summaryrefslogtreecommitdiff
path: root/Modern_Physics_by_R_A_Serway/14-Nuclear_Physics_Applications_.ipynb
diff options
context:
space:
mode:
Diffstat (limited to 'Modern_Physics_by_R_A_Serway/14-Nuclear_Physics_Applications_.ipynb')
-rw-r--r--Modern_Physics_by_R_A_Serway/14-Nuclear_Physics_Applications_.ipynb226
1 files changed, 226 insertions, 0 deletions
diff --git a/Modern_Physics_by_R_A_Serway/14-Nuclear_Physics_Applications_.ipynb b/Modern_Physics_by_R_A_Serway/14-Nuclear_Physics_Applications_.ipynb
new file mode 100644
index 0000000..355badd
--- /dev/null
+++ b/Modern_Physics_by_R_A_Serway/14-Nuclear_Physics_Applications_.ipynb
@@ -0,0 +1,226 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 14: Nuclear Physics Applications "
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 14.1: Energy_released_in_Fission.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab code Ex14.1: Pg 513 (2005)\n",
+"clc; clear;\n",
+"// Part (a)\n",
+"u = 931.5; // Atomic mass unit, Mev \n",
+"M_Li = 7.016003; // Mass of Lithium, kg\n",
+"M_H = 1.007825; // Mass of Hydrogen, kg\n",
+"M_He = 4.002603; // Mass of Helium, kg\n",
+"Q = (M_Li + M_H - 2*M_He)*u; // Q-value of the reaction, MeV\n",
+"// Part (b)\n",
+"K_incident = 0.6; // Kinetic energy of the incident protons, MeV\n",
+"K_products = Q + K_incident; // Kinetic energy of the products\n",
+"printf('\nThe Q value of the reaction = %4.1f MeV', Q);\n",
+"printf('\nThe kinetic energy of the products (two alpha particles) = %4.1f MeV', K_products);\n",
+"\n",
+"// Result\n",
+"// The Q value of the reaction = 17.3 MeV\n",
+"// The kinetic energy of the products (two alpha particles) = 17.9 MeV"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 14.2: Neutron_capture_by_Al.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab code Ex14.2: Pg 509 (2005)\n",
+"clc; clear;\n",
+"roh = 2.7e+06; // Density of Al, g/cm^3\n",
+"A = 27; // Mass number of Al\n",
+"n = (6.02e+23*roh)/A; // Number of nuclei/m^3\n",
+"sigma = 2.0e-31; // Effective area of nucleas normal to motion, m^2\n",
+"R_0 = 5.0e+12; // Rate of incident particles per unit area, neutrons/cm^2-s\n",
+"x = 0.30e-03; // Thickness of foil, m\n",
+"R = (R_0*sigma*n*x) // Number of neutrons captured by foil, neutrons/cm^2-s\n",
+"printf('\nThe number of neutrons captured by foil = %3.1fe+07 neutrons/Sq.cm-s', R*1e-07);\n",
+"\n",
+"// Result\n",
+"// The number of neutrons captured by foil = 1.8e+07 neutrons/Sq.cm-s "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 14.4: Energy_released_in_the_Fission_of_U235.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab code Ex14.4: Pg 513 (2005)\n",
+"clc; clear;\n",
+"m = 1; // Mass of Uranium taken, kg\n",
+"Q = 208; // Disintegration energy per event, MeV\n",
+"A = 235; // Mass number of Uranium\n",
+"N = (6.02e+23*m)/A; // Number of nuclei\n",
+"E = N*Q; // Disintegration energy, MeV\n",
+"printf('\nThe total energy released if %1d kg of Uranium undergoes fission = %4.2fe+26 MeV', m, E*1e-23);\n",
+"\n",
+"// Result\n",
+"// The total energy released if 1 kg of Uranium undergoes fission = 5.33e+26 MeV "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 14.5: A_Rough_Mechanism_for_Fission_Process.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab code Ex14.5: Pg 513 (2005)\n",
+"clc; clear;\n",
+"A_Ba = 141; // Mass number of Barium\n",
+"A_Kr = 92; // Mass number of Barium\n",
+"r_0 = 1.2e-15; // Separation constant, m\n",
+"r_Ba = r_0*A_Ba^(1/3); // Nuclear radius of Barium, m \n",
+"r_Kr = r_0*A_Kr^(1/3); // Nuclear radius of Krypton, m\n",
+"r = r_Ba + r_Kr; // Separation between two atoms, m\n",
+"Z_1 = 56; // Atomic number of Barium\n",
+"Z_2 = 36; // Atomic number of Barium\n",
+"k = 1.440e-09; // Coulomb constant, eV-m\n",
+"U = k*Z_1*Z_2/r // Coulomb Potential energy of two charges, MeV\n",
+"printf('\nThe Coulomb potential energy for two charges = %3d MeV' , U/1e+06);\n",
+"printf('\nThis shows that the fission mechanism is plausible');\n",
+"\n",
+"// Result\n",
+"// The Coulomb potential energy for two charges = 248 MeV\n",
+"// This shows that the fission mechanism is plausible "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 14.6: The_Fusion_of_Two_Deutrons.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab code Ex14.6: Pg 519 (2005)\n",
+"clc; clear;\n",
+"// Part (a)\n",
+"e = 1.6e-19; // Charge on electron, C\n",
+"k = 8.99e-09; // Coulomb constant, N-m^2/C^2\n",
+"r = 1.0e-14; // Distance between two duetrons, m\n",
+"// We have U = (k*q1*q2)/r, for duetrons q1 = q2 = e, therefore we get\n",
+"U = (k*e^2)/r; // Potential energy of duetrons, J\n",
+"E_C = 1.1e-014; // The coulomb energy per deutron, J\n",
+"k_B = 1.38e-023; // Boltzmann constant, J/mol/K\n",
+"T = 2/3*E_C/k_B; // Effective temperature required for deutron to overcome the potential barrier, K\n",
+"printf('\nThe potential energy of two duetrons separated by the distance of %1.0de-14 m = %4.2f MeV', r*1e+14, (U*1e+12)/e);\n",
+"printf('\nThe effective temperature required for deutron to overcome the potential barrier = %3.1e K', T);\n",
+"\n",
+"// Result\n",
+"// The potential energy of two duetrons separated by the distance of 1e-14 m = 0.14 MeV\n",
+"// The effective temperature required for deutron to overcome the potential barrier = 5.3e+008 K \n",
+"// Result\n",
+"// The potential energy of two duetrons separated by the distance of 1e-14 m = 0.14 MeV "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 14.7: Half_value_thickness.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Scilab code Ex14.7: Pg 530 (2005)\n",
+"clc; clear;\n",
+"mew = 55e-02; // Linear absoption coefficient, per m\n",
+"// In equation I(x) = I_o*exp(-mew*x), replacing I(x) by I_o/2 & solving for x, we get\n",
+"x = log(2)/mew; // Half value thickness, m \n",
+"printf('\nThe half value thickness for lead = %4.2fe-02 cm', x);\n",
+"\n",
+"// Result\n",
+"// The half value thickness for lead = %1.26e-02 cm"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}