diff options
Diffstat (limited to 'Nuclear_Physics_by_D_C_Tayal/8-Beta_Decay.ipynb')
-rw-r--r-- | Nuclear_Physics_by_D_C_Tayal/8-Beta_Decay.ipynb | 245 |
1 files changed, 245 insertions, 0 deletions
diff --git a/Nuclear_Physics_by_D_C_Tayal/8-Beta_Decay.ipynb b/Nuclear_Physics_by_D_C_Tayal/8-Beta_Decay.ipynb new file mode 100644 index 0000000..fec2edf --- /dev/null +++ b/Nuclear_Physics_by_D_C_Tayal/8-Beta_Decay.ipynb @@ -0,0 +1,245 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 8: Beta Decay" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 6.8: Beta_decayed_particle_emission_of_Li8.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Scilab code Exa6.8: : Page-243 (2011)\n", +"clc; clear;\n", +"l = 2; // Orbital angular momentum quantum number\n", +"P = (+1)^2*(-1)^l; // Parity of the 2.9 MeV level in Be-8\n", +"M_Li = 7.0182; // Mass of lithium, MeV\n", +"M_Be = 7.998876; // Mass of beryllium, MeV\n", +"m_n = 1; // Mass of neutron, MeV\n", +"E_th = (M_Li+m_n-M_Be)*931.5; // Threshold energy, MeV\n", +"printf('\nThe parity of the 2.9 MeV level in be-8 = +%d \nThe threshold energy for lithium 7 neutron capture = %d MeV',P, E_th);\n", +"\n", +"// Result\n", +"// The parity of the 2.9 MeV level in be-8 = +1 \n", +"// The threshold energy for lithium 7 neutron capture = 18 MeV " + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 8.10: Kinetic_energy_of_the_two_interacting_nucleons_in_different_frames.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Scilab code Exa8.10 : : Page-352 (2011)\n", +"clc; clear;\n", +"r = 2e-015; // Range of nuclear force, metre\n", +"h_kt = 1.0546e-34; // Reduced value of Planck's constant, joule sec\n", +"m = 1.674e-27; // Mass of each nucleon, Kg\n", +"K = round (2*h_kt^2/(2*m*r^2*1.6023e-13)); // Kinetic energy of each nucleon in centre of mass frame, mega electron volts\n", +"K_t = 2*K; // Total kinetic energy, mega electron volts\n", +"K_inc = 2*K_t; // Kinetic energy of the incident nucleon, mega electron volts\n", +"printf('\nThe kinetic energy of each nucleon = %d MeV\nThe total kinetic energy = %d MeV\nThe kinetic energy of the incident nucleon = %d MeV', K, K_t, K_inc);\n", +"// Result\n", +"// " + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 8.3: Neutron_and_proton_interacting_within_the_deuteron.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Scilab code Exa8.3 : : Page-349 (2011)\n", +"clc; clear;\n", +"b = 1.9e-15; // Width of square well potential, metre\n", +"h_kt = 1.054571e-034; // Reduced planck's constant, joule sec\n", +"c = 3e+08; // Velocity of light, metre per sec\n", +"m_n = 1.67e-27; // Mass of a nucleon , Kg\n", +"V_0 = 40*1.6e-13; // Depth, metre\n", +"E_B = (V_0-(1/(m_n*c^2)*(%pi*h_kt*c/(2*b))^2))/1.6e-13; // Binding energy, mega electron volts\n", +"alpha = sqrt(m_n*c^2*E_B*1.6e-13)/(h_kt*c); // scattering co efficient, per metre\n", +"P = (1+1/(alpha*b))^-1; // Probability\n", +"R_mean = sqrt (b^2/2*(1/3+4/%pi^2+2.5)); // Mean square radius, metre\n", +"printf('\nThe probability that the proton moves within the range of neutron = %4.2f \nThe mean square radius of the deuteron = %4.2e metre', P, R_mean);\n", +"// Result\n", +"// The probability that the proton moves within the range of neutron = 0.50 \n", +"// The mean square radius of the deuteron = 2.42e-015 metre " + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 8.5: Total_cross_section_for_np_scattering_at_neutron_energy.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Scilab code Exa8.5 : : Page-349 (2011)\n", +"clc; clear;\n", +"a_t = 5.38e-15;\n", +"a_s = -23.7e-15;\n", +"r_ot = 1.70e-15;\n", +"r_os = 2.40e-15;\n", +"m = 1.6748e-27;\n", +"E = 1.6e-13;\n", +"h_cut = 1.0549e-34;\n", +"K_sqr = m*E/h_cut^2;\n", +"sigma = 1/4*(3*4*%pi*a_t^2/(a_t^2*K_sqr+(1-1/2*K_sqr*a_t*r_ot)^2)+4*%pi*a_s^2/(a_s^2*K_sqr+(1-1/2*K_sqr*a_s*r_os)^2))*1e+028; // Total cross-section for n-p scattering, barn\n", +"printf('\nThe total cross section for n-p scattering = %5.3f barn', sigma);\n", +"// Result\n", +"// The total cross section for n-p scattering = 2.911 barn " + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 8.8: Possible_angular_momentum_states_for_the_deuterons_in_an_LS_coupling_scheme.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Scilab code Exa8.8 : : Page-351 (2011)\n", +"clc; clear;\n", +"S = 1; // Spin angular momentum(s1+-s2), whereas s1 is the spin of proton and s2 is the spin of neutron.\n", +"m = 2*S+1; // Spin multiplicity\n", +"j = 1; // Total angular momentum\n", +"printf('\nThe possible angular momentum states with their parities are as follows : ');\n", +" printf('\n %dS%d has even parity ', m, j);\n", +" printf('\n %dP%d has odd parity ', m, j);\n", +" printf('\n %dD%d has even parity', m, j); \n", +"S = 0;\n", +"m = 2*S+1\n", +" printf('\n %dP%d has odd parity ', m, j);\n", +" \n", +"// Result \n", +"// The possible angular momentum states with their parities are as follows : \n", +"// 3S1 has even parity \n", +"// 3P1 has odd parity \n", +"// 3D1 has even parity\n", +"// 1P1 has odd parity " + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 8.9: States_of_a_two_neutron_system_with_given_total_angular_momentum.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Scilab code Exa8.9 : : Page-351 (2011)\n", +"clc; clear;\n", +"printf('\nThe possible states are : ');\n", +"// For s = 0\n", +"s = 0; // Spin angular momentum\n", +"m = 2*s+1; // Spin multiplicity\n", +"for j = 0:2 // Total angular momentum\n", +" l = j\n", +" if l == 0 then\n", +" printf('\n %dS%d, ', j,m); \n", +" elseif l == 2 then\n", +" printf(' %dD%d, ', j,m); \n", +" end\n", +"end\n", +"// For s = 1\n", +"s = 1;\n", +"m = 2*s+1;\n", +" l = 2\n", +"for j = 0:2 \n", +" if j == 0 then\n", +" printf(' %dP%d, ', j,m); \n", +" elseif j ==1 then\n", +" printf(' %dP%d, ', j,m);\n", +" elseif j ==2 then\n", +" printf('%dP%d and ', j,m); \n", +" end\n", +"end\n", +"for j = 2\n", +" printf(' %dF%d', j,m)\n", +"end\n", +"// Result\n", +"// Possible states are : \n", +"// The possible states are : \n", +"// 0S1, 2D1, 0P3, 1P3, 2P3 and 2F3 " + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} |