diff options
Diffstat (limited to 'Power_System_Engineering_by_S_Chakraborthy/2-THERMAL_STATIONS.ipynb')
-rw-r--r-- | Power_System_Engineering_by_S_Chakraborthy/2-THERMAL_STATIONS.ipynb | 187 |
1 files changed, 187 insertions, 0 deletions
diff --git a/Power_System_Engineering_by_S_Chakraborthy/2-THERMAL_STATIONS.ipynb b/Power_System_Engineering_by_S_Chakraborthy/2-THERMAL_STATIONS.ipynb new file mode 100644 index 0000000..df3559a --- /dev/null +++ b/Power_System_Engineering_by_S_Chakraborthy/2-THERMAL_STATIONS.ipynb @@ -0,0 +1,187 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 2: THERMAL STATIONS" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.1: Limiting_value_and_Coal_per_hour.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// A Texbook on POWER SYSTEM ENGINEERING\n", +"// A.Chakrabarti, M.L.Soni, P.V.Gupta, U.S.Bhatnagar\n", +"// DHANPAT RAI & Co.\n", +"// SECOND EDITION \n", +"\n", +"// PART I : GENERATION\n", +"// CHAPTER 2: THERMAL STATIONS\n", +"\n", +"// EXAMPLE : 2.1 :\n", +"// Page number 25-26\n", +"clear ; clc ; close ; // Clear the work space and console\n", +"\n", +"//Given data\n", +"M = 15000.0+10.0 // Water evaporated(kg)\n", +"C = 5000.0+5.0 // Coal consumption(kg)\n", +"time = 8.0 // Generation shift time(hours)\n", +"\n", +"//Calculations\n", +"//Case(a)\n", +"M1 = M-15000.0 \n", +"C1 = C-5000.0 \n", +"M_C = M1/C1 // Limiting value of water evaporation(kg)\n", +"//Case(b)\n", +"kWh = 0 // Station output at no load\n", +"consumption_noload = 5000+5*kWh // Coal consumption at no load(kg)\n", +"consumption_noload_hr = consumption_noload/time // Coal consumption per hour(kg)\n", +"\n", +"//Results\n", +"disp('PART I - EXAMPLE : 2.1 : SOLUTION :-')\n", +"printf('\nCase(a): Limiting value of water evaporation per kg of coal consumed, M/C = %.f kg', M_C)\n", +"printf('\nCase(b): Coal per hour for running station at no load = %.f kg\n', consumption_noload_hr)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.2: Average_load_on_power_plant.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// A Texbook on POWER SYSTEM ENGINEERING\n", +"// A.Chakrabarti, M.L.Soni, P.V.Gupta, U.S.Bhatnagar\n", +"// DHANPAT RAI & Co.\n", +"// SECOND EDITION \n", +"\n", +"// PART I : GENERATION\n", +"// CHAPTER 2: THERMAL STATIONS\n", +"\n", +"// EXAMPLE : 2.2 :\n", +"// Page number 26\n", +"clear ; clc ; close ; // Clear the work space and console\n", +"\n", +"//Given data\n", +"amount = 25.0*10**5 // Amount spent in 1 year(Rs)\n", +"value_heat = 5000.0 // Heating value(kcal/kg)\n", +"cost = 500.0 // Cost of coal per ton(Rs)\n", +"n_ther = 0.35 // Thermal efficiency\n", +"n_elec = 0.9 // Electrical efficiency\n", +"\n", +"//Calculations\n", +"n = n_ther*n_elec // Overall efficiency\n", +"consumption = amount/cost*1000 // Coal consumption in 1 year(kg)\n", +"combustion = consumption*value_heat // Heat of combustion(kcal)\n", +"output = n*combustion // Heat output(kcal)\n", +"unit_gen = output/860.0 // Annual heat generated(kWh). 1 kWh = 860 kcal\n", +"hours_year = 365*24.0 // Total time in a year(hour)\n", +"load_average = unit_gen/hours_year // Average load on the power plant(kW)\n", +"\n", +"//Result\n", +"disp('PART I - EXAMPLE : 2.2 : SOLUTION :-')\n", +"printf('\nAverage load on power plant = %.2f kW\n', load_average)\n", +"printf('\nNOTE: ERROR: Calculation mistake in the final answer in the textbook')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.3: Heat_balance_sheet.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// A Texbook on POWER SYSTEM ENGINEERING\n", +"// A.Chakrabarti, M.L.Soni, P.V.Gupta, U.S.Bhatnagar\n", +"// DHANPAT RAI & Co.\n", +"// SECOND EDITION \n", +"\n", +"// PART I : GENERATION\n", +"// CHAPTER 2: THERMAL STATIONS\n", +"\n", +"// EXAMPLE : 2.3 :\n", +"// Page number 26\n", +"clear ; clc ; close ; // Clear the work space and console\n", +"\n", +"//Given data\n", +"consumption = 0.5 // Coal consumption per kWh output(kg)\n", +"cal_value = 5000.0 // Calorific value(kcal/kg)\n", +"n_boiler = 0.8 // Boiler efficiency\n", +"n_elec = 0.9 // Electrical efficiency\n", +"\n", +"//Calculations\n", +"input_heat = consumption*cal_value // Heat input(kcal)\n", +"input_elec = input_heat/860.0 // Equivalent electrical energy(kWh). 1 kWh = 860 kcal\n", +"loss_boiler = input_elec*(1-n_boiler) // Boiler loss(kWh)\n", +"input_steam = input_elec-loss_boiler // Heat input to steam(kWh)\n", +"input_alter = 1/n_elec // Alternator input(kWh)\n", +"loss_alter = input_alter*(1-n_elec) // Alternate loss(kWh)\n", +"loss_turbine = input_steam-input_alter // Loss in turbine(kWh)\n", +"loss_total = loss_boiler+loss_alter+loss_turbine // Total loss(kWh)\n", +"output = 1.0 // Output(kWh)\n", +"Input = output+loss_total // Input(kWh)\n", +"\n", +"//Results\n", +"disp('PART I - EXAMPLE : 2.3 : SOLUTION :-')\n", +"printf('\nHeat Balance Sheet')\n", +"printf('\nLOSSES: Boiler loss = %.3f kWh', loss_boiler)\n", +"printf('\n Alternator loss = %.2f kWh', loss_alter)\n", +"printf('\n Turbine loss = %.3f kWh', loss_turbine)\n", +"printf('\n Total loss = %.2f kWh', loss_total)\n", +"printf('\nOUTPUT: %.1f kWh', output)\n", +"printf('\nINPUT: %.2f kWh\n', Input)" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} |