R_a)*I_4/T_4 // Speed(rpm)\n",
+"N_5 = 9.55*(E-I_5*R_a)*I_5/T_5 // Speed(rpm)\n",
+"N_6 = 9.55*(E-I_6*R_a)*I_6/T_6 // Speed(rpm)\n",
+"N_7 = 9.55*(E-I_7*R_a)*I_7/T_7 // Speed(rpm)\n",
+"\n",
+"// Results\n",
+"disp('PART IV - EXAMPLE : 6.1 : SOLUTION :-')\n",
+"printf('\nSpeed-current of the motor')\n",
+"printf('\n_______________________________________')\n",
+"printf('\n Current(A) : Speed(rpm) ')\n",
+"printf('\n_______________________________________')\n",
+"printf('\n %.f : %.f ', I_1,N_1)\n",
+"printf('\n %.f : %.f ', I_2,N_2)\n",
+"printf('\n %.f : %.f ', I_3,N_3)\n",
+"printf('\n %.f : %.f ', I_4,N_4)\n",
+"printf('\n %.f : %.f ', I_5,N_5)\n",
+"printf('\n %.f : %.f ', I_6,N_6)\n",
+"printf('\n %.f : %.f ', I_7,N_7)\n",
+"printf('\n_______________________________________\n')\n",
+"printf('\nNOTE: ERROR: Calculation mistakes in the textbook solution')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 44.2: Speed_torque_for_motor.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// A Texbook on POWER SYSTEM ENGINEERING\n",
+"// A.Chakrabarti, M.L.Soni, P.V.Gupta, U.S.Bhatnagar\n",
+"// DHANPAT RAI & Co.\n",
+"// SECOND EDITION \n",
+"\n",
+"// PART IV : UTILIZATION AND TRACTION\n",
+"// CHAPTER 6: MOTORS FOR ELECTRIC TRACTION\n",
+"\n",
+"// EXAMPLE : 6.2 :\n",
+"// Page number 788-789\n",
+"clear ; clc ; close ; // Clear the work space and console\n",
+"\n",
+"// Given data\n",
+"N_1 = 500.0 // Speed(rpm)\n",
+"I_1 = 50.0 // Current(A)\n",
+"E_1 = 220.0 // Armature voltage(V)\n",
+"I_2 = 100.0 // Current(A)\n",
+"E_2 = 350.0 // Armature voltage(V)\n",
+"I_3 = 150.0 // Current(A)\n",
+"E_3 = 440.0 // Armature voltage(V)\n",
+"I_4 = 200.0 // Current(A)\n",
+"E_4 = 500.0 // Armature voltage(V)\n",
+"I_5 = 250.0 // Current(A)\n",
+"E_5 = 540.0 // Armature voltage(V)\n",
+"I_6 = 300.0 // Current(A)\n",
+"E_6 = 570.0 // Armature voltage(V)\n",
+"R_wb = 0.08 // Armature and brush resistance(ohm)\n",
+"R_f = 0.05 // Resistance of series field(ohm)\n",
+"V = 600.0 // Operating voltage(V)\n",
+"\n",
+"// Calculations\n",
+"R_a = R_wb+R_f // Armature resistance(ohm)\n",
+"N_11 = N_1/E_1*(V-I_1*R_a) // Speed(rpm)\n",
+"T_1 = 9.55*E_1*I_1/N_1 // Torque(N-m)\n",
+"N_2 = N_1/E_2*(V-I_2*R_a) // Speed(rpm)\n",
+"T_2 = 9.55*E_2*I_2/N_1 // Torque(N-m)\n",
+"N_3 = N_1/E_3*(V-I_3*R_a) // Speed(rpm)\n",
+"T_3 = 9.55*E_3*I_3/N_1 // Torque(N-m)\n",
+"N_4 = N_1/E_4*(V-I_4*R_a) // Speed(rpm)\n",
+"T_4 = 9.55*E_4*I_4/N_1 // Torque(N-m)\n",
+"N_5 = N_1/E_5*(V-I_5*R_a) // Speed(rpm)\n",
+"T_5 = 9.55*E_5*I_5/N_1 // Torque(N-m)\n",
+"N_6 = N_1/E_6*(V-I_6*R_a) // Speed(rpm)\n",
+"T_6 = 9.55*E_6*I_6/N_1 // Torque(N-m)\n",
+"\n",
+"// Results\n",
+"disp('PART IV - EXAMPLE : 6.2 : SOLUTION :-')\n",
+"printf('\nSpeed-torque curve for motor')\n",
+"printf('\n_______________________________________')\n",
+"printf('\n Speed(rpm) : Torque(N-m) ')\n",
+"printf('\n_______________________________________')\n",
+"printf('\n %.f : %.f ', N_11,T_1)\n",
+"printf('\n %.f : %.f ', N_2,T_2)\n",
+"printf('\n %.f : %.f ', N_3,T_3)\n",
+"printf('\n %.f : %.f ', N_4,T_4)\n",
+"printf('\n %.f : %.f ', N_5,T_5)\n",
+"printf('\n %.f : %.f ', N_6,T_6)\n",
+"printf('\n_______________________________________\n')\n",
+"printf('\nNOTE: ERROR: Calculation mistakes in the textbook solution')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 44.3: Speed_of_motors_when_connected_in_series.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// A Texbook on POWER SYSTEM ENGINEERING\n",
+"// A.Chakrabarti, M.L.Soni, P.V.Gupta, U.S.Bhatnagar\n",
+"// DHANPAT RAI & Co.\n",
+"// SECOND EDITION \n",
+"\n",
+"// PART IV : UTILIZATION AND TRACTION\n",
+"// CHAPTER 6: MOTORS FOR ELECTRIC TRACTION\n",
+"\n",
+"// EXAMPLE : 6.3 :\n",
+"// Page number 790\n",
+"clear ; clc ; close ; // Clear the work space and console\n",
+"\n",
+"// Given data\n",
+"V = 650.0 // Voltage supply(V)\n",
+"r_A = 45.0 // Radius of driving wheel(cm)\n",
+"r_B = 43.0 // Radius of driving wheel(cm)\n",
+"N_A = 400.0 // Speed(rpm)\n",
+"drop = 10.0 // Voltage drop(%)\n",
+"\n",
+"// Calculations\n",
+"rho = r_B/r_A\n",
+"IR = drop*V/100 // Voltage drop(V)\n",
+"V_A = (rho*(V-IR)+IR)/(1+rho) // Voltage(V)\n",
+"V_B = V-V_A // Voltage(V)\n",
+"N_A_A = N_A*(V_A-IR)/(V-IR) // N'_A(rpm)\n",
+"N_B_B = N_A_A*r_A/r_B // N'_B(rpm)\n",
+"\n",
+"// Results\n",
+"disp('PART IV - EXAMPLE : 6.3 : SOLUTION :-')\n",
+"printf('\nSpeed of first motor when connected in series, N_A = %.f rpm', N_A_A)\n",
+"printf('\nSpeed of second motor when connected in series, N_B = %.f rpm\n', N_B_B)\n",
+"printf('\nNOTE: Changes in the obtained answer from that of textbook is due to more precision here')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 44.4: HP_delivered_by_the_locomotive_when_dc_series_motor_and_Induction_motor_is_used.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// A Texbook on POWER SYSTEM ENGINEERING\n",
+"// A.Chakrabarti, M.L.Soni, P.V.Gupta, U.S.Bhatnagar\n",
+"// DHANPAT RAI & Co.\n",
+"// SECOND EDITION \n",
+"\n",
+"// PART IV : UTILIZATION AND TRACTION\n",
+"// CHAPTER 6: MOTORS FOR ELECTRIC TRACTION\n",
+"\n",
+"// EXAMPLE : 6.4 :\n",
+"// Page number 791\n",
+"clear ; clc ; close ; // Clear the work space and console\n",
+"\n",
+"// Given data\n",
+"F_t = 33800.0 // Tractive effort(N)\n",
+"V = 48.3 // Velocity(kmph)\n",
+"T = 53400.0 // Tractive effort(N)\n",
+"\n",
+"// Calculations\n",
+"HP = F_t*V*1000/(60*60*746) // HP on level track(hp)\n",
+"HP_i = HP*(T/F_t)**0.5 // hp delivered by locomotive for dc series motor(hp)\n",
+"HP_ii = HP*T/F_t // hp delivered by locomotive for induction motor(hp)\n",
+"\n",
+"// Results\n",
+"disp('PART IV - EXAMPLE : 6.4 : SOLUTION :-')\n",
+"printf('\nhp delivered by the locomotive when dc series motor is used = %.f HP', HP_i)\n",
+"printf('\nhp delivered by the locomotive when induction motor is used = %.f HP', HP_ii)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 44.5: New_characteristics_of_motor.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// A Texbook on POWER SYSTEM ENGINEERING\n",
+"// A.Chakrabarti, M.L.Soni, P.V.Gupta, U.S.Bhatnagar\n",
+"// DHANPAT RAI & Co.\n",
+"// SECOND EDITION \n",
+"\n",
+"// PART IV : UTILIZATION AND TRACTION\n",
+"// CHAPTER 6: MOTORS FOR ELECTRIC TRACTION\n",
+"\n",
+"// EXAMPLE : 6.5 :\n",
+"// Page number 792-793\n",
+"clear ; clc ; close ; // Clear the work space and console\n",
+"\n",
+"// Given data\n",
+"I_1 = 100.0 // Current(A)\n",
+"N_1 = 71.0 // Speed(kmph)\n",
+"F_t1 = 2225.0 // Tractive effort(N)\n",
+"I_2 = 150.0 // Current(A)\n",
+"N_2 = 57.0 // Speed(kmph)\n",
+"F_t2 = 6675.0 // Tractive effort(N)\n",
+"I_3 = 200.0 // Current(A)\n",
+"N_3 = 50.0 // Speed(kmph)\n",
+"F_t3 = 11600.0 // Tractive effort(N)\n",
+"I_4 = 250.0 // Current(A)\n",
+"N_4 = 45.0 // Speed(kmph)\n",
+"F_t4 = 17350.0 // Tractive effort(N)\n",
+"I_5 = 300.0 // Current(A)\n",
+"N_5 = 42.0 // Speed(kmph)\n",
+"F_t5 = 23200.0 // Tractive effort(N)\n",
+"D_A = 101.6 // Size of wheels(cm)\n",
+"ratio_gear = 72.0/23 // Gear ratio\n",
+"D_B = 106.7 // Size of wheels(cm)\n",
+"ratio_gear_new = 75.0/20 // Gear ratio\n",
+"\n",
+"// Calculations\n",
+"N_B = ratio_gear*D_B/(ratio_gear_new*D_A) // Speed in terms of V(kmph)\n",
+"F_tB = D_A*ratio_gear_new/(ratio_gear*D_B) // Tractive effort in terms of F_tA(N)\n",
+"N_B1 = N_B*N_1 // Speed(kmph)\n",
+"F_tB1 = F_tB*F_t1 // Tractive effort(N)\n",
+"N_B2 = N_B*N_2 // Speed(kmph)\n",
+"F_tB2 = F_tB*F_t2 // Tractive effort(N)\n",
+"N_B3 = N_B*N_3 // Speed(kmph)\n",
+"F_tB3 = F_tB*F_t3 // Tractive effort(N)\n",
+"N_B4 = N_B*N_4 // Speed(kmph)\n",
+"F_tB4 = F_tB*F_t4 // Tractive effort(N)\n",
+"N_B5 = N_B*N_5 // Speed(kmph)\n",
+"F_tB5 = F_tB*F_t5 // Tractive effort(N)\n",
+"\n",
+"// Results\n",
+"disp('PART IV - EXAMPLE : 6.5 : SOLUTION :-')\n",
+"printf('\nNew characteristics of motor')\n",
+"printf('\n_______________________________________')\n",
+"printf('\n Current(A) : Speed(kmph) : F_t(N)')\n",
+"printf('\n_______________________________________')\n",
+"printf('\n %.f : %.1f : %.f ', I_1,N_B1,F_tB1)\n",
+"printf('\n %.f : %.1f : %.f ', I_2,N_B2,F_tB2)\n",
+"printf('\n %.f : %.1f : %.f ', I_3,N_B3,F_tB3)\n",
+"printf('\n %.f : %.1f : %.f ', I_4,N_B4,F_tB4)\n",
+"printf('\n %.f : %.1f : %.f ', I_5,N_B5,F_tB5)\n",
+"printf('\n_______________________________________\n')\n",
+"printf('\nNOTE: Changes in the obtained answer from that of textbook is due to more precision here')"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}