diff options
Diffstat (limited to 'Nuclear_Physics_by_D_C_Tayal/7-Gamma_Radiation.ipynb')
-rw-r--r-- | Nuclear_Physics_by_D_C_Tayal/7-Gamma_Radiation.ipynb | 360 |
1 files changed, 360 insertions, 0 deletions
diff --git a/Nuclear_Physics_by_D_C_Tayal/7-Gamma_Radiation.ipynb b/Nuclear_Physics_by_D_C_Tayal/7-Gamma_Radiation.ipynb new file mode 100644 index 0000000..3716cf5 --- /dev/null +++ b/Nuclear_Physics_by_D_C_Tayal/7-Gamma_Radiation.ipynb @@ -0,0 +1,360 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 7: Gamma Radiation" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 7.10: EX7_10.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Scilab code Exa7.10: : Page-296 (2011)\n", +"clc; clear;\n", +"l = 2,3,4\n", +"printf('\nThe possible multipolarities are ')\n", +"for l = 2:4\n", +" if l == 2 then\n", +" printf('E%d,', l);\n", +" elseif l == 3 then\n", +" printf(' M%d', l);\n", +" elseif l == 4 then\n", +" printf(' and E%d', l);\n", +" end\n", +"end\n", +"for l = 2:4\n", +" if l == 2 then \n", +" printf('\nThe transition E%d dominates',l);\n", +" end\n", +"end\n", +"\n", +"// Result\n", +"// The possible multipolarities are E2, M3 and E4\n", +"// The transition E2 dominates \n", +"\n", +"" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 7.13: Relative_source_absorber_velocity_required_to_obtain_resonance_absorption.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Scilab code Exa7.13: : Page-297 (2011)\n", +"clc; clear;\n", +"E_0 = 0.014*1.6022e-13; // Energy of the gamma rays, joule\n", +"A = 57; // Mass number\n", +"m = 1.67e-27; // Mass of each nucleon, Kg\n", +"c = 3e+08; // Velocity of light, metre per sec\n", +"N = 1000; // Number of atoms in the lattice\n", +"v = E_0/(A*N*m*c); // Ralative velocity, metre per sec\n", +"printf('\nThe relative source absorber velocity = %5.3f m/s', v);\n", +"\n", +"// Result\n", +"// The relative source absorber velocity = 0.079 m/s \n", +"\n", +"" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 7.14: Estimating_the_frequency_shift_of_a_photon.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Scilab code Exa7.14: : Page-297 (2011)\n", +"clc; clear;\n", +"g = 9.8; // Acceleration due to gravity, metre per square sec\n", +"c = 3e+08; // Velocity of light, metre per sec\n", +"y = 20; // Vertical distance between source and absorber, metre\n", +"delta_v = g*y/c^2; // Frequency shift\n", +"printf('\nThe required frequency shift of the photon = %4.2e ', delta_v);\n", +"\n", +"// Result\n", +"// The required frequency shift of the photon = 2.18e-015 \n", +"\n", +"" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 7.1: Bragg_reflection_for_first_order_in_a_bent_crystal_spectrometer.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Scilab code Exa7.1: : Page-292 (2011)\n", +"clc; clear;\n", +"h = 6.6261e-034; // Planck's constant, joule sec\n", +"C = 2.998e+08; // Velocity of light, metre per sec\n", +"f = 2; // Radius of focal circle, metre\n", +"d = 1.18e-010; // Interplaner spacing for quartz crystal, metre\n", +"E_1 = 1.17*1.6022e-013; // Energy of the gamma rays, joule\n", +"E_2 = 1.33*1.6022e-013; // Energy of the gamma rays, joule\n", +"D = h*C*f*(1/E_1-1/E_2)*1/(2*d); //Distance to be moved for obtaining first order reflection for two different energies, metre\n", +"printf('\nThe distance to be moved for obtaining first order Bragg reflection = %4.2e metre', D);\n", +"\n", +"// Result\n", +"// The distance to be moved for obtaining first order Bragg reflection = 1.08e-003 metre " + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 7.2: Energy_of_the_gamma_rays_from_magnetic_spectrograph_data.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Scilab code Exa7.2: : Page-293 (2011)\n", +"clc; clear;\n", +"m_0 = 9.1094e-031; // Rest mass of the electron, Kg\n", +"B_R = 1250e-06; // Magnetic field,tesla metre\n", +"e = 1.6022e-019; // Charge of the electron, coulomb\n", +"C = 3e+08; // Velocity of the light, metre per sec\n", +"E_k = 0.089; // Binding energy of the K-shell electron,MeV\n", +"v = B_R*e/(m_0*sqrt(1+B_R^2*e^2/(m_0^2*C^2))); // Velocity of the photoelectron, metre per sec\n", +"E_pe = m_0/(1.6022e-013)*C^2*(1/sqrt(1-v^2/C^2)-1); // Energy of the photoelectron,MeV\n", +"E_g = E_pe+E_k; // Energy of the gamma rays, MeV\n", +"printf('\nThe energy of the gamma rays = %5.3f MeV', E_g);\n", +"\n", +"// Result\n", +"// The energy of the gamma rays = 0.212 MeV " + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 7.3: Attenuation_of_beam_of_X_rays_in_passing_through_human_tissue.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Scilab code Exa7.3: : Page-292 (2011)\n", +"clc; clear;\n", +"a_c = 0.221; // Attenuation coefficient, cm^2/g\n", +"A = (1-exp(-0.22))*100; // Attenuation of beam of X-rays in passing through human tissue\n", +"printf('\nThe attenuation of beam of X-rays in passing through human tissue = %d percent', ceil(A));\n", +"\n", +"// Result\n", +"// The attenuation of beam of X-rays in passing through human tissue = 20 percent " + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 7.4: Partial_half_life_for_gamma_emission_of_Hg195_isomer.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Scilab code Exa7.4: : Page-293 (2011)\n", +"clc; clear;\n", +"alpha_k = 45; // Ratio between decay constants\n", +"sum_alpha = 0.08; // Sum of alphas\n", +"P = 0.35*1/60; // Probability of the isomeric transition,per hour\n", +"lambda_g = P*sum_alpha/alpha_k; // Decay constant of the gamma radiations, per hour\n", +"T_g = 1/(lambda_g*365*24); // Partial life time for gamma emission,years\n", +"printf('\nThe partial life time for gamma emission = %5.3f years', T_g);\n", +"\n", +"// Result\n", +"// The partial life time for gamma emission = 11.008 years \n", +"\n", +"" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 7.5: Estimating_the_gamma_width_from_Weisskopf_model.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Scilab code Exa7.5: : Page-294 (2011)\n", +"clc; clear;\n", +"A = 11; // Mass number of boron\n", +"E_g = 4.82; // Energy of the gamma radiation, mega electron volts\n", +"W_g = 0.0675*A^(2/3)*E_g^3; // Gamma width, mega electron volts\n", +"printf('\nThe required gamma width = %5.2f MeV', W_g);\n", +"\n", +"// Result\n", +"// The required gamma width = 37.39 MeV \n", +"\n", +"" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 7.8: K_electronic_states_in_indium.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Scilab code Exa7.8: : Page-295 (2011)\n", +"clc; clear;\n", +"e = 1.6022e-19; // Charge of an electron, coulomb\n", +"BR = 2370e-06; // Magnetic field in an orbit, tesla metre\n", +"m_0 = 9.1094e-31; // Mass of an electron, Kg\n", +"c = 3e+08; // Velocity of light, metre per sec\n", +"v = 1/sqrt((m_0/(BR*e))^2+1/c^2); // velocity of the particle, metre per sec\n", +"E_e = m_0*c^2*((1-(v/c)^2)^(-1/2)-1)/1.6e-13; // Energy of an electron, MeV\n", +"E_b = 0.028; // Binding energy, MeV\n", +"E_g = E_e+E_b; // Excitation energy, MeV\n", +"alpha_k = 0.5; // K conversion coefficient\n", +"Z = 49; // Number of protons\n", +"alpha = 1/137; // Fine structure constant\n", +"L = (1/(1-(Z^3/alpha_k*alpha^4*(2*0.511/0.392)^(15/2))))/2; // Angular momentum\n", +"l = 1; // Orbital angular momentum\n", +"I = l-1/2; // Parity\n", +"printf('\nFor K-electron state:\nThe excitation energy = %5.3f MeV\nThe angular momentum = %d\nThe parity : %3.1f', E_g, ceil(L), I);\n", +"// Result\n", +"// For K-electron state:\n", +"// The excitation energy = 0.393 MeV\n", +"// The angular momentum = 5\n", +"// The parity : 0.5 \n", +"\n", +"" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 7.9: Radioactive_lifetime_of_the_lowest_energy_electric_dipole_transition_for_F17.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Scilab code Exa7.9: : Page-295 (2011)\n", +"clc; clear;\n", +"c = 3e+10; // Velocity of light, centimetre per sec\n", +"R_0 = 1.4e-13; // Distance of closest approach, centimetre \n", +"alpha = 1/137; // Fine scattering constant\n", +"A = 17; // Mass number\n", +"E_g = 5*1.6e-06; // Energy of gamma transition, ergs\n", +"h_cut = 1.054571628e-27; // Reduced planck constant, ergs per sec\n", +"lambda = c/4*R_0^2*alpha*(E_g/(h_cut*c))^3*A^(2/3); // Disintegration constant, per sec\n", +"tau = 1/lambda; // Radioactive lifr\e time, sec\n", +"printf('\nThe radioactive life time = %1.0e sec', tau);\n", +"\n", +"// Result\n", +"// The radioactive life time = 9e-018 sec \n", +"\n", +"" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} |