diff options
Diffstat (limited to 'Modern_Physics_for_Engineers_by_S_P_Taneja/22-superconductivity.ipynb')
-rw-r--r-- | Modern_Physics_for_Engineers_by_S_P_Taneja/22-superconductivity.ipynb | 159 |
1 files changed, 159 insertions, 0 deletions
diff --git a/Modern_Physics_for_Engineers_by_S_P_Taneja/22-superconductivity.ipynb b/Modern_Physics_for_Engineers_by_S_P_Taneja/22-superconductivity.ipynb new file mode 100644 index 0000000..fa313d0 --- /dev/null +++ b/Modern_Physics_for_Engineers_by_S_P_Taneja/22-superconductivity.ipynb @@ -0,0 +1,159 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 22: superconductivity" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 22.1: critical_field_and_transition_temperature.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Example 22.1 // critical field & transition temperature\n", +"clc;\n", +"clear;\n", +"//given data :\n", +"T=4.2;//to calculate critical field at T (kelvin)\n", +"Hc1=1.4D5;// critical magnetic field in amp/m\n", +"Hc2=4.2D5;//critical magnetic field in amp/m\n", +"T1=14;//temperature in kelvin\n", +"T2=13;//temperature ]in kevin \n", +"Tc=sqrt(.5*((T2^2-T1^2)*(Hc1+Hc2)/(Hc1-Hc2)+T1^2+T2^2));// transition temperature\n", +"H=Hc1/(1-(T1/Tc)^2);//field at 0 degree\n", +"Hc=H*(1-(T/Tc)^2)\n", +"disp(Tc,'transition temperature in kelvin')\n", +"disp(Hc,'Critical field at T in amp/m')\n", +"\n", +"//little error due to approximations in book" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 22.2: critical_temperature.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Example 22.2 // critical temperature\n", +"clc;\n", +"clear;\n", +"//given data :\n", +"Tc1=4.185;//critical temperature in kelvin\n", +"M=199.5;// isotropic mass \n", +"M1=203.4;//isotropic mass\n", +"Tc2=Tc1*(M/M1)^.5;// formula\n", +"disp(Tc2,'critical temperature in kelvin') " + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 22.3: critical_current_density.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Example 22.3 // critical current density\n", +"clc;\n", +"clear;\n", +"//given data :\n", +"d=1D-3;//diameter of wire in m\n", +"Ho=6.5D4;//critical field at temperature at 0k\n", +"Tc=7.18;// critical temperature in kelvin\n", +"T=4.2;//temperature in kelvin\n", +"Hc=Ho*(1-(T/Tc)^2);//critical field at T kelvin\n", +"Jc=4*Hc/d;//formula\n", +"disp(Jc,'critical current density in A/m2')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 22.4: penetration_depth.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Example 22.4 // penetration depth\n", +"clc;\n", +"clear;\n", +"//given data :\n", +"w=750;// penetration depth in A\n", +"T=3.5;// temperature in kelvin\n", +"Tc=4.12;// critical temperature in kelvin\n", +"d=13.55D3;//density of mercury\n", +"N=6.023D23;// avogadro number\n", +"M=200D-3;//molecular weight in kg \n", +"wo=w*(1-(T/Tc)^4)^.5;//formula\n", +"disp(wo,'penetration depth in A(angstrom)')\n", +"//n0=d*N/M;//normal electron density at 0 degre\n", +"//n=n0*(1-(T/Tc)^4);//electron density at T\n", +"//disp(n)\n", +"\n", +"//according to question the answer is upto Wo only.\n", +"\n", +"\n", +"" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} |