summaryrefslogtreecommitdiff
path: root/Modern_Physics_by_K_S_Krane/11-Properties_of_Ionic_Crystals.ipynb
diff options
context:
space:
mode:
Diffstat (limited to 'Modern_Physics_by_K_S_Krane/11-Properties_of_Ionic_Crystals.ipynb')
-rw-r--r--Modern_Physics_by_K_S_Krane/11-Properties_of_Ionic_Crystals.ipynb117
1 files changed, 117 insertions, 0 deletions
diff --git a/Modern_Physics_by_K_S_Krane/11-Properties_of_Ionic_Crystals.ipynb b/Modern_Physics_by_K_S_Krane/11-Properties_of_Ionic_Crystals.ipynb
new file mode 100644
index 0000000..baccdc1
--- /dev/null
+++ b/Modern_Physics_by_K_S_Krane/11-Properties_of_Ionic_Crystals.ipynb
@@ -0,0 +1,117 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 11: Properties of Ionic Crystals"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 11.1: Solution_for_a_and_b.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clear\n",
+"clc\n",
+"disp('Exa-11.1(a)');\n",
+"c=769*10^3; Na=6.023*10^23; JeV=1.6*10^-19; //various constants and given values\n",
+"Be=c/(Na*JeV); //Binding energy of an ion pair in the lattice\n",
+"printf('The experimental value was found out to be %.4f eV.\n',Be);\n",
+"disp('Exa-11.1(b)');\n",
+"n=9;a=1.7476; R=0.281; k= 1.44; //Given values and consstants\n",
+"Bc=k*a*(1-(1/n))/R; //ionic binding energy eperimentally\n",
+"printf('The calculated value of the binding energy is %.4f eV.',Bc);"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 11.2: Energy_per_neytral_atom_to_take_apart_a_crystal_of_Nacl.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clear\n",
+"clc\n",
+"disp('Exa-11.2');\n",
+"a=3.61;// amount of energy required to remove an electron from Cl- ion\n",
+"b=-5.14 //amount of energy returned when an electron is added to Na+ ion\\n",
+"c=7.98 //binding energy of NaCl atom\n",
+"E=a+b+c //suom of all the energies\n",
+"printf('The net energy to be supplied is %.3f eV',E);"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 11.3: Solution_for_a_and_b.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clear\n",
+"clc\n",
+"disp('Ex-11.3(a)');\n",
+"Na=6.023*10^23; p=8.96*10^3; M=63.5*10^-3; //Na=avagadro's number,p=density,M=molar mass\n",
+"n= p*Na/M; //density of charge carriers\n",
+"printf('The density of charge carriers in copper is %e atoms/m3\n',n);\n",
+"s=5.88*10^7;m=9.11*10^-31;e=1.6*10^-19; //charge & mass of an electron,resistance per unit length\n",
+"t= s*m/(n*e^2); //average time between collisions\n",
+"printf('The average time between collisions of conducting electrons is %e sec.\n',t);\n",
+"disp('Ex-11.3(b)');\n",
+"Ef=7.03*1.6*10^-19; //converting given enrgy to J\n",
+"Vf=sqrt(2*Ef/m); //fermi velocity\n",
+"l=Vf*t; //mean free path\n",
+"printf('The average mean free path is %e m = %.1f nm',l,l*10^9);"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}