diff options
Diffstat (limited to 'Modern_Physics_by_R_A_Serway/9-Atomic_Structure_.ipynb')
-rw-r--r-- | Modern_Physics_by_R_A_Serway/9-Atomic_Structure_.ipynb | 217 |
1 files changed, 217 insertions, 0 deletions
diff --git a/Modern_Physics_by_R_A_Serway/9-Atomic_Structure_.ipynb b/Modern_Physics_by_R_A_Serway/9-Atomic_Structure_.ipynb new file mode 100644 index 0000000..932c72c --- /dev/null +++ b/Modern_Physics_by_R_A_Serway/9-Atomic_Structure_.ipynb @@ -0,0 +1,217 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 9: Atomic Structure " + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 9.1: Magnetic_energy_of_electron_in_Hydrogen.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Scilab code Ex9.1: Pg 300 (2005)\n", +"clc; clear;\n", +"// Since mu_B = (e*h_cross)/(2*m_e)\n", +"mu_B = 9.27e-24; // Bohr magneton, J/T\n", +"B = 1.00; // Magnetic flux, T\n", +"// Since 1 eV = 1.6e-19 J\n", +"eV = 1.6e-19; // Energy, J\n", +"h_cross = 6.58e-16; // Reduced Plank's constant, eV-s\n", +"omega_L = (mu_B*B)/(eV*h_cross); // Larmor frequency, rad/s\n", +"printf('\nLarmour frequency at n = 2 is %4.2fe+10 rad/s', omega_L*1e-10);\n", +"\n", +"// Result\n", +"// Larmour frequency at n = 2 is 8.81e+10 rad/s" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 9.2: Angles_between_z_axis_and_the_spin_angular_momentum_vector.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Scilab code Ex9.2: Pg 307 (2005)\n", +"clc; clear;\n", +"h_cross = 6.58e-16; // Reduced Plank's constant, eV-s\n", +"S = h_cross*sqrt(3)/2; // Spin angular momentum, eV-s\n", +"S_z = h_cross/2; // Z-component of spin angular momentum, eV-s\n", +"theta_up = acosd(S_z/S);\n", +"theta_down = acosd(-S_z/S);\n", +"printf('\nFor up spin state, theta = %4.2f degrees', theta_up);\n", +"printf('\nFor down spin state, theta = %5.1f degrees', theta_down);\n", +"\n", +"// Result\n", +"// For up spin state, theta = 54.74 degrees\n", +"// For down spin state, theta = 125.3 degrees " + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 9.3: Zeeman_Spectrum_of_Hydrogen_Including_Spin.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Scilab code Ex9.3: Pg 311 (2005)\n", +"clc; clear;\n", +"e = 1.6e-019; // Energy equivalent of 1 eV, J/eV\n", +"B = 1.00; // Magnitude of magnetic field, tesla\n", +"n = 2; // Initial state of the hydrogen atom\n", +"mu_B = 9.27e-024; // Bohr's magneton, J/T\n", +"E_Z = mu_B*B/e; // Zeeman energy, eV\n", +"E2 = -13.6/n^2; // Energy of first excited state, eV\n", +"m_l = [-2, -1, 0, 1, 2]; // Orbital magnetic quantum number for l = 2\n", +"printf('\nThe energies of the electron (in eV) in n = 2 state are:\n');\n", +"for i = 1:1:5\n", +" if m_l(i) < 0 then\n", +" sig = '-';\n", +" else\n", +" sig = '+';\n", +" end\n", +" printf(' (%4.2f %s %4.2e) ', E2, sig, abs(E_Z*m_l(i)));\n", +"end\n", +"\n", +"// Result\n", +"// The energies of the electron (in eV) in n = 2 state are:\n", +"// (-3.40 - 1.16e-04) (-3.40 - 5.79e-05) (-3.40 + 0.00e+00) (-3.40 + 5.79e-05) (-3.40 + 1.16e-04" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 9.4: Spin_orbit_energy_of_Sodium_doublet.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Scilab code Ex9.4: Pg 311 (2005)\n", +"clc; clear;\n", +"hc = 1240; // Product of plank's constant & velocity of light, eV\n", +"lamda_1 = 588.995; // Wavelength of first doublet of Na lines, nm\n", +"lamda_2 = 589.592; // Wavelength of second doublet of Na lines, nm\n", +"delta_E = hc*(lamda_2 - lamda_1)/(lamda_1*lamda_2); // Spin orbit energy, eV\n", +"printf('\nSpin orbit energy from doublet spacing = %4.2fe-03 eV', delta_E*1e+03);\n", +"\n", +"// Result\n", +"// Spin orbit energy from doublet spacing = 2.13e-03 eV" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 9.5: Ground_state_of_Helium_atom.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Scilab code Ex9.5: Pg 316 (2005)\n", +"clc; clear;\n", +"n = 1; // Principal quantum number\n", +"Z = 2; // Atomic number of Helium\n", +"E_a = (-13.6*Z^2)/n^2; // Energy of the electron in state 'a', eV\n", +"E_b = (-13.6*Z^2)/n^2; // Energy of the electron in state 'b', eV\n", +"E = E_a + E_b; // Total electronic energy of Helium, eV\n", +"printf('\nTotal electronic energy of Helium = %5.1f eV', E);\n", +"\n", +"// Result\n", +"// Total electronic energy of Helium = -108.8 eV" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 9.6: Effective_atomic_number_for_3s_electron_in_Na.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Scilab code Ex9.6: Pg 317 (2005)\n", +"clc; clear;\n", +"E_i = 5.14; // Ionisation energy of Na, eV\n", +"n = 3; // Principal quantum number\n", +"Z_eff = sqrt((n^2*E_i)/13.6); // Effective atmic number\n", +"printf('\nEffective atomic number for 3s electron in Na = %4.2f', Z_eff);\n", +"\n", +"// Result\n", +"// Effective atomic number for 3s electron in Na = 1.84" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} |