summaryrefslogtreecommitdiff
path: root/Optical_Fiber_Communication_by_A_Kalavar/8-Optical_Receiver_Operation.ipynb
diff options
context:
space:
mode:
Diffstat (limited to 'Optical_Fiber_Communication_by_A_Kalavar/8-Optical_Receiver_Operation.ipynb')
-rw-r--r--Optical_Fiber_Communication_by_A_Kalavar/8-Optical_Receiver_Operation.ipynb327
1 files changed, 327 insertions, 0 deletions
diff --git a/Optical_Fiber_Communication_by_A_Kalavar/8-Optical_Receiver_Operation.ipynb b/Optical_Fiber_Communication_by_A_Kalavar/8-Optical_Receiver_Operation.ipynb
new file mode 100644
index 0000000..e103d91
--- /dev/null
+++ b/Optical_Fiber_Communication_by_A_Kalavar/8-Optical_Receiver_Operation.ipynb
@@ -0,0 +1,327 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 8: Optical Receiver Operation"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.q: Determine_maximum_response_time.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Question 7 page 8.55\n",
+"\n",
+"clc;\n",
+"clear;\n",
+"\n",
+"w=25d-6; //width\n",
+"v=3d4; //velocity\n",
+"\n",
+"t=w/v; //computing drift time\n",
+"BW=(2*%pi*t)^-1; //computing bandwidth\n",
+"rt=1/BW; //response time\n",
+"rt=rt*10^9;\n",
+"\n",
+"printf('\nMaximum response time is %.2f ns.',rt);\n",
+"\n",
+"//Answer in the book is given as 5.24ns deviation of 0.01ns"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.10_1: Find_signal_to_noise_ratio.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Example 8.10.1 page 8.25\n",
+"\n",
+"clc;\n",
+"clear;\n",
+"\n",
+"//erfc 4.24 is given to be 2d-9\n",
+"\n",
+"SN=(2*sqrt(2)*4.24)^2; //computing optical SNR\n",
+"SN=round(SN);\n",
+"SN1=sqrt(SN); //computing electrical SNR\n",
+"printf('\nOptical SNR is %d.\nElectrical SNR is %d.',SN,SN1);"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.11_1: Find_photon_energy.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Example 8.11.1 page 8.26\n",
+"\n",
+"clc;\n",
+"clear;\n",
+"\n",
+"P=1d-9; //probability of error\n",
+"eta=1;\n",
+"N= -log(P);\n",
+"N1=round(N);\n",
+"printf('Thus %.1f or %d photons are required for maintaining 10^-9 BER.\nAssuming eta=1;\nE=%.1f*hv.',N,N1,N);"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.17_1: Calculate_shot_noise_and_thermal_noise.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Example 8.17.1 page 8.46\n",
+"\n",
+"clc;\n",
+"clear;\n",
+"\n",
+"lamda=0.85d-6;\n",
+"h=6.626d-34; //plank's constant\n",
+"c=3d8; //speed of light\n",
+"q=1.6d-19; //charge of electron\n",
+"eta=65/100; //quantum efficiency\n",
+"P0=300d-9; //optical power\n",
+"Id=3.5; //dark current\n",
+"B=6.5d6; //bandwidth\n",
+"K=1.39d-23; //Boltzman constant\n",
+"T=293; //temperature\n",
+"R=5d3; //load resister\n",
+"Ip= 10^9*eta*P0*q*lamda/(h*c);\n",
+"Its=10^9*(2*q*B*(Ip+Id));\n",
+"Its=sqrt(Its);\n",
+"printf('\nrms shot noise current is %.2f nA.',Its);\n",
+"\n",
+"It= 4*K*T*B/R;\n",
+"It=sqrt(It);\n",
+"It=It*10^9;\n",
+"printf('\nThermal noise is %.2f nA.',It);\n",
+"\n",
+"//answer given in book for Thermal noise it is 4.58nA, deviation is 0.02nA."
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.17_2: Find_signal_to_noise_ratio.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Example 8.17.2 page 8.47\n",
+"\n",
+"clc;\n",
+"clear;\n",
+"\n",
+"lamda=0.85d-6;\n",
+"h=6.626d-34; //plank's constant\n",
+"c=3d8; //speed of light\n",
+"q=1.6d-19; //charge of electron\n",
+"eta=65/100; //quantum efficiency\n",
+"P0=300d-9; //optical power\n",
+"Id=3.5; //dark current\n",
+"B=6.5d6; //bandwidth\n",
+"K=1.39d-23; //Boltzman constant\n",
+"T=293; //temperature\n",
+"R=5d3; //load resister\n",
+"F_dB=3; //noise figure\n",
+"F=10^(F_dB/10);\n",
+"Ip=10^9*eta*P0*q*lamda/(h*c);\n",
+"Its=10^9*(2*q*B*(Ip+Id));\n",
+"It1= 4*K*T*B*F/R;\n",
+"\n",
+"SN= Ip^2/(Its+It1);\n",
+"SN_dB=10*log10(SN);\n",
+"SN=SN/10^4;\n",
+"\n",
+"printf('\nSNR is %.2f*10^4 or %.2f dB.',SN,SN_dB);\n",
+"\n",
+"//answer given in the book is 6.16*10^4 (deviation of 0.9) and 47.8dB (deviation of 0.16dB)\n",
+""
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.18_1: Calculate_maximum_load_resistance.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Example 8.18.1 page 8.48\n",
+"\n",
+"clc;\n",
+"clear;\n",
+"\n",
+"Cd=7d-12;\n",
+"B=9d6;\n",
+"Ca=7d-12;\n",
+"\n",
+"R=(2*3.14*Cd*B)^-1;\n",
+"B1=(2*3.14*R*(Cd+Ca))^-1;\n",
+"R=R/1000;\n",
+"B1=B1/10^6;\n",
+"printf('\nThus for 9MHz bandwidth maximum load resistance is %.2f Kohm\nNow if we consider input capacitance of following amplifier Ca then Bandwidth is %.2fMHz\nMaximum post detection bandwidth is half.',R,B1);\n",
+"\n",
+"//answer for resistance in the book is 4.51Kohm, deviation of 0.01Kohm, while for bandwidth it is 4.51 MHz, deviation of 0.01MHz"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.3_1: Find_quantum_efficiency_and_minimum_incident_power.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Example 8.3.1 page 8.9\n",
+"\n",
+"clc;\n",
+"clear;\n",
+"\n",
+"P=10^-9; //probability of error\n",
+"eta=1; //ideal detector\n",
+"h=6.626d-34 //plank's constant\n",
+"c=3d8; //speed of light\n",
+"lamda=1d-6; //wavelength\n",
+"B=10^7; //bit rate\n",
+"\n",
+"Mn= - log(P);\n",
+"printf('\n The quantum imit at the receiver to maintain bit error rate 10^-9 is (%.1f*h*f)/eta.',Mn);\n",
+"f=c/lamda\n",
+"Popt= 0.5*Mn*h*f*B/eta; //computing optical power\n",
+"Popt_dB = 10 * log10(Popt) + 30; //optical power in dbm\n",
+"Popt=Popt*10^12;\n",
+"\n",
+"printf('\nMinimum incident optical power is %.1f W or %.1f dBm.',Popt,Popt_dB);"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.3_2: Calculate_incident_optical_power.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Example 8.3.2 page 8.11\n",
+"\n",
+"clc;\n",
+"clear;\n",
+"\n",
+"SN_dB=60; //signal to noise ratio\n",
+"h=6.626d-34 //plank's constant\n",
+"c=3d8; //speed of light\n",
+"lamda=1.3d-6; //wavelength\n",
+"eta=1;\n",
+"B=6.5d6; //Bandwidth\n",
+"\n",
+"SN=10^(SN_dB/10);\n",
+"f=c/lamda\n",
+"Popt= 2*SN*h*f*B/eta; //computing optical power\n",
+"Popt_dB = 10 * log10(Popt) + 30; //optical power in dbm\n",
+"Popt=Popt*10^6;\n",
+"printf('\nIncident power required to get an SNR of 60 dB at the receiver is %.4f microWatt or %.3f dBm',Popt,Popt_dB);\n",
+"printf('\nNOTE - Calculation error in the book.\nThey have take SN as 10^5 while calculating, which has lead to an error in final answer');\n",
+"\n",
+"//Calculation error in the book.They have take SN as 10^5 while calculating, which has lead to an error in final answer\n",
+"//answer in the book 198.1nW and -37.71 dBm"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}