summaryrefslogtreecommitdiff
path: root/Modern_Physics_by_R_A_Serway/8-Quantum_Mechanics_in_Three_Dimensions.ipynb
diff options
context:
space:
mode:
Diffstat (limited to 'Modern_Physics_by_R_A_Serway/8-Quantum_Mechanics_in_Three_Dimensions.ipynb')
-rw-r--r--Modern_Physics_by_R_A_Serway/8-Quantum_Mechanics_in_Three_Dimensions.ipynb168
1 files changed, 168 insertions, 0 deletions
diff --git a/Modern_Physics_by_R_A_Serway/8-Quantum_Mechanics_in_Three_Dimensions.ipynb b/Modern_Physics_by_R_A_Serway/8-Quantum_Mechanics_in_Three_Dimensions.ipynb
new file mode 100644
index 0000000..f06cdb4
--- /dev/null
+++ b/Modern_Physics_by_R_A_Serway/8-Quantum_Mechanics_in_Three_Dimensions.ipynb
@@ -0,0 +1,168 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 8: Quantum Mechanics in Three Dimensions"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.4: Orbital_quantum_number_for_a_stone.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab code Ex8.4: Pg 270 (2005)\n",
+"clc; clear;\n",
+"R = 1.00; // Radius of circle, m\n",
+"T = 1.00; // Time period of revolution, s\n",
+"v = (2*%pi*R)/T; // Speed of stone in its orbit, m/s\n",
+"m = 1.00; // Mass of stone, kg\n",
+"L = m*v*R; // Angular momentum of stone, kg-m^2/s\n",
+"h_cross = 1.055e-34; // Reduced Planck's constant, kg-m^2/s\n",
+"l = L/h_cross; // Orbtal quantum number\n",
+"printf('\nThe orbtal quantum number for stone = %4.2fe+34', l*1e-34);\n",
+"\n",
+"// Result\n",
+"// Orbtal quantum number for stone = 5.96e+34"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.6: Space_quantisation_for_an_atomic_electron.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab code Ex8.6: Pg 272 (2005)\n",
+"clc; clear;\n",
+"// For simplicity let h_cross = 1\n",
+"h_cross = 1; // Reduced planck's constant\n",
+"l = 3; // Given orbital quantum number\n",
+"L = sqrt(l*(l+1)*h_cross); // Magnitude of total angular momentum, in h_cross units\n",
+"m_l = [-3, -2, -1, 0, 1, 2, 3];\n",
+"L_z = m_l*h_cross; // Allowed values of L_z\n",
+"cos_theta = L_z/L;\n",
+"theta = acosd(L_z/L); // Orientations of L_z, degrees\n",
+"for i = 1:1:7\n",
+" if theta(i) > 90 then\n",
+" theta(i) = theta(i)-180;\n",
+" end\n",
+"end\n",
+"printf('\nThe magnitude of total angular momentum = 2*sqrt(%d)*h_cross\n', L^2/4);\n",
+"printf('\nThe allowed values of L_z in units of h_cross are :');\n",
+"disp(L_z);\n",
+"printf('\nThe orientations of L_z in degrees are:');\n",
+"disp(theta);\n",
+"\n",
+"// Result\n",
+"// The magnitude of total angular momentum = 2*sqrt(2)*h_cross\n",
+"\n",
+"// The allowed values of L_z in units of h_cross are : \n",
+"// - 3. - 2. - 1. 0. 1. 2. 3. \n",
+"\n",
+"// The orientations of L_z in degrees are: \n",
+"// - 30. - 54.73561 - 73.221345 90. 73.221345 54.73561 30. "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.7: Energy_of_Hydrogen_atom_at_first_excited_state.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab code Ex8.7: Pg 281 (2005)\n",
+"clc; clear;\n",
+"k = 9e+09; // Coulomb constant, N/Sq.m/C\n",
+"e = 1.6e-019; // Electronic charge, C\n",
+"a_0 = 0.529e-010; // Bohr's radius, m\n",
+"n = 2; // Principal quantum number\n",
+"l = [0, 1]; // Orbital quantum number\n",
+"m_l = [-1, 0, 1]; // Orbital magnetic quantum number\n",
+"Z = 1; // Atomic number of hydrogen\n",
+"E2 = -k*e^2/(2*a_0)*Z^2/n^2; // Energy of first excited level of hydrogen, \n",
+"printf('\nThe energy of first excited level of hydrogen = %3.1f eV', E2/e);\n",
+"\n",
+"// Result\n",
+"// The energy of first excited level of hydrogen = -3.4 eV \n",
+""
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.8: Probabilities_for_the_Electron_in_Hydrogen.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab code Ex8.8: Pg 284 (2005)\n",
+"clc; clear;\n",
+"P = 1/2*integrate('z^2*exp(-z)', 'z', 2, 100); // Take some large value of upper limit\n",
+"printf('\nP(electron in the ground state of hydrogen will be found outside the first Bohr radius) = %4.1f percent', P*100);\n",
+"\n",
+"// Result\n",
+"// P(electron in the ground state of hydrogen will be found outside the first Bohr radius) = 67.7 percent \n",
+""
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}