diff options
Diffstat (limited to 'Power_System_Engineering_by_S_Chakraborthy/32-CIRCUIT_BREAKER.ipynb')
-rw-r--r-- | Power_System_Engineering_by_S_Chakraborthy/32-CIRCUIT_BREAKER.ipynb | 280 |
1 files changed, 280 insertions, 0 deletions
diff --git a/Power_System_Engineering_by_S_Chakraborthy/32-CIRCUIT_BREAKER.ipynb b/Power_System_Engineering_by_S_Chakraborthy/32-CIRCUIT_BREAKER.ipynb new file mode 100644 index 0000000..590afcb --- /dev/null +++ b/Power_System_Engineering_by_S_Chakraborthy/32-CIRCUIT_BREAKER.ipynb @@ -0,0 +1,280 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 32: CIRCUIT BREAKER" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 32.1: EX32_1.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// A Texbook on POWER SYSTEM ENGINEERING\n", +"// A.Chakrabarti, M.L.Soni, P.V.Gupta, U.S.Bhatnagar\n", +"// DHANPAT RAI & Co.\n", +"// SECOND EDITION \n", +"\n", +"// PART III : SWITCHGEAR AND PROTECTION\n", +"// CHAPTER 6: CIRCUIT BREAKER\n", +"\n", +"// EXAMPLE : 6.1 :\n", +"// Page number 545\n", +"clear ; clc ; close ; // Clear the work space and console\n", +"\n", +"// Given data\n", +"f = 50.0 // Generator frequency(Hz)\n", +"kV = 7.5 // emf to neutral rms voltage(kV)\n", +"X = 4.0 // Reactance of generator & connected system(ohm)\n", +"C = 0.01*10**-6 // Distributed capacitance(F)\n", +"\n", +"// Calculations\n", +"// Case(a)\n", +"v = 2**0.5*kV // Active recovery voltage i.e phase to neutral(kV)\n", +"V_max_restrike = v*2 // Maximum restriking voltage i.e phase to neutral(kV)\n", +"// Case(b)\n", +"L = X/(2.0*%pi*f) // Inductance(H)\n", +"f_n = 1/(2.0*%pi*(L*C)**0.5*1000) // Frequency of transient oscillation(kHZ)\n", +"// Case(c)\n", +"t = 1.0/(2.0*f_n*1000) // Time(sec)\n", +"avg_rate = V_max_restrike/t // Average rate of rise of voltage upto first peak of oscillation(kV/s)\n", +"\n", +"// Results\n", +"disp('PART III - EXAMPLE : 6.1 : SOLUTION :-')\n", +"printf('\nCase(a): Maximum re-striking voltage(phase-to-neutral) = %.1f kV', V_max_restrike)\n", +"printf('\nCase(b): Frequency of transient oscillation, f_n = %.1f kHz', f_n)\n", +"printf('\nCase(c): Average rate of rise of voltage upto first peak of oscillation = %.f kV/s \n', avg_rate)\n", +"printf('\nNOTE: Changes in the obtained answer from that of textbook is due to more approximation in the textbook')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 32.3: Rate_of_rise_of_restriking_voltage.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// A Texbook on POWER SYSTEM ENGINEERING\n", +"// A.Chakrabarti, M.L.Soni, P.V.Gupta, U.S.Bhatnagar\n", +"// DHANPAT RAI & Co.\n", +"// SECOND EDITION \n", +"\n", +"// PART III : SWITCHGEAR AND PROTECTION\n", +"// CHAPTER 6: CIRCUIT BREAKER\n", +"\n", +"// EXAMPLE : 6.3 :\n", +"// Page number 545-546\n", +"clear ; clc ; close ; // Clear the work space and console\n", +"\n", +"// Given data\n", +"kV = 132.0 // Voltage(kV)\n", +"pf = 0.3 // Power factor of the fault\n", +"K3 = 0.95 // Recovery voltage was 0.95 of full line value\n", +"f_n = 16000.0 // Natural frequency of the restriking transient(Hz)\n", +"\n", +"// Calculations\n", +"kV_phase = kV/3**0.5 // System voltage(kV)\n", +"sin_phi = sind(acosd(pf)) // Sinφ\n", +"K2 = 1.0\n", +"v = K2*K3*kV/3**0.5*2**0.5*sin_phi // Active recovery voltage(kV)\n", +"V_max_restrike = 2*v // Maximum restriking voltage(kV)\n", +"t = 1.0/(2.0*f_n) // Time(sec)\n", +"RRRV = V_max_restrike/(t*10**6) // Rate of rise of restriking voltage(kV/µ-sec)\n", +"\n", +"// Results\n", +"disp('PART III - EXAMPLE : 6.3 : SOLUTION :-')\n", +"printf('\nRate of rise of restriking voltage, R.R.R.V = %.2f kV/µ-sec', RRRV)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 32.5: Voltage_across_the_pole_of_a_CB_and_Resistance_to_be_used_across_the_contacts.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// A Texbook on POWER SYSTEM ENGINEERING\n", +"// A.Chakrabarti, M.L.Soni, P.V.Gupta, U.S.Bhatnagar\n", +"// DHANPAT RAI & Co.\n", +"// SECOND EDITION \n", +"\n", +"// PART III : SWITCHGEAR AND PROTECTION\n", +"// CHAPTER 6: CIRCUIT BREAKER\n", +"\n", +"// EXAMPLE : 6.5 :\n", +"// Page number 565\n", +"clear ; clc ; close ; // Clear the work space and console\n", +"\n", +"// Given data\n", +"kV = 132.0 // Voltage(kV)\n", +"C = 0.01*10**-6 // Phase to ground capacitance(F)\n", +"L = 6.0 // Inductance(H)\n", +"i = 5.0 // Magnetizing current(A)\n", +"\n", +"// Calculations\n", +"V_pros = i*(L/C)**0.5/1000 // Prospective value of voltage(kV)\n", +"R = 1.0/2*(L/C)**0.5/1000 // Resistance to be used across the contacts to eliminate the restriking voltage(k-ohm)\n", +"\n", +"// Results\n", +"disp('PART III - EXAMPLE : 6.5 : SOLUTION :-')\n", +"printf('\nVoltage across the pole of a CB = %.1f kV', V_pros)\n", +"printf('\nResistance to be used across the contacts to eliminate the restriking voltage, R = %.2f k-ohm\n', R)\n", +"printf('\nNOTE: ERROR: Unit of final answer R is k-ohm, not ohm as in the textbook solution')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 32.6: Rated_normal_current_Breaking_current_Making_current_and_Short_time_rating.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// A Texbook on POWER SYSTEM ENGINEERING\n", +"// A.Chakrabarti, M.L.Soni, P.V.Gupta, U.S.Bhatnagar\n", +"// DHANPAT RAI & Co.\n", +"// SECOND EDITION \n", +"\n", +"// PART III : SWITCHGEAR AND PROTECTION\n", +"// CHAPTER 6: CIRCUIT BREAKER\n", +"\n", +"// EXAMPLE : 6.6 :\n", +"// Page number 567\n", +"clear ; clc ; close ; // Clear the work space and console\n", +"\n", +"// Given data\n", +"I = 1200.0 // Rated normal current(A)\n", +"MVA = 1500.0 // Rated MVA\n", +"kV = 33.0 // Voltage(kV)\n", +"\n", +"// Calculations\n", +"I_breaking = MVA/(3**0.5*kV) // Rated symmetrical breaking current(kA)\n", +"I_making = I_breaking*2.55 // Rated making current(kA)\n", +"I_short = I_breaking // Short-time rating(kA)\n", +"\n", +"// Results\n", +"disp('PART III - EXAMPLE : 6.6 : SOLUTION :-')\n", +"printf('\nRated normal current = %.f A', I)\n", +"printf('\nBreaking current = %.2f kA (rms)', I_breaking)\n", +"printf('\nMaking current = %.f kA', I_making)\n", +"printf('\nShort-time rating = %.2f kA for 3 secs', I_short)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 32.8: EX32_8.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// A Texbook on POWER SYSTEM ENGINEERING\n", +"// A.Chakrabarti, M.L.Soni, P.V.Gupta, U.S.Bhatnagar\n", +"// DHANPAT RAI & Co.\n", +"// SECOND EDITION \n", +"\n", +"// PART III : SWITCHGEAR AND PROTECTION\n", +"// CHAPTER 6: CIRCUIT BREAKER\n", +"\n", +"// EXAMPLE : 6.8 :\n", +"// Page number 569\n", +"clear ; clc ; close ; // Clear the work space and console\n", +"\n", +"// Given data\n", +"kVA = 7500.0 // Rated kVA\n", +"X_st = 9.0 // Sub-transient reactance(%)\n", +"X_t = 15.0 // Transient reactance(%)\n", +"X_d = 100.0 // Direct-axis reactance(%)\n", +"kV = 13.8 // Voltage(kV). Assumption\n", +"\n", +"// Calculations\n", +"kVA_base = 7500.0 // Base kVA\n", +"kVA_sc_sustained = kVA_base/X_d*100 // Sustained S.C kVA\n", +"I_sc_sustained = kVA_base/(3**0.5*kV) // Sustained S.C current(A). rms\n", +"I_st = kVA*100/(X_st*3**0.5*kV) // Initial symmetrical rms current in the breaker(A)\n", +"I_max_dc = 2**0.5*I_st // Maximum possible dc component of the short-circuit(A)\n", +"I_moment = 1.6*I_st // Momentary current rating of the breaker(A)\n", +"I_interrupt = 1.1*I_st // Current to be interrupted by the breaker(A)\n", +"I_kVA = 3**0.5*I_interrupt*kV // Interrupting kVA\n", +"\n", +"// Results\n", +"disp('PART III - EXAMPLE : 6.8 : SOLUTION :-')\n", +"printf('\nCase(a): Sustained short circuit KVA in the breaker = %.f kVA', kVA_sc_sustained)\n", +"printf('\n Sustained short circuit current in the breaker = %.1f A (rms)', I_sc_sustained)\n", +"printf('\nCase(b): Initial symmetrical rms current in the breaker = %.f A (rms)', I_st)\n", +"printf('\nCase(c): Maximum possible dc component of the short-circuit in the breaker = %.f A', I_max_dc)\n", +"printf('\nCase(d): Momentary current rating of the breaker = %.f A (rms)', I_moment)\n", +"printf('\nCase(e): Current to be interrupted by the breaker = %.f A (rms)', I_interrupt)\n", +"printf('\nCase(f): Interrupting kVA = %.f kVA \n', I_kVA)\n", +"printf('\nNOTE: Changes in the obtained answer from that of textbook due to more approximation in textbook')" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} |