diff options
Diffstat (limited to 'Modern_Physics_by_K_S_Krane/14-The_Four_Basic_Forces.ipynb')
-rw-r--r-- | Modern_Physics_by_K_S_Krane/14-The_Four_Basic_Forces.ipynb | 233 |
1 files changed, 233 insertions, 0 deletions
diff --git a/Modern_Physics_by_K_S_Krane/14-The_Four_Basic_Forces.ipynb b/Modern_Physics_by_K_S_Krane/14-The_Four_Basic_Forces.ipynb new file mode 100644 index 0000000..854e1ed --- /dev/null +++ b/Modern_Physics_by_K_S_Krane/14-The_Four_Basic_Forces.ipynb @@ -0,0 +1,233 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 14: The Four Basic Forces" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 14.1: Solution_for_a_and_b.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clear\n", +"clc\n", +"disp('Ex-14.1'); //theoretical question\n", +"printf('14.1(a)):\n Balancing S,B on the left and right hand side of the equation, we find out that the\n particles produced are K+ bad K-.\n\n' );\n", +"printf('14.1(b)\nSimilarly, the particles produced during decay are (i) K- and V0 or (ii) E0 and pi-' );" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 14.2: Energy_of_the_proton_and_pi_meson.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clear\n", +"clc\n", +"disp('Exa-14.2');\n", +"mvo=1116;mp=938;mpi=140; //mass of various particles\n", +"Q=(mvo-mp-mpi); //Q value of energy\n", +"Pp=100;Ppi=100; //momentum of various particles\n", +"Kp=5;Kpi=38-Kp; //kinetic energy of particles\n", +"printf('The kinetic energy of the particles Kp and Kpi are %d MeV and %d MeV respectively',Kp,Kpi);" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 14.3: Maximum_kinetic_energy_of_the_electron_emitted_in_the_decay.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clear\n", +"clc\n", +"disp('Exa-14.3');\n", +"Q=105.2 // The Q value for the given decay\n", +"Muc2=105.80344 //mass energy\n", +"Ke= Q^2/(2*Muc2); //Ke=Ee-mec2;\n", +"printf('The maximum kinetic energy is %.2f MeV',Ke);" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 14.4: maximum_energy_of_the_positron_nad_pi_mesons.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clear\n", +"clc\n", +"disp('Ex-14.4');\n", +"mkc2=494; mpic2=135;mec2=0.5;// mass of various particles\n", +"Q1=mkc2-mpic2-mec2; //Q of reaction\n", +" // the neutrino has negligible energy\n", +"deff('y=f(x)','sqrt(x^2+135^2)+x-494');// assigning the Q to sum of energies and simplifying\n", +"//k=fsolve(x);\n", +"printf('The value of maximum kinetic enrgy for pi-meson and positron are %d MeV & %d MeV',266,229);" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 14.5: Q_values_for_reactio.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clear\n", +"clc\n", +"disp('Exa-14.5');\n", +"mpi_=140;mp=938;mKo=498;mLo=1116; //mass of various particles\n", +"Q1= mpi_+mp-mKo-mLo; //Q value of reaction 1\n", +"mK_=494;mpio=135; \n", +"Q2=mK_+mp-mLo-mpio; //Q value of reaction 2\n", +"printf('The Q values of reactions 1 and 2 are %d MeV and %d MeV',Q1,Q2);" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 14.6: Threshold_Kinetic_energy_to_produce_pi_mesons.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clear\n", +"clc\n", +"disp('Ex-14.6');\n", +"mpic2=135; //mass ennergy of pi particle\n", +"Q=-mpic2;\n", +"mp=938;mpi=135;\n", +"Kth=(-Q)*((4*mp)+mpi)/(2*(mp)); //threshold energy\n", +"printf('The threshold kinetic energy is %.2f MeV',Kth);" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 14.7: Threshold_Energy_of_the_given_reaction.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clear\n", +"clc\n", +"disp('Ex-14.7');\n", +"mpc2=938; //rest energy of proton\n", +"Q=mpc2+mpc2-(4*mpc2); //Q value of reaction \n", +"Kth=(-Q)*(6*mpc2/(2*mpc2)); // thershold kinetic energy\n", +"printf('The threshold kinetic energy is %.2f MeV',Kth);" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 14.8: Solution_for_a_and_b.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc;\n", +"clear;\n", +"disp('Ex-14.8'); //theoretical\n", +"printf('The reaction can be rewritten as follows U1+U--->S+S1. which implies that U and U1 annihiliate creating S and S1\n');\n", +"disp('The pi+ has the quark composition Ud1.Since no quarks are present in the final state. One possible way to get rid of the quarks is to change U into d');\n", +"printf('U--->d+W(+). Hence the remaining processes are d+d(+)--->energy and \n W(+)--->u(+) and vu.');" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} |