diff options
Diffstat (limited to 'Modern_Physics_by_R_A_Serway/7-Tunnelling_phenomena.ipynb')
-rw-r--r-- | Modern_Physics_by_R_A_Serway/7-Tunnelling_phenomena.ipynb | 174 |
1 files changed, 174 insertions, 0 deletions
diff --git a/Modern_Physics_by_R_A_Serway/7-Tunnelling_phenomena.ipynb b/Modern_Physics_by_R_A_Serway/7-Tunnelling_phenomena.ipynb new file mode 100644 index 0000000..05a54f5 --- /dev/null +++ b/Modern_Physics_by_R_A_Serway/7-Tunnelling_phenomena.ipynb @@ -0,0 +1,174 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 7: Tunnelling phenomena" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 7.1: Transmission_coefficient_for_an_oxide_layer.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Scilab code Ex7.1: Pg 235 (2005)\n", +"clc; clear;\n", +"c = 3e+08; // Velocity of light, m/s\n", +"m_e = 511e+03/(c^2); // Mass of electron, eV\n", +"U = 3.00; // Ground state energy neglecting E, eV\n", +"h_cross = (1.973e+03)/c; // Reduced planck's constant, eV\n", +"alpha = sqrt(2*m_e*U)/h_cross;\n", +"L = 50; // Thickness of the layer, angstrom\n", +"T = 1/(1+1/4*10^2/(7*3)*sinh(alpha*L)^2);\n", +"printf('\nThe transmission coefficient for the layer thickness of');\n", +"printf('\n%2d angstrom = %5.3e', L, T);\n", +"L = 10; // // Thickness of the layer, angstrom\n", +"T = 1/(1+1/4*10^2/(7*3)*sinh(alpha*L)^2);\n", +"printf('\n%2d angstrom = %5.3e', L, T);\n", +"\n", +"// Result\n", +"// The transmission coefficient for the layer thickness of\n", +"// 50 angstrom = 9.628e-39\n", +"// 10 angstrom = 6.573e-08 " + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 7.2: Tunnelling_current_through_an_oxide_layer.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Scilab code Ex7.2: Pg 236 (2005)\n", +"clc; clear;\n", +"e = 1.60e-19; // Electrc charge, C\n", +"i = 1.00e-03; // Electron current, A\n", +"N = i/e; // Electrons per second\n", +"T = 0.657e-07; // Fraction of electrons transmitted\n", +"T_e = N*T; // Number of electrons transmitted per second\n", +"T_i = T_e*e; // Transmitted current, A\n", +"printf('\nThe transmitted current through the oxide layer = %4.1f pA', T_i*1e+12);\n", +"\n", +"// Result\n", +"// The transmitted current through the oxide layer = 65.7 pA " + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 7.5: Tunnelling_in_a_parallel_plate_capacitor.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Scilab code Ex7.5: Pg 241 (2005)\n", +"clc; clear;\n", +"epsilon_c = 5.5e+10; // Characteristic field strength, V/m\n", +"epsilon = 1.0e+09; // Electric field, V/m\n", +"f = 1.0e+30; // Collision frequency, s(-1)cm(-2)\n", +"lamda = f*exp(-epsilon_c/epsilon); // Electron emission rate, electrons/sec\n", +"e = 1.60e-19; // Electrc charge, C\n", +"I = lamda*e; // Tunelling current, A\n", +"printf('\nTunelling current in parallel plate capacitor = %4.2f pA', I/1e-12);\n", +"printf('\n');\n", +"\n", +"// Result\n", +"// Tunelling current in parallel plate capacitor = 0.21 pA" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 7.6: Estimating_halflives_of_Thorium_and_Polonium.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Scilab code Ex7.6: Pg 244 (2005)\n", +"clc; clear;\n", +"Z_T = 88; // Atomic number of daughter nucleus\n", +"E_T = 4.05e+06; // Energy of ejected alphas, eV\n", +"R = 9.00e-15; // Nuclear radius, m\n", +"r_o = 7.25e-15; // Bohr radius, m\n", +"E_o = 0.0993e+06; // Energy analogous to the Rydberg in Atomic Physics \n", +"T_T = exp(-4*%pi*Z_T*sqrt(E_o/E_T) + 8*sqrt((Z_T*R)/r_o)); // Transmission factor in case of Thorium\n", +"f = 1e+21; // Frequency of collisions, Hz\n", +"lamda_T = f*T_T; // Decay rate in case of Thorium, s^(-1)\n", +"t_T = 0.693/lamda_T; // Half-life time of Thorium, s\n", +"Z_P = 82; // Atomic number of daughter nucleus\n", +"E_P = 8.95e+06; // Energy of ejected alphas, eV\n", +"R = 9.00e-15; // Nuclear radius, m\n", +"r_o = 7.25e-15; // Bohr radius, m\n", +"E_o = 0.0993e+06; // Energy unit, eV\n", +"T_P = exp(-4*%pi*Z_P*sqrt(E_o/E_P) + 8*sqrt((Z_P*R)/r_o)); // Transmission factor in case of Polonium\n", +"f = 1e+21; // Frequency of collisions, Hz\n", +"lamda_P = f*T_P; // Decay rate in case of Thorium, s^(-1)\n", +"t_P = 0.693/lamda_P; // Half-life time of Polonium, s\n", +"\n", +"printf('\nHalf-life time of Thorium = %3.1e s = %3.1e yrs', t_T, t_T/(365*24*60*60));\n", +"printf('\nHalf-life time of Polonium = %3.1e s', t_P);\n", +"\n", +"// Result\n", +"// Half-life time of Thorium = 5.3e+17 s = 1.7e+10 yrs\n", +"// Half-life time of Polonium = 8.4e-10 s " + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} |