summaryrefslogtreecommitdiff
path: root/Mechanics_Of_Material_by_J_M_Gere
diff options
context:
space:
mode:
Diffstat (limited to 'Mechanics_Of_Material_by_J_M_Gere')
-rw-r--r--Mechanics_Of_Material_by_J_M_Gere/1-Tension_Comprssion_and_Shear.ipynb272
-rw-r--r--Mechanics_Of_Material_by_J_M_Gere/11-Columns.ipynb444
-rw-r--r--Mechanics_Of_Material_by_J_M_Gere/12-Review_of_Centroids_and_Moments_of_Inertia.ipynb126
-rw-r--r--Mechanics_Of_Material_by_J_M_Gere/2-Axially_Loaded_Members.ipynb339
-rw-r--r--Mechanics_Of_Material_by_J_M_Gere/3-Torsion.ipynb313
-rw-r--r--Mechanics_Of_Material_by_J_M_Gere/4-Shear_Forces_and_Bending_Moments.ipynb84
-rw-r--r--Mechanics_Of_Material_by_J_M_Gere/5-Stresses_in_Beams_Basic_Topics.ipynb521
-rw-r--r--Mechanics_Of_Material_by_J_M_Gere/6-Stresses_in_Beams_Advanced_Topics.ipynb301
-rw-r--r--Mechanics_Of_Material_by_J_M_Gere/7-Analysis_of_Stress_and_Strain.ipynb315
-rw-r--r--Mechanics_Of_Material_by_J_M_Gere/8-Applications_of_Plane_Stress_Pressure_Vessels_Beams_and_Combined_Loadings.ipynb352
10 files changed, 3067 insertions, 0 deletions
diff --git a/Mechanics_Of_Material_by_J_M_Gere/1-Tension_Comprssion_and_Shear.ipynb b/Mechanics_Of_Material_by_J_M_Gere/1-Tension_Comprssion_and_Shear.ipynb
new file mode 100644
index 0000000..8332449
--- /dev/null
+++ b/Mechanics_Of_Material_by_J_M_Gere/1-Tension_Comprssion_and_Shear.ipynb
@@ -0,0 +1,272 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 1: Tension Comprssion and Shear"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.1: Determine_the_compressive_stress_and_strain_in_the_post.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"d_1 = 4 ; // inner diameter (inch)\n",
+"d_2 = 4.5 ; //outer diameter (inch)\n",
+"P = 26000 ; // pressure in pound\n",
+"L = 16; // Length of cylinder (inch)\n",
+"del = 0.012 ; // shortening of post (inch)\n",
+"A = (%pi/4)*((d_2^2)-(d_1^2)) //Area (inch ^2)\n",
+"s = P/A; // stress\n",
+"disp('psi',s,'compressive stress in the post is')\n",
+"e = del / L; // strain\n",
+"disp(e,'compressive strain in the post is')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.2: Calculation_of_maximum_stress.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"W = 1500; // weight (Newton)\n",
+"d = 0.008 ; //diameter(meter) \n",
+"g = 77000; // Weight density of steel\n",
+"L = 40 ; // Length of bar (m)\n",
+"A = (%pi/4)*(d^2) // Area\n",
+"s_max = (1500/A) + (g*L) // maximum stress\n",
+"disp('Pa',s_max,'Therefore the maximum stress in the rod is')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.3: Determination_of_various_structural_properties_of_the_pipe.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"d1 = 4.5; // diameter in inch\n",
+"d2 = 6 ; // diameter in inch\n",
+"A = (%pi/4)*((d2^2)-(d1^2)) // Area\n",
+"P = 140 ; // pressure in K\n",
+"s = -P/A ; // stress (compression)\n",
+"E = 30000 ; // young's modulus in Ksi\n",
+"e = s/E ; // strain\n",
+"// Part (a)\n",
+"del = e*4*12 // del = e*L ;\n",
+"disp(del,'Change in length of the pipe is')\n",
+"// Part (b)\n",
+"v = 0.30; // Poissio's ratio\n",
+"e_ = -(v*e)\n",
+"disp(e_,'Lateral strain in the pipe is')\n",
+"// Part (c)\n",
+"del_d2 = e_*d2 ;\n",
+"del_d1 = e_*d1;\n",
+"disp('inch',del_d1,'Increase in the inner diameter is ')\n",
+"// Part (d)\n",
+"t = 0.75;\n",
+"del_t = e_*t ;\n",
+"disp('inch',del_t,'Increase in the wall thicness is')\n",
+"del_t1 = (del_d2-del_d1)/2 ;\n",
+"disp('del_t1 = del_t')\n",
+"\n",
+"\n",
+""
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.4: Calculation_of_average_shear_and_compressive_stress_in_a_punch.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"d = 0.02 ; // diameter in m\n",
+"t = 0.008 ; // thickness in m\n",
+"A = %pi*d*t ; // shear area\n",
+"P = 110000 ; // prassure in Newton\n",
+"A1 = (%pi/4)*(d^2); // Punch area\n",
+"t_aver = P/A ; // Average shear stress \n",
+"disp('Pa',t_aver,'Average shear stress in the plate is ')\n",
+"s_c = P/A1 ; // compressive stress\n",
+"disp('Pa',s_c,'Average compressive stress in the plate is ')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.5: Determination_of_various_structural_properties_of_the_pin.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"P = 12; // Pressure in K\n",
+"t = 0.375 ; // thickness of wall in inch\n",
+"theta = 40 ; // angle in degree\n",
+"d_pin = 0.75 ; // diameter of pin in inch\n",
+"t_G = 0.625 ; // thickness of gusset in inch\n",
+"t_B = 0.375 ; //thickness of base plate in inch\n",
+"d_b = 0.50 ; // diameter of bolt in inch\n",
+"//Part (a)\n",
+"s_b1 = P/(2*t*d_pin); // bearing stress\n",
+"disp('ksi',s_b1,'Bearing stress between strut and pin')\n",
+"//Part (b)\n",
+"t_pin = (4*P)/(2*%pi*(d_pin^2)); // average shear stress in the \n",
+"disp('ksi',t_pin,'Shear stress in pin is ')\n",
+"// Part (c)\n",
+"s_b2 = P/(2*t_G*d_pin); // bearing stress between pin and gusset\n",
+"disp('ksi',s_b2,' Bearing stress between pin and gussets is')\n",
+"// Part (d)\n",
+"s_b3 = (P*cosd(40))/(4*t_B*d_b); // bearing stress between anchor bolt and base plate\n",
+"disp('ksi',s_b3,'Bearing stress between anchor bolts and base plate')\n",
+"// Part (e)\n",
+"t_bolt = (4*cosd(40)*P)/(4*%pi*(d_b^2)); // shear stress in anchor bolt\n",
+"disp('ksi',t_bolt,'Shear stress in anchor bolts is')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.7: Determination_of_allowable_tensile_load.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"b1 = 1.5 ; // width of rectangular crosssection in inch\n",
+"t = 0.5 ; // thickness of rectangular crosssection in inch\n",
+"b2 = 3 ; // width of enlarged rectangular crosssection in inch\n",
+"d = 1 ; // diameter in inch\n",
+"// Part (a)\n",
+"s_1 = 16000; // maximum allowable tensile stress in Psi\n",
+"P_1 = s_1*t*b1 ;\n",
+"disp('lb',P_1,'The allowable load P1 is')\n",
+"// Part (b)\n",
+"s_2 = 11000; // maximum allowable tensile stress in Psi\n",
+"P_2 = s_2*t*(b2-d) ;\n",
+"disp('lb',P_2,'allowable load P2 at this section is')\n",
+"//Part (c)\n",
+"s_3 = 26000; // maximum allowable tensile stress in Psi\n",
+"P_3 = s_3*t*d \n",
+"disp('lb',P_3,'The allowable load based upon bearing between the hanger and the bolt is')\n",
+"// Part (d)\n",
+"s_4 = 6500; // maximum allowable tensile stress in Psi\n",
+"P_4 = (%pi/4)*(d^2)*2*s_4 ;\n",
+"disp('lb',P_4,'the allowable load P4 based upon shear in the bolt is')\n",
+""
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.8: Determination_of_required_cross_section_area_of_the_bar.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Horizontal component at A in N\n",
+"R_ah = (2700*0.8 + 2700*2.6)/2 ;\n",
+"// Horizontal component at C in N\n",
+"R_ch = R_ah ;\n",
+"// vertical component at C in N\n",
+"R_cv = (2700*2.2 + 2700*0.4)/3 ;\n",
+"// vertical component at A in N\n",
+"R_av = 2700 + 2700 - R_cv ;\n",
+"R_a = sqrt((R_ah^2)+(R_av^2))\n",
+"R_c = sqrt((R_ch^2)+(R_cv^2))\n",
+"Fab = R_a; // Tensile force in bar AB\n",
+"Vc = R_c; // Shear force acting on the pin at C\n",
+"s_allow = 125000000 ; // allowable stress in tension \n",
+"t_allow = 45000000; // allowable stress in shear\n",
+"Aab = Fab / s_allow; // required area of bar \n",
+"Apin = Vc / (2*t_allow); // required area of pin\n",
+"disp('m2',Apin,'Required area of bar is ')\n",
+"d = sqrt((4*Apin)/%pi); // diameter in meter\n",
+"disp('m',d,'Required diameter of pin is')"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Mechanics_Of_Material_by_J_M_Gere/11-Columns.ipynb b/Mechanics_Of_Material_by_J_M_Gere/11-Columns.ipynb
new file mode 100644
index 0000000..0f47082
--- /dev/null
+++ b/Mechanics_Of_Material_by_J_M_Gere/11-Columns.ipynb
@@ -0,0 +1,444 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 11: Columns"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 11.1: EX11_1.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"E = 29000; // Modulus of elasticity in ksi\n",
+"spl = 42 ; // Proportional limit in ksi\n",
+"L = 25 ; // Total length of coloum in ft\n",
+"n = 2.5 ; // factor of safety\n",
+"I1 = 98 ; // Moment of inertia on horizontal axis\n",
+"I2 = 21.7 ; // Moment of inertia on vertical axis\n",
+"A = 8.25 ; // Area of the cross section\n",
+"Pcr2 = (4*%pi^2*E*I2)/((L*12)^2) ; // Criticle load if column buckles in the plane of paper\n",
+"Pcr1 = (%pi^2*E*I1)/((L*12)^2) ; // Criticle load if column buckles in the plane of paper\n",
+"Pcr = min(Pcr1,Pcr2) ; // Minimum pressure would govern the design\n",
+"scr = Pcr/A ; // Criticle stress\n",
+"Pa = Pcr/n ; // Allowable load in k\n",
+"disp('k',Pa,'The allowable load is ')\n",
+" "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 11.2: EX11_2.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"L = 3.25 ; // Length of alluminium pipe in m\n",
+"d = 0.1 ; // Outer diameter of alluminium pipe\n",
+"P = 100000; // Allowable compressive load in N\n",
+"n =3 ; // Safety factor for eular buckling\n",
+"E = 72e09 ; // Modulus of elasticity in Pa\n",
+"l = 480e06 ; // Proportional limit\n",
+"Pcr = n*P ; // Critic;e load\n",
+"t = (0.1 - (55.6e-06)^(1/4) )/2 ; // Required thickness\n",
+"// Above formula comes from solving following equation\n",
+"// d2 = d ; d1 = d-2*t ; Pcr = n*P ; I = (%pi/64)*(d2^4-d1^4); Pcr = (2.406*%pi^2*E*I)/((L)^2) ;\n",
+"tmin = t ;\n",
+"disp('mm',tmin*1000,'The minimum required thickness of the coloumn is')\n",
+"// Supplimentry calculatios \n",
+"I = (%pi/64)*(d^4-(d-2*t)^4) ; // Moment of inertia\n",
+"A = (%pi/4)*(d^2-(d-2*t)^2) ; // Area of cross section\n",
+"r = sqrt(I/A);\n",
+"s = L/r // slenderness ratio\n",
+"scr = Pcr/A ; // Criticle stress "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 11.3: Determination_of_longest_permissible_length_of_rod.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"P = 1500 ; // Load in lb\n",
+"e = 0.45 ; // ecentricity in inch\n",
+"h = 1.2 ; // Height of cross section in inch\n",
+"b = 0.6 ; // Width of cross section in inch\n",
+"E = 16e06 ; // Modulus of elasticity \n",
+"del = 0.12 ; // Allowable deflection in inch\n",
+"L = asec(1.2667)/0.06588 ; // Maximum allowable length possible\n",
+"// Above formula comes from solving following equation\n",
+"// Pcr = (%pi^2*E*I)/(4*(L)^2); I = (h*b^3)/12; del = e*(sec((%pi/2)*sqrt(P/Pcr))-1)\n",
+"disp('inch',L,'The longest permissible length of the bar is')\n",
+"\n",
+""
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 11.4: Calculation_of_compressive_stress_and_factor_of_safety.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"L = 25 ; // Length of coloum in ft\n",
+"P1 = 320 ; // Load in K\n",
+"P2 = 40 ; // Load in K\n",
+"E = 30000 ; // Modulus of elasticity of steel in Ksi\n",
+"P = 360 ; // Euivalent load\n",
+"e = 1.5 ; // Ecentricity of compressive load\n",
+"A = 24.1 ; // Area of the Cross section\n",
+"r = 6.05 ; // in inch\n",
+"c = 7.155 ; // in inch\n",
+"sy = 42 ;// Yeild stress of steel in Ksi\n",
+"smax = (P/A)*(1+(((e*c)/r^2)*sec((L/(2*r))*sqrt(P/(E*A))))); // Maximum compressive stress\n",
+"disp('ksi',smax,'The Maximum compressive stress in the column ')\n",
+"// Bisection method method to solve for yeilding\n",
+"function [x] = stress(a,b,f)\n",
+" N = 100;\n",
+" eps = 1e-5;\n",
+" if((f(a)*f(b))>0) then\n",
+" error('no root possible f(a)*f(b)>0');\n",
+" abort;\n",
+" end;\n",
+" if(abs(f(a))<eps) then\n",
+" error('solution at a');\n",
+" abort;\n",
+" end\n",
+" if(abs(f(b))<eps) then\n",
+" error('solution at b');\n",
+" abort;\n",
+" end\n",
+" while(N>0)\n",
+" c = (a+b)/2\n",
+" if(abs(f(c))<eps) then\n",
+" x = c ;\n",
+" x;\n",
+" return;\n",
+" end;\n",
+" if((f(a)*f(c))<0 ) then\n",
+" b = c ;\n",
+" else\n",
+" a = c ;\n",
+" end\n",
+" N = N-1;\n",
+" end\n",
+" error('no convergence');\n",
+" abort;\n",
+"endfunction\n",
+"\n",
+"deff('[y]=p(x)',['y = x + (0.2939*x*sec(0.02916*sqrt(x))) - 1012 '])\n",
+"x = stress(710,750,p);\n",
+"Py = x ; // Yeilding load in K\n",
+"n = Py/P; // Factor of safety against yeilding\n",
+"disp(n,'The factor of safety against yeilding is')\n",
+"\n",
+"\n",
+" \n",
+" \n",
+" "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 11.5: Calculation_of_allowable_axial_load_and_maximum_permissible_length.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"E = 29000; // Modulus of elasticity in ksi\n",
+"sy = 36 ; // Yeilding stress in ksi\n",
+"L = 20 ; // Length of coloumn in ft\n",
+"r = 2.57 ; // radius of gyration of coloumn\n",
+"K = 1 ; // Effetive Length factor\n",
+"s = sqrt((2*%pi^2*E)/sy) // Criticle slenderness ratio (K*L)/r\n",
+"s_ = (L*12)/r; // Slenderness ratio\n",
+"// Part(a)\n",
+"n1 = (5/3)+((3/8)*(s_/s))-((1/8)*((s_^3)/(s^3)));// Factor of safety \n",
+"sallow = (sy/n1)*(1-((1/2)*((s_^2)/(s^2)))); // Allowable axial load\n",
+"A = 17.6; // Cross sectional area from table E1\n",
+"Pallow = sallow*A ; // Allowable axial load\n",
+"disp('k',Pallow,'Allowable axial load is')\n",
+"// Part (b)\n",
+"Pe = 200 ; // Permissible load in K\n",
+"L_ = 25 ; // Assumed length in ft\n",
+"s__ = (L_*12)/r; // Slenderness ratio\n",
+"n1_ = (5/3)+((3/8)*(s__/s))-((1/8)*((s__^3)/(s^3)));// Factor of safety \n",
+"sallow_ = (sy/n1_)*(1-((1/2)*((s__^2)/(s^2)))); // Allowable axial load\n",
+"A = 17.6 ; // Area of the cross section in^2\n",
+"Pallow = sallow_*A // Allowable load\n",
+"L1 = [24 24.4 25];\n",
+"P1 = [201 194 190];\n",
+"L_max = interpln([P1;L1],Pe); // Interpolation for getting the length correspondong to permissible load\n",
+"disp('ft',L_max,'The maximum permissible length is')\n",
+""
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 11.6: Finding_the_minimum_required_thickness_for_a_steel_pipe_column.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"L = 3.6 ; // Length of steel pipe coloumn\n",
+"d = 0.16 ; // Outer diameter in m\n",
+"P = 240e03; // Load in N\n",
+"E = 200e09; // Modulus of elasticity in Pa\n",
+"sy = 259e06 ; // yeilding stress in Pa\n",
+"Le = 2*L ; // As it in fixed-free condition\n",
+"sc = sqrt((2*%pi^2*E)/sy); // Critical slenderness ratio\n",
+"K = 2;\n",
+"// First trial\n",
+"t = 0.007; // Assumed thick ness in m\n",
+"I = (%pi/64)*(d^4-(d-2*t)^4) // Moment of inertia\n",
+"A = (%pi/4)*(d^2-(d-2*t)^2) // Area of cross section\n",
+"r = sqrt(I/A) ; // Radius of gyration\n",
+"sc_ = (K*L)/r ; // Slender ness ratio\n",
+"n2 = 1.98 ; // From equation 11.80\n",
+"sa = (sy/(2*n2))*(sc^2/sc_^2) // Allowable stress\n",
+"Pa = sa*A ; // Allowable axial load in N\n",
+"// Interpolation\n",
+"t = [7 8 9];\n",
+"Pa = [196 220 243];\n",
+"t_min = interpln([Pa;t],240) ; // Interpolation for getting the minimum length\n",
+"disp('mm',t_min,'The minimum required thickness of the steel pipe is')\n",
+""
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 11.7: Determination_of_the_minimum_required_outer_diameter_of_aluminium_tube.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"L = 16 ; // Effective length in inch\n",
+"P = 5 ; // axial load in K\n",
+"// Bisection method for solvong the quaderatic\n",
+"function [x] = stress(a,b,f)\n",
+" N = 100;\n",
+" eps = 1e-5;\n",
+" if((f(a)*f(b))>0) then\n",
+" error('no root possible f(a)*f(b)>0');\n",
+" abort;\n",
+" end;\n",
+" if(abs(f(a))<eps) then\n",
+" error('solution at a');\n",
+" abort;\n",
+" end\n",
+" if(abs(f(b))<eps) then\n",
+" error('solution at b');\n",
+" abort;\n",
+" end\n",
+" while(N>0)\n",
+" c = (a+b)/2\n",
+" if(abs(f(c))<eps) then\n",
+" x = c ;\n",
+" x;\n",
+" return;\n",
+" end;\n",
+" if((f(a)*f(c))<0 ) then\n",
+" b = c ;\n",
+" else\n",
+" a = c ;\n",
+" end\n",
+" N = N-1;\n",
+" end\n",
+" error('no convergence');\n",
+" abort;\n",
+"endfunction\n",
+"\n",
+"deff('[y]=p(x)',['y = 30.7*x^2 - 11.49*x -17.69 '])\n",
+"x = stress(0.9,1.1,p);\n",
+"d = x; // Diameter in inch\n",
+"sl = 49.97/d ; // Slenderness ration L/r\n",
+"dmin = d ; // Minimum diameter\n",
+"\n",
+"// The above equation comes from solving the following equationd for d\n",
+"// S_allow = 13.7 - 0.23*(L/r) = P/ A ;\n",
+"// A = (%pi/4)*(d^2-(d-2t)^2)\n",
+"// I = (%pi/64)*(d^4-(d-2t)^4)\n",
+"// r = sqrt(I/A)\n",
+"disp('inch',dmin,'The minimum required outer diameter of the tube is')\n",
+"\n",
+"\n",
+"\n",
+"\n",
+"\n",
+"\n",
+"\n",
+"\n",
+"\n",
+""
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 11.8: EX11_8.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"Fc = 11e06 ; // Compressive desing stress in Pa\n",
+"E = 13e09 ; // Modulus of elasticity in Pa\n",
+"// Part (a)\n",
+"Kce = 0.3 ; \n",
+"c = 0.8; \n",
+"A = 0.12*0.16 ; // Area of cross section\n",
+"Sl = 1.8/0.12 ; // Slenderness ratio\n",
+"fi = (Kce*E)/(Fc*Sl^2) ; // ratio of stresses\n",
+"Cp = ((1+fi)/(2*c)) - sqrt(((1+fi)/(2*c))^2-(fi/c)); // Coloumn stability factor \n",
+"Pa = Fc*Cp*A ; // Allowable Axial load\n",
+"disp('N',Pa,'The allowable axial load is')\n",
+"// Part (b)\n",
+"P = 100000; // Allowable Axial load\n",
+"Cp_ = P/(Fc*A) ; // Coloumn stability factor\n",
+"// Bisection method method to solve for fi\n",
+"function [x] = stress(a,b,f)\n",
+" N = 100;\n",
+" eps = 1e-5;\n",
+" if((f(a)*f(b))>0) then\n",
+" error('no root possible f(a)*f(b)>0');\n",
+" abort;\n",
+" end;\n",
+" if(abs(f(a))<eps) then\n",
+" error('solution at a');\n",
+" abort;\n",
+" end\n",
+" if(abs(f(b))<eps) then\n",
+" error('solution at b');\n",
+" abort;\n",
+" end\n",
+" while(N>0)\n",
+" c = (a+b)/2\n",
+" if(abs(f(c))<eps) then\n",
+" x = c ;\n",
+" x;\n",
+" return;\n",
+" end;\n",
+" if((f(a)*f(c))<0 ) then\n",
+" b = c ;\n",
+" else\n",
+" a = c ;\n",
+" end\n",
+" N = N-1;\n",
+" end\n",
+" error('no convergence');\n",
+" abort;\n",
+"endfunction\n",
+"deff('[y]=p(x)',['y = ((1+x)/(2*c)) - sqrt(((1+x)/(2*c))^2-(x/c)) - Cp_ '])\n",
+"x = stress(0.1,1,p); \n",
+"fi_ = x \n",
+"d_ = 0.12 ; // Diameter in m\n",
+"L_max = d_*sqrt((Kce*E)/(fi_*Fc)); // Maximum length in m\n",
+"disp('m',L_max,'The minimum allowable length is')\n",
+"// Part (c)\n",
+"b1 = [0.130 0.131 0.132]; // Two choices\n",
+"Sl1 = 2.6./b1 // slenderness ratio\n",
+"fi1 = (Kce*E)./(Fc*Sl1^2) // Ratio\n",
+"Cp1 = ((1+fi1)/(2*c)) - sqrt(((1+fi1)/(2*c)).^2-(fi1/c)); // Coloumn stability factor \n",
+"P1 = 11000.*Cp1.*b1^2 ; // Allowable atress \n",
+"Pa1 = 125; // Given allowable stress\n",
+"// Does not require display of result analysis has been shown for b = 0.131\n",
+" "
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Mechanics_Of_Material_by_J_M_Gere/12-Review_of_Centroids_and_Moments_of_Inertia.ipynb b/Mechanics_Of_Material_by_J_M_Gere/12-Review_of_Centroids_and_Moments_of_Inertia.ipynb
new file mode 100644
index 0000000..6061387
--- /dev/null
+++ b/Mechanics_Of_Material_by_J_M_Gere/12-Review_of_Centroids_and_Moments_of_Inertia.ipynb
@@ -0,0 +1,126 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 12: Review of Centroids and Moments of Inertia"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 12.2: Locating_centroid_C_of_the_cross_sectional_area.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"A1 = 6*0.5 ; // Partial Area in in2\n",
+"A2 = 20.8 ; // from table E1 and E3\n",
+"A3 = 8.82 ; // from table E1 and E3\n",
+"y1 = (18.47/2) + (0.5/2) ; // Distance between centroid C1 and C2\n",
+"y2 = 0 ; // Distance between centroid C2 and C2\n",
+"y3 = (18.47/2) + 0.649 ; // Distance between centroid C3 and C2\n",
+"A = A1 + A2 + A3 ; // Area of entire cross section\n",
+"Qx = (y1*A1) + (y2*A2) - (y3*A3) ; // First moment of entire cross section\n",
+"y_bar = Qx/A ; // Distance between x-axis and centroid of the cross section\n",
+"disp('inch',-y_bar,'The distance between x-axis and centroid of the cross section is ')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 12.5: Determination_of_the_moment_of_inertia_Ic_with_respect_to_the_horizontal_axis.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Following variables are obtained from example 12.2\n",
+"A1 = 6*0.5; // Partial Area in in2\n",
+"A2 = 20.8; // from table E1 and E3\n",
+"A3 = 8.82; // from table E1 and E3\n",
+"y1 = (18.47/2) + (0.5/2); // Distance between centroid C1 and C2\n",
+"y2 = 0 ; // Distance between centroid C2 and C2\n",
+"y3 = (18.47/2) + 0.649; // Distance between centroid C3 and C2\n",
+"A = A1 + A2 + A3; // Area of entire cross section\n",
+"Qx = (y1*A1) + (y2*A2) - (y3*A3); // First moment of entire cross section\n",
+"y_bar = Qx/A; // Distance between x-axis and centroid of the cross section\n",
+"c_bar = -(y_bar);\n",
+"//////////////////////////\n",
+"I1 = (6*0.5^3)/12; // Moment of inertia of A1 \n",
+"I2 = 1170; // Moment of inertia of A2 from table E1\n",
+"I3 = 3.94; // Moment of inertia of A3 from table E3\n",
+"Ic1 = I1 + (A1*(y1+c_bar)^2); // Moment of inertia about C-C axis of area C1\n",
+"Ic2 = I2 + (A2*(y2+c_bar)^2); // Moment of inertia about C-C axis of area C2\n",
+"Ic3 = I3 + (A3*(y3-c_bar)^2); // Moment of inertia about C-C axis of area C3\n",
+"Ic = Ic1 + Ic2 + Ic3 ; // Moment of inertia about C-C axis of whole area\n",
+"disp('in^4',Ic,'The moment of inertia of entire cross section area about its centroidal axis C-C')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 12.7: EX12_7.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"Ix = 29.29e06; // Moment of inertia of crosssection about x-axis\n",
+"Iy = 5.667e06; // Moment of inertia of crosssection about y-axis\n",
+"Ixy = -9.336e06; // Moment of inertia of crosssection \n",
+"tp1 = (atand(-(2*Ixy)/(Ix-Iy)))/2 ; // Angle definig a Principle axix\n",
+"tp2 = 90 + tp1 // '' \n",
+"disp('degree',tp1,'The Principle axis is inclined at an angle')\n",
+"disp('degree',tp2,'Second angle of inclination of Principle axis is')\n",
+"Ix1 = (Ix+Iy)/2 + ((Ix-Iy)/2)*cosd(tp1) - Ixy*sind(tp1) ; // Principle Moment of inertia corresponding to tp1\n",
+"Ix2 = (Ix+Iy)/2 + ((Ix-Iy)/2)*cosd(tp2) - Ixy*sind(tp2) ; // Principle Moment of inertia corresponding to tp2\n",
+"disp('mm^4',Ix1,'Principle Moment of inertia corresponding to tp1')\n",
+"disp('mm^4',Ix2,'Principle Moment of inertia corresponding to tp2')"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Mechanics_Of_Material_by_J_M_Gere/2-Axially_Loaded_Members.ipynb b/Mechanics_Of_Material_by_J_M_Gere/2-Axially_Loaded_Members.ipynb
new file mode 100644
index 0000000..4f78d83
--- /dev/null
+++ b/Mechanics_Of_Material_by_J_M_Gere/2-Axially_Loaded_Members.ipynb
@@ -0,0 +1,339 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 2: Axially Loaded Members"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.10: Determination_of_state_of_stress_in_a_bar.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"P = 90000; //newton\n",
+"A = 1200e-6 // meter^2\n",
+"s_x = -P/A ; //stress\n",
+"t_1 = 25; //for the stresses on ab and cd plane\n",
+"s_1 = s_x*(cosd(t_1)^2);\n",
+"T_1 = -s_x*cosd(t_1)*sind(t_1) ;\n",
+"t_2 = -65; //for the stresses on ad and bc plane\n",
+"s_2 = s_x*(cosd(t_2)^2);\n",
+"T_2 = -s_x*cosd(t_2)*sind(t_2) ;\n",
+"disp('MPa respecively',s_1,T_1,' The normal and shear stresses on the plane ab and cd are')\n",
+"disp('MPa respecively',s_2,T_2,' The normal and shear stresses on the plane ad and bc are')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.11: Determination_of_minimum_width_of_the_bar.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Value of s_x based on allowable stresses on glued joint\n",
+"\n",
+"s_t = -750; //psi\n",
+"t = -50; //degree\n",
+"T_t = -500; //psi\n",
+"sg_x_1 = s_t/(cosd(t)^2)\n",
+"sg_x_2 = -T_t/(cosd(t)*sind(t)) \n",
+"\n",
+"// Value of s_x based on allowable stresses on plastic\n",
+"\n",
+"sp_x_1 = -1100; //psi\n",
+"T_t_p =600; //psi\n",
+"t_p = 45; //degree\n",
+"sp_x_2 = -T_t_p/(cosd(t_p)*sind(t_p)) \n",
+"\n",
+"// Minimum width of bar\n",
+"\n",
+"P = 8000; //lb\n",
+"A = P/sg_x_2;\n",
+"b_min = sqrt(A) //inch\n",
+"disp('inch',b_min,'The minimum width of the bar is')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.15: Comparison_of_energy_absorbing_capacity_of_the_three_bolt.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Bolt with reduced shank diameter\n",
+"g = 1.50; // inch\n",
+"d = 0.5; //inch\n",
+"t = 0.25; //inch\n",
+"d_r = 0.406; //inch\n",
+"L = 13.5; //inch\n",
+"ratio = ( (g*(d^2)) / ( ((g-t)*(d_r^2))+(t*(d^2))) ) //U2/U1\n",
+"disp(ratio,'The energy absorbing capacity of the bolts with reduced shank diameter')\n",
+"// Long bolts\n",
+"ratio_1 = ( (((L-t)*(d_r^2))+(t*(d^2))) / ((2*(g-t)*(d_r^2))+2*(t*(d^2))) ); //U3/2U1\n",
+"disp(ratio_1,'The energy absorbing capacity of the long bolts')\n",
+""
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.16: Calculation_of_maximum_elongation_and_maximum_tensile_stress_in_a_bar.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Maximum elongation\n",
+"M = 20; //kg\n",
+"g = 9.81; //m/s^2\n",
+"L = 2; //meter\n",
+"E = 210e9; //210Gpa\n",
+"h = 0.15; //meter\n",
+"diameter = 0.015; //milimeter\n",
+"A = (%pi/4)*(diameter^2) ; //area\n",
+"D_st = ((M*g*L)/(E*A)) ;\n",
+"D_max = D_st*(1+(1+(2*h/D_st))^0.5) ;\n",
+"D_max_1 = sqrt(2*h*D_st) // another approach to find D_max\n",
+"i = D_max / D_st // Impact factor\n",
+"disp('mm',D_max,'Maximum elongation is')\n",
+"// Maximum tensile stress\n",
+"s_max = (E*D_max)/L ; //Maximum tensile stress\n",
+"s_st = (M*g)/A ;//static stress\n",
+"i_1 = s_max / s_st //Impact factor \n",
+"disp('Pa',s_max,'Maximum tensile stress is')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.18: EX2_18.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"P1 = 108000; //Newton\n",
+"P2 = 27000; //Newton\n",
+"L = 2.2; //meter\n",
+"A = 480; //mm^2\n",
+"\n",
+"// Displacement due to load P1 acting alone\n",
+"\n",
+"s = (P1/A) //stress in MPa\n",
+"e = (s/70000) + (1/628.2)*((s/260)^10) //strain\n",
+"D_b = e*L*1e3 //elongation in mm\n",
+"disp('mm',D_b,'elongation when only P1 load acting is = ')\n",
+"\n",
+"// Displacement due to load P2 acting alone\n",
+"\n",
+"s_1 = (P2/A) //stress in MPa\n",
+"e_1 = (s_1/70000) + (1/628.2)*((s_1/260)^10) //strain\n",
+"D_b_1 = e_1*(L/2)*1e3 //elongation in mm (no elongation in lower half)\n",
+"disp('mm',D_b_1,'elongation when only P2 load acting is = ')\n",
+"\n",
+"// Displacement due to both load acting simontaneously\n",
+"\n",
+"//upper half\n",
+"s_2 = (P1/A) //stress in MPa\n",
+"e_2 = (s_2/70000) + (1/628.2)*((s_2/260)^10) //strain\n",
+"//lower half\n",
+"s_3 = (P1+P2)/A //stress in MPa\n",
+"e_3 = (s_3/70000) + (1/628.2)*((s_3/260)^10) //strain\n",
+"D_b_2 = ( (e_2*L)/2 + (e_3*L)/2 ) * 1e3 // elongation in mm\n",
+"disp('mm',D_b_2,'elongation when P1 and P2 both loads are acting is = ')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.1: EX2_1.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"W = 2 ; //lb\n",
+"b = 10.5; //inch\n",
+"c = 6.4 ; //inch\n",
+"k = 4.2; //inch\n",
+"p = 1/16; //inch\n",
+"n = (W*b)/(c*k*p); //inch\n",
+"disp(n,' No. of revolution required = ')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.2: Calculation_of_maximum_allowable_load.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"Fce_ = 2; //dummy variable\n",
+"Fbd_ = 3; //dummy variable\n",
+"Lbd = 480; //mm\n",
+"Lce = 600; //mm\n",
+"E = 205e6; //205Gpa\n",
+"Abd = 1020; //mm\n",
+"Ace = 520; //mm\n",
+"Dbd_ = (Fbd_*Lbd)/(E*Abd); //dummy variable\n",
+"Dce_ = (Fce_*Lce)/(E*Ace); //dummy variable\n",
+"Da = 1; //limiting value\n",
+"P = ( ( ((450+225)/225)*(Dbd_ + Dce_) - Dce_ )^(-1) ) * Da ; \n",
+"Fce = 2*P; // Real value in newton\n",
+"Fbd = 3*P; //real value in newton\n",
+"Dbd = (Fbd*Lbd)/(E*Abd); //displacement in mm\n",
+"Dce = (Fce*Lce)/(E*Ace); // displacement in mm\n",
+"a = atand((Da+Dce)/675) ; //alpha in degree\n",
+"disp('degree',a,'alpha = ')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.3: Calculation_of_vertical_displacement_at_point_C.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"P1 = 2100; //lb\n",
+"P2 = 5600; //lb\n",
+"b = 25; //inch\n",
+"a = 28; //inch\n",
+"A1 = 0.25; //inch^2\n",
+"A2 = 0.15; //inch^2\n",
+"L1 = 20; //inch\n",
+"L2 = 34.8; //inch\n",
+"E = 29e6; //29Gpa\n",
+"P3 = (P2*b)/a ;\n",
+"Ra = P3-P1;\n",
+"N1 = -Ra ;\n",
+"N2 = P1 ;\n",
+"D = ((N1*L1)/(E*A1)) + ((N2*L2)/(E*A2)) ; //displacement\n",
+"disp ('inch',D,'Downward displacement is = ')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.6: Calculation_of_the_allowable_load.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Numerical calculation of allowable load\n",
+"d1 = 4; //mm\n",
+"d2 = 3; //mm\n",
+"A1 = (%pi*(d1^2))/4 ; //area\n",
+"A2 = (%pi*(d2^2))/4 ; //area\n",
+"L1 = 0.4; //meter\n",
+"L2 = 0.3; //meter\n",
+"E1 = 72e9 ; //Gpa\n",
+"E2 = 45e9 ; //Gpa\n",
+"f1 = L1/(E1*A1) * 1e6 ; // To cpmpensate for the mm^2\n",
+"f2 = L2/(E2*A2) * 1e6 ;\n",
+"s1 = 200e6; //stress\n",
+"s2 = 175e6; //stress\n",
+"P1 = ( (s1*A1*(4*f1 + f2))/(3*f2) ) * 1e-6 // To cpmpensate for the mm^2\n",
+"P2 = ( (s2*A2*(4*f1 + f2))/(6*f1) ) * 1e-6 \n",
+"disp( 'Newton',P2,'Minimum allowable stress aomong the two P1 and P2 is smaller one, therefore MAS = ')"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Mechanics_Of_Material_by_J_M_Gere/3-Torsion.ipynb b/Mechanics_Of_Material_by_J_M_Gere/3-Torsion.ipynb
new file mode 100644
index 0000000..54bb7ee
--- /dev/null
+++ b/Mechanics_Of_Material_by_J_M_Gere/3-Torsion.ipynb
@@ -0,0 +1,313 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 3: Torsion"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.10: evaluation_of_the_strain_energy_for_different_cases.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"Ta = 100 ; // Torque in N-m at A\n",
+"Tb = 150; // Torque in N-m at B\n",
+"L = 1.6 ; // Length of shaft in meter\n",
+"G = 80e09 ; // Modulus of elasticity\n",
+"Ip = 79.52e-09; // polar moment of inertia in m4\n",
+"Ua = ((Ta^2)*L)/(2*G*Ip) // Strain energy at A\n",
+"disp('joule',Ua,'Torque acting at free end')\n",
+"Ub = ((Tb^2)*L)/(4*G*Ip) // Strain energy at B\n",
+"disp('joule',Ub,'Torque acting at mid point')\n",
+"a = (Ta*Tb*L)/(2*G*Ip) // dummy variabble\n",
+"Uc = Ua+a+Ub ; // Strain energy at C\n",
+"disp('joule',Uc,'Total torque')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.11: Evaluation_of_the_strain_energy_of_a_hollow_shaft.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"t = 480 ; // Torque of constant intensity\n",
+"L = 144 ; // Length of bar\n",
+"G = 11.5e06; // Modulus of elasticity in Psi\n",
+"Ip = 17.18 ; // Polar moment of inertia\n",
+"U = ((t^2)*(L^3))/(G*Ip*6) // strain energy in in-lb\n",
+"disp('in-lb',U,'The strain energu for the hollow shaft is')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.1: Calculation_of_maximum_shear_stress_and_permissible_torque_in_the_bar.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"d = 1.5; // diameter of bar in inch\n",
+"L = 54 ; // Length of bar in inch\n",
+"G = 11.5e06 ; // modulus of elasticity in psi \n",
+"// Part (a)\n",
+"T = 250 ; // torque\n",
+"t_max = (16*T*12)/(%pi*(d^3)); // maximum shear stress in bar\n",
+"Ip = (%pi*(d^4))/32 ; // polar miment of inertia \n",
+"f = (T*12*L)/(G*Ip) ; // twist in radian\n",
+"f_ = (f*180)/%pi ; // twist in degree\n",
+"disp('psi',t_max,'Maximum shear stress in the bar is ')\n",
+"disp('degree',f_,'Angle of twist is')\n",
+"//Part (b)\n",
+"t_allow = 6000 ; // allowable shear stress\n",
+"T1 = (%pi*(d^3)*t_allow)/16; //allowable permissible torque in lb-in\n",
+"T1_ = T1*0.0831658 ; //allowable permissible torque in lb-ft\n",
+"f_allow = (2.5*%pi)/180 ; // allowable twist in radian\n",
+"T2 = (G*Ip*f_allow)/L; // allowable stress via a another method\n",
+"T2_ = T2*0.0831658; //allowable permissible torque in lb-ft\n",
+"T_max = min(T1_,T2_); // minimum of the two\n",
+"disp('lb-ft',T_max,'Maximum permissible torque in the bar is')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.2: Calculation_of_required_diameter_for_solid_and_hollow_shaft.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"T = 1200 ; // allowable torque in N-m\n",
+"t = 40e06 ; // allowable shear stress in Pa\n",
+"f = (0.75*%pi)/180 ; // allowable rate of twist in rad/meter\n",
+"G = 78e09; // modulus of elasticity\n",
+"// Part (a) : Solid shaft\n",
+"d0 = ((16*T)/(%pi*t))^(1/3)\n",
+"Ip = T/(G*f) ; // polar moment of inertia\n",
+"d01 = ((32*Ip)/(%pi))^(1/4); // from rate of twist definition\n",
+"disp('m',d0,'The required diameter of the solid shaft is ')\n",
+"// Part (b) : hollow shaft\n",
+"d2 = (T/(0.1159*t))^(1/3) ; // Diamater of hollow shaft in meter\n",
+"// The above equation comes from solving the following four equation \n",
+"// t1 = 0.1*d2 ; thickness of shaft\n",
+"// d1 = d2-(2*t1) ; // diameter of inner radius\n",
+"// Ip = (%pi/32)*((d2^4)-(d1^4)); // Polar moment of inertia\n",
+"// r = d2/2\n",
+"// t = (T*r)/Ip ; // allowable shear stress\n",
+"d2_ = (T/(0.05796*G*f))^(1/4) ; // Another value of d2 by definition of theta(allow), f = T/(G*Ip)\n",
+"d1 = 0.8*d2_ ; // because rate of twist governs the design\n",
+"disp('m',d2,'The required diameter of the hollow shaft is ')\n",
+"// Part (c) : Ratio of diameter and weight\n",
+"r1 = d2_/d01 ; // diameter ratio\n",
+"r2 = ((d2_^2)-(d1^2))/(d01^2) ; // Weight Ratio\n",
+"disp(r1,'Ratio of the diameter of the hollow and solid shaft is')\n",
+"disp(r2,'Ratio of the weight of the hollow and solid shaft is')\n",
+"\n",
+"\n",
+"\n",
+""
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.4: EX3_4.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"d = 0.03 ; // diameter of the shaft in meter\n",
+"T2 = 450 ; // Torque in N-m\n",
+"T1 = 275 ; //\n",
+"T3 = 175 ; //\n",
+"Lbc = 0.5 ; // Length of shaft in meter\n",
+"Lcd = 0.4 ; // Length of shaft in meter\n",
+"G = 80e09 ; // Modulus of elasticity\n",
+"Tcd = T2-T1 ; // torque in segment CD\n",
+"Tbc = -T1 ; // torque in segment BC\n",
+"tcd = (16*Tcd)/(%pi*(d^3)); // shear stress in cd segment\n",
+"disp('Pa',tcd,'Shear stress in segment cd is')\n",
+"tbc = (16*Tbc)/(%pi*(d^3)); // shear stress in bc segment\n",
+"disp('Pa',tbc,'Shear stress in segment bc is')\n",
+"Ip = (%pi/32)*(d^4); // Polar monent of inertia\n",
+"fbc = (Tbc*Lbc)/(G*Ip); // angle of twist in radian\n",
+"fcd = (Tcd*Lcd)/(G*Ip); // angle of twist in radian\n",
+"fbd = fbc + fcd ; // angle of twist in radian\n",
+"disp('radian',fbd,'Angles of twist in section BD')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.6: Calculation_of_various_stress_and_strain_in_circular_tube.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"d1 = 0.06 ; // Inner diameter in meter\n",
+"d2 = 0.08 ; // Outer diameter in meter\n",
+"r = d2/2; // Outer radius\n",
+"G = 27e09 ; // Modulus of elasticity\n",
+"T = 4000 ; // Torque in N-m\n",
+"Ip = (%pi/32)*((d2^4)-(d1^4)); // Polar moment of inertia\n",
+"t_max = (T*r)/Ip ; // maximum shear stress\n",
+"disp('Pa',t_max,'Maximum shear stress in tube is ')\n",
+"s_t = t_max ; // Maximum tensile stress\n",
+"disp('Pa',s_t,'Maximum tensile stress in tube is ')\n",
+"s_c = -(t_max); // Maximum compressive stress\n",
+"disp('Pa',s_c,'Maximum compressive stress in tube is ')\n",
+"g_max = t_max / G ; // Maximum shear strain in radian\n",
+"disp('radian',g_max,'Maximum shear strain in tube is ')\n",
+"e_t = g_max/2 ; // Maximum tensile strain in radian\n",
+"disp('radian',e_t,'Maximum tensile strain in tube is ')\n",
+"e_c = -g_max/2 ; // Maximum compressive strain in radian\n",
+"disp('radian',e_c,'Maximum compressive strain in tube is ')\n",
+""
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.7: Calculation_of_the_required_diameter_d_of_the_shaft.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"H = 40 ; // Power in hp\n",
+"s = 6000 ; // allowable shear stress in steel in psi\n",
+"// Part (a)\n",
+"n = 500 ; // rpm\n",
+"T = ((33000*H)/(2*%pi*n))*(5042/420); // Torque in lb-in\n",
+"d = ((16*T)/(%pi*s))^(1/3); // diameter in inch\n",
+"disp('inch',d,'Diameter of the shaft at 500 rpm')\n",
+"// Part (b)\n",
+"n1 = 3000 ; // rpm\n",
+"T1 = ((33000*H)/(2*%pi*n1))*(5042/420); // Torque in lb-in\n",
+"d1 = ((16*T1)/(%pi*s))^(1/3); // diameter in inch\n",
+"disp('inch',d1,'Diameter of the shaft at 3000 rpm')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.8: Calculation_of_maximum_shear_stress_tmax_in_the_shaft_and_the_angle_of_twist.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"d = 0.05 ; // diameter of the shaft\n",
+"Lab = 1 ; // Length of shaft ab in meter\n",
+"Lbc = 1.2 ; // Length of shaft bc in meter\n",
+"Pa = 50000; // Power in Watt at A\n",
+"Pb = 35000; // Power in Watt at B\n",
+"Ip = (%pi/32)*(d^4) ; // Polar moment of inertia\n",
+"Pc = 15000; // Power in Watt at C\n",
+"G = 80e09; // Modulus of elasticity\n",
+"f = 10 ; // frequency in Hz \n",
+"Ta = Pa/(2*%pi*f) // Torque in N-m at A\n",
+"Tb = Pb/(2*%pi*f) // Torque in N-m at B\n",
+"Tc = Pc/(2*%pi*f) // Torque in N-m at B\n",
+"Tab = Ta ; // Torque in N-m in shaft ab\n",
+"Tbc = Tc ; // Torque in N-m in shaft bc\n",
+"tab = (16*Tab)/(%pi*(d^3)) ; // shear stress in ab segment\n",
+"fab = (Tab*Lab)/(G*Ip); // angle of twist in radian\n",
+"tbc = (16*Tbc)/(%pi*(d^3)); // shear stress in ab segment\n",
+"fbc = (Tbc*Lbc)/(G*Ip); // angle of twist in radian\n",
+"fac = (fab+fbc)*(180/%pi); // angle of twist in degree in segment ac\n",
+"tmax = Tab; // Maximum shear stress\n",
+"disp('Nm',tmax,'The maximum shear stress tmax in the shaft')\n",
+"disp('degree',fac,'Angle of twist in segment AC')"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Mechanics_Of_Material_by_J_M_Gere/4-Shear_Forces_and_Bending_Moments.ipynb b/Mechanics_Of_Material_by_J_M_Gere/4-Shear_Forces_and_Bending_Moments.ipynb
new file mode 100644
index 0000000..20a910d
--- /dev/null
+++ b/Mechanics_Of_Material_by_J_M_Gere/4-Shear_Forces_and_Bending_Moments.ipynb
@@ -0,0 +1,84 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 4: Shear Forces and Bending Moments"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.3: Calculation_of_the_shear_force_and_the_bending_moment_of_the_cross_section.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"q = 0.2 ; // Uniform load intensity in K/ft\n",
+"P = 14 ; // Concentrated load in k\n",
+"Ra = 11 ; // Reaction at A from wquation of equilibrium\n",
+"Rb = 9 ; // Reaction at B from wquation of equilibrium\n",
+"V = 11 - 14 - (0.2*15) ; // shear force in k\n",
+"disp('k',V,'Shear force at section D')\n",
+"M = (11*15)-(14*6)-(0.2*15*7.5) ; // Bending moment in K-ft\n",
+"disp('k-ft',M,'Bending moment at section D')\n",
+"V1 = -9+(0.2*15); // Shear firce from alternative method in k\n",
+"M1 = (9*9)-(0.2*7.5*15); // Bending moment from alternative method in k-ft"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.7: Shear_force_nd_bending_moment_diagramme.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"q = 1 ; // Uniform load intensity in k/ft\n",
+"M0 = 12 ; // Couple in k-ft\n",
+"Rb = 5.25 ; // Reaction at B in k\n",
+"Rc = 1.25 ; // Reaction at C in k\n",
+"b = 4 ; // Length of section AB in ft\n",
+"Mb = -(q*(b^2))/2 ; // Moment acting at B\n",
+"disp('k-ft',Mb,'Bending moment at B')"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Mechanics_Of_Material_by_J_M_Gere/5-Stresses_in_Beams_Basic_Topics.ipynb b/Mechanics_Of_Material_by_J_M_Gere/5-Stresses_in_Beams_Basic_Topics.ipynb
new file mode 100644
index 0000000..0ed22ea
--- /dev/null
+++ b/Mechanics_Of_Material_by_J_M_Gere/5-Stresses_in_Beams_Basic_Topics.ipynb
@@ -0,0 +1,521 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 5: Stresses in Beams Basic Topics"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.11: Determination_of_the_normal_stress_and_shear_stress_at_point_C.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"L = 3 ; // Span of beam in ft\n",
+"q = 160 ; // Uniform load intensity in lb/in\n",
+"b = 1; // Width of cross section\n",
+"h = 4; // Height of cross section\n",
+"// Calculations from chapter 4\n",
+"Mc = 17920 ; // Bending moment in ld-in\n",
+"Vc = -1600 ; // Loading in lb\n",
+"//\n",
+"I = (b*(h^3))/12; // Moment of inertia in in4\n",
+"sc = -(Mc*1)/I; // Compressive stress at point C in psi\n",
+"Ac = 1*1 ; // Area of section C in inch2\n",
+"yc = 1.5 ; // distance between midlayers od section C and cross section of beam\n",
+"Qc = Ac*yc ; // First moment of C cross section in inch3\n",
+"tc = (Vc*Qc)/(I*b); // Shear stress in Psi\n",
+"disp('psi',sc,'Normal stress at C')\n",
+"disp('psi',tc,'Shear stress at C')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.12: Determination_of_the_maximum_permissible_value_Pmax_of_the_loads.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"s = 11e06 ; // allowable tensile stress in pa\n",
+"t = 1.2e06 ; // allowable shear stress in pa\n",
+"b = 0.1 ; // Width of cross section in m\n",
+"h = 0.15 ; // Height of cross section in m\n",
+"a = 0.5 ; // in m\n",
+"P_bending = (s*b*h^2)/(6*a); // Bending stress in N\n",
+"P_shear = (2*t*b*h)/3; // shear stress in N\n",
+"Pmax = P_bending; // Because bending stress governs the design\n",
+"disp('N',Pmax,'the maximum permissible value Pmax of the loads')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.13: EX5_13.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"d2 = 4; // Outer diameter in inch\n",
+"d1 = 3.2; // Inner diameter in inch\n",
+"r2 = d2/2; // Outer radius in inch\n",
+"r1 = d1/2; // inner radius in inch\n",
+"P = 1500 ; // Horizontal force in lb\n",
+"// Part (a)\n",
+"t_max = ((r2^2+(r2*r1)+r1^2)*4*P)/(3*%pi*((r2^4)-(r1^4))) ; // Mximum shear stress in Psi\n",
+"disp('psi',t_max,'Maximum shear stress in the pole is')\n",
+"// Part (b)\n",
+"d0 = sqrt((16*P)/(3*%pi*t_max)) ; // Diameter of solid circular cross section in meter\n",
+"disp('m',d0,'Diameter of solid circular cross section is ')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.14: EX5_14.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"b = 0.165 ; // in m\n",
+"h = 0.320 ; // in m\n",
+"h1 = 0.290 ; // in m\n",
+"t = 0.0075; // in m\n",
+"V = 45000; // Vertical force in N\n",
+"I = (1/12)*((b*(h^3))-(b*(h1^3))+(t*(h1^3))) // Moment of inertia of the cros section\n",
+"t_max = (V/(8*I*t))*((b*(h^2))-(b*(h1^2))+(t*(h1^2))); // Maximum shear stress in Pa\n",
+"t_min = ((V*b)/(8*I*t))*(h^2-h1^2); // Minimum shear stress in Pa\n",
+"T = ((t*h1)/3)*(2*t_max + t_min); // Total shear force in Pa\n",
+"t_avg = V/(t*h1) ; // Average shear stress in Pa\n",
+"disp('Pa',t_max,'Maximum shear stress in the web is')\n",
+"disp('Pa',t_min,'Minimum shear stress in the web is')\n",
+"disp('Pa',T,'Total shear stress in the web is')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.15: EX5_15.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"V = 10000; // Vertical shear force in lb\n",
+"b = 4; // in inch\n",
+"t = 1; // in inch\n",
+"h = 8; // in inch\n",
+"h1 = 7; // in inch\n",
+"A = b*(h-h1) + t*h1 ;// Area of cross section \n",
+"Qaa = ((h+h1)/2)*b*(h-h1) + (h1/2)*(t*h1); // First moment of cross section\n",
+"c2 = Qaa/A ; // Position of neutral axis in inch\n",
+"c1 = h-c2 ; // Position of neutral axis in inch\n",
+"Iaa = (b*h^3)/3 - ((b-t)*h1^3)/3 ; // Moment of inertia about the line aa\n",
+"I = Iaa - A*c2^2 // Moment of inertia of crosssection\n",
+"Q1 = b*(h-h1)*(c1-((h-h1)/2)) ; // First moment of area above the line nn\n",
+"t1 = (V*Q1)/(I*t) // Shear stress at the top of web in Psi\n",
+"Qmax = (t*c2)*(c2/2); // Maximum first moment of inertia below neutral axis\n",
+"t_max = (V*Qmax)/(I*t); // Maximum Shear stress in Psi\n",
+"disp('psi',t1,'Shear stress at the top of the web is')\n",
+"disp('Psi',t_max,'Maximum Shear stress in the web is')\n",
+"\n",
+" "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.16: determination_of_the_maximum_permissible_longitudinal_spacing_of_the_screws.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"Af = 40*180; // Area of flange in mm2\n",
+"V = 10500 ; // Shear force acting on cross section\n",
+"F = 800 ; // Allowable load in shear\n",
+"df = 120 ; // Distance between centroid of flange and neutral axis in mm\n",
+"Q = Af*df ; // First moment of cross section of flange\n",
+"I = (1/12)*(210*280^3) - (1/12)*(180*200^3) ; // Moment of inertia of entire cross section in mm4\n",
+"f = (V*Q)/I; // Shear flow\n",
+"s = (2*F)/f // Spacing between the screw\n",
+"disp('mm',s,'The maximum permissible longitudinal spacing s of the screws is')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.17: EX5_17.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"L = 60 ; // Length of beam in inch\n",
+"d = 5.5 ; // distance from the point of application of the load P to the longitudinal axis of the tube in inch\n",
+"b = 6 ; // Outer dimension of tube in inch\n",
+"A = 20 ; // Area of cross section of tube in inch\n",
+"I = 86.67 ; // Moment of inertia in in4\n",
+"P = 1000; // in lb\n",
+"theta = 60 ; // in degree\n",
+"Ph = P*sind(60); // Horizontal component\n",
+"Pv = P*cosd(60); // Vertical component\n",
+"M0 = Ph*d ; // Moment in lb-in\n",
+"y = -3 ; // Point at which maximum tensile stress occur in inch\n",
+"N = Ph ; // Axial force\n",
+"M = 9870 ; // Moment in lb-in\n",
+"st_max = (N/A)-((M*y)/I) ; // Maximum tensile stress in Psi\n",
+"yc = 3 ; // in inch\n",
+"M1 = 5110 ; // moment in lb-in\n",
+"sc_left = (N/A)-((M*yc)/I) ; // Stress at the left of point C in Psi\n",
+"sc_right = -(M1*yc)/I ; // Stress at the right of point C in Psi\n",
+"sc_max = min(sc_left,sc_right) ; // Because both are negative quantities\n",
+"disp('psi',sc_max,'The maximum compressive stress in the beam is')\n",
+"disp('psi',st_max,'The maximum tensile stress in the beam is')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.1: Determination_of_radius_of_curvature_and_deflection_in_a_simply_supported_beam.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"L = 8 ; // length of beam in ft\n",
+"h = 6 ; // Height of beam in inch\n",
+"e = 0.00125 ; // elongation on the bottom surface of the beam\n",
+"y = -3 ; // Distance of the bottom surface to the neutral surface of the beam in inch\n",
+"r = -(y/e) ; // Radius of curvature\n",
+"disp('ft',r,'radius of curvature is')\n",
+"k = 1/r ; // curvature in in-1\n",
+"disp('ft-1',k,'curvature')\n",
+"theta = asind((L*12)/(2*r)) ; // angle in degree\n",
+"disp('degree',theta,'Angle of twist')\n",
+"del = r*(1-cosd(theta)); //Deflection in inch\n",
+"\n",
+"\n",
+""
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.2: EX5_2.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"d = 0.004 ; // thickness of wire in m\n",
+"R0 = 0.5 ; // radius of cylinder in m\n",
+"E = 200e09 ; // Modulus of elasticity of steel\n",
+"s = 1200e06 ; // proportional limit of steel\n",
+"M = (%pi*E*d^4)/(32*(2*R0+d)) ; // Bending moment in wire in N-m\n",
+"disp('N-m',M,'Bending moment in the wire is ')\n",
+"s_max = (E*d)/(2*R0+d) ; // Maximum bending stress in wire in Pa\n",
+"disp('Pa',s_max,'Maximum bending stress in the wire is ')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.3: EX5_3.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"L = 22 ; // Span of beam in ft\n",
+"q = 1.5; // Uniform load intensity in k/ft\n",
+"P = 12 ; // Concentrated in k\n",
+"b = 8.75 ; // width of cross section of beam in inch\n",
+"h = 27 ; // height of cross section of beam in inch\n",
+"Ra = 23.59; // Reaction at point A\n",
+"Rb = 21.41; // Reacyion at point B\n",
+"Mmax = 151.6 ; // Maximum bending moment\n",
+"S = (b*h^2)/6 ; // Section modulus\n",
+"s = (Mmax*12)/S // stress in k\n",
+"st = s*1000 ; // Tensile stress\n",
+"disp('psi',st,'Maximum tensile stress in the beam')\n",
+"sc = -s*1000 ; // Compressive stress\n",
+"disp('psi',sc,'Maximum compressive stress in the beam')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.4: EX5_4.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"q = 3200 ; // Uniform load intensity in N/m\n",
+"b = 0.3; // width of beam in m\n",
+"h = 0.08 ; // Height of the beam in m\n",
+"t = 0.012 ; // thickness of beam in m\n",
+"Ra = 3600 ; // Reaction at A in N\n",
+"Rb = 10800 ; // Reaction at B in N\n",
+"Mpos = 2025 ; // Moment in Nm\n",
+"Mneg = -3600 ; // Moment in Nm\n",
+"y1 = t/2;\n",
+"A1 = (b-2*t)*t ; \n",
+"y2 = h/2;\n",
+"A2 = h*t ; \n",
+"A3 = A2 ; \n",
+"c1 = ((y1*A1)+(2*y2*A2))/((A1)+(2*A2));\n",
+"c2 = h - c1 ;\n",
+"Ic1 = (b-2*t)*(t^3)*(1/12);\n",
+"d1 = c1-(t/2);\n",
+"Iz1 = (Ic1)+(A1*(d1^2));\n",
+"Iz2 = 956600e-12;\n",
+"Iz3 = Iz2 ;\n",
+"Iz = Iz1 + Iz2 + Iz3 ; // Moment of inertia of the beam cross section\n",
+"// Section Modulli\n",
+"S1 = Iz / c1 ; // for the top surface\n",
+"S2 = Iz / c2 ; // for the bottom surface\n",
+"// Maximum stresses for the positive section\n",
+"st = Mpos / S2 ;\n",
+"disp('Pa',st,'Maximum tensile stress in the beam in positive section is')\n",
+"sc = -Mpos / S1 ;\n",
+"disp('Pa',sc,'Maximum compressive stress in the beam in positive section is')\n",
+"// Maximum stresses for the negative section\n",
+"snt = -Mneg / S1 ;\n",
+"disp('Pa',snt,'Maximum tensile stress in the beam in negative section is')\n",
+"snc = Mneg / S2 ;\n",
+"disp('Pa',snc,'Maximum compressive stress in the beam in negative section is')\n",
+"// Conclusion\n",
+"st_max = st;\n",
+"sc_max = snc ;"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.5: Selection_of_the_suitable_size_for_the_beam.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"L = 12 ; // Length of beam in ft\n",
+"q = 420 ; // Uniform load intensity in lb/ft\n",
+"s = 1800 ; // Allowable bending stress in psi\n",
+"w = 35 ; // weight of wood in lb/ft3\n",
+"M = (q*L^2*12)/8 ; // Bending moment in lb-in\n",
+"S = M/s ; // Section Modulli in in3\n",
+"// From Appendix F\n",
+"q1 = 426.8; // New uniform load intensity in lb/ft\n",
+"S1 = S*(q1/q); // New section modulli in in3\n",
+"// From reference to appendix F, a beam of cross section 3*12 inch is selected\n",
+"disp('Beam of crosssection 3*12 is sufficient')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.6: Calculation_of_minimum_required_diameter_in_the_wood_and_alluminium_rod.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"P = 12000; // Lataeral load at the upper end in N\n",
+"h = 2.5 ; // Height of post in m\n",
+"Mmax = P*h ; // Maximum bending moment in Nm\n",
+"// Part (a) : Wood Post\n",
+"s1 = 15e06 ; // Maximum allowable stress in Pa\n",
+"S1 = Mmax/s1 ;// Section Modulli in m3\n",
+"d1 = ((32*S1)/%pi)^(1/3); // diameter in m\n",
+"disp('m',d1,'the minimum required diameter d1 of the wood post is')\n",
+"// Part (b) : Alluminium tube\n",
+"s2 = 50e06 ; // Maximum allowable stress in Pa\n",
+"S2 = Mmax/s2; // Section Modulli in m3\n",
+"d2 = (S2/0.06712)^(1/3); // diameter in meter.....(1) \n",
+"// Here equation (1) , comes from solving following three equation \n",
+"// c = d2/2 (radius of tube)\n",
+"// I2 = (%pi/64)*((d2^4)-((0.75*d2)^4)) (Moment of inertia)\n",
+"// S2 = I2/c ;\n",
+"disp('m',d2,'minimum required outer diameter d2 of the aluminum tube is')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.7: Selection_of_the_steel_beam.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"q = 2000 ; // Uniform load intensity in lb/ft\n",
+"s = 18000 ; // Maximum allowable load in Psi\n",
+"Ra = 18860 ; // Reaction at point A\n",
+"Rb = 17140 ; // Reaction at point B\n",
+"x1 = Ra/q ; // Distance in ft from left end to the point of zero shear\n",
+"Mmax = (Ra*x1)-((q*(x1^2))/2) ; // Maximum bending moment in lb-ft\n",
+"S = (Mmax*12)/s; // Section Modulli in in3\n",
+"// Trial Beam\n",
+"Ra_t = 19380 ; // Reaction at point A\n",
+"Rb_t = 17670 ; // Reaction at point B\n",
+"x1_t = Ra_t/q ; // Distance in ft from left end to the point of zero shear\n",
+"Mmax_t = (Ra_t*x1_t)-((q*(x1_t^2))/2) ; // Maximum bending moment in lb-ft\n",
+"S_t = (Mmax_t*12)/s; // Section Modulli in in3\n",
+"// From table E beam 12*50 is selected \n",
+"disp('in3',S_t,'Beam of crosssection 12*50 is selected with section modulli')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.8: Determination_of_the_minimum_required_dimension_b_of_the_posts.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"g = 9810 ; // Specific weight of water in N/m3\n",
+"h = 2; // Height of dam in m\n",
+"s = 0.8 ; // Distance between square cross section in m\n",
+"sa = 8e06 ; // Maximum allowable stress in Pa\n",
+"b = ((g*(h^3)*s)/sa)^(1/3) ; // Dimension of croossection in m\n",
+"disp('m',b,'the minimum required dimension b of the posts')"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Mechanics_Of_Material_by_J_M_Gere/6-Stresses_in_Beams_Advanced_Topics.ipynb b/Mechanics_Of_Material_by_J_M_Gere/6-Stresses_in_Beams_Advanced_Topics.ipynb
new file mode 100644
index 0000000..6246524
--- /dev/null
+++ b/Mechanics_Of_Material_by_J_M_Gere/6-Stresses_in_Beams_Advanced_Topics.ipynb
@@ -0,0 +1,301 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 6: Stresses in Beams Advanced Topics"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.1: Calculation_of_stresses_in_wood_and_steel.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// 4*6 inch wood beam dimension\n",
+"// 4*0.5 inch steel beam dimension\n",
+"M = 60 ; // Moment in k-in\n",
+"E1 = 1500 ; // in Ksi\n",
+"E2 = 30000; // in Ksi\n",
+"h1 = 5.031 ; // Distance between top surface and neutral axis of the beam in inch by solving 1500*(h1-3)*24 + 30000*(h1-6.25)*2 = 0\n",
+"h2 = 6.5 - h1 ;\n",
+"I1 = (1/12)*(4*6^3) + (4*6)*(h1-3)^2 ; // Momeny of inertia of the wooden cross section\n",
+"I2 = (1/12)*(4*0.5^3) + (4*0.5)*(h2-0.25)^2 ; // Momeny of inertia of the steel cross section\n",
+"I = I1 + I2 ; // Moment of inertia of whole cross section\n",
+"// Material 1\n",
+"s1a = -(M*h1*E1)/((E1*I1)+(E2*I2)) ; // Maximum compressive stress in ksi where y = h1\n",
+"s1c = -(M*(-(h2-0.5))*E1)/((E1*I1)+(E2*I2)) ; // Maximum tensile stress in ksi where y = -(h2-0.5)\n",
+"disp('ksi',s1a,' Maximum compressive stress in wood is')\n",
+"disp('ksi',s1c,' Maximum tensile stress in wood is')\n",
+"// Material 2\n",
+"s2a = -(M*(-h2)*E2)/((E1*I1)+(E2*I2)); // Maximum tensile stress in ksi where y = -h2\n",
+"s2c = -(M*(-(h2-0.5))*E2)/((E1*I1)+(E2*I2)); // Minimum tensile stress in ksi where y = -(h2-0.5)\n",
+"disp('ksi',s2a,' Maximum tensile stress in steel is')\n",
+"disp('ksi',s2c,' Minimum tensile stress in steel is')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.2: EX6_2.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"M = 3000 ; // moment in N-m\n",
+"t = 0.005 ; // thickness of alluminiun in m\n",
+"E1 = 72e09 ; // Modulus of elasticity of alluminium in Pa\n",
+"E2 = 800e06 ; // Modulus of elasticity of Plastic core in Pa\n",
+"b = 0.2 ; // Width of cross section in m\n",
+"h = 0.160 ; // Height of cross section in m\n",
+"hc = 0.150 ; // Height of Plastic core cross section in m\n",
+"I1 = (b/12)*(h^3 - hc^3) ; // Moment of inertia of alluminium cross section\n",
+"I2 = (b/12)*(hc^3) ; // Moment of inertia of Plastic core cross section\n",
+"f = (E1*I1) + (E2*I2) ; // Flexural rigidity of the cross section\n",
+"s1_max = (M*(h/2)*E1)/f ;\n",
+"s1c = -s1_max ; // Maximum compressive stress in alluminium core in Pa\n",
+"s1t = s1_max ; // Maximum tensile stress in alluminium core in Pa\n",
+"disp('Pa',s1c,' Maximum compressive stress on alluminium face by the general theory for composite beams is')\n",
+"disp('Pa',s1t,' Maximum tensile stress on alluminium face by the general theory for composite beams is')\n",
+"s2_max = (M*(hc/2)*E2)/f ;\n",
+"s2c = -s2_max ; // Maximum compressive stress in Plastic core in Pa\n",
+"s2t = s2_max ; // Maximum tensile stress in Plastic core in Pa\n",
+"disp('Pa',s2c,' Maximum compressive stress in plastic core by the general theory for composite beams is')\n",
+"disp('Pa',s2t,' Maximum tensile stress in plastic core by the general theory for composite beams is')\n",
+"// Part (b) : Calculation from approximate theory of sandwitch\n",
+"s1_max1 = (M*h)/(2*I1) ;\n",
+"s1c1 = -s1_max1 ; // Maximum compressive stress in alluminium core in Pa\n",
+"s1t1 = s1_max1 ; // Maximum tensile stress in alluminium core in Pa\n",
+"disp('Pa',s1c1,' Maximum compressive stress on alluminium core by approximate theory of sandwitch is')\n",
+"disp('Pa',s1t1,' Maximum tensile stress on alluminium core by approximate theory of sandwitch is')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.3: Calculation_of_stresses_in_wood_and_steel.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// 4*6 inch wood beam dimension\n",
+"// 4*0.5 inch steel beam dimension\n",
+"M = 60 ; // Moment in k-in\n",
+"E1 = 1500 ; // in Ksi\n",
+"E2 = 30000; // in Ksi\n",
+"b = 4; // width of crosssection in inch\n",
+"// Transformed Section\n",
+"n = E2/E1 ; // Modular ratio\n",
+"b1 = n*4 ; // Increased width of transformed cross section\n",
+"// Neutral axis\n",
+"h1 = ((3*4*6)+(80*0.5*6.25))/((4*6)+(80*0.5)); // Distance between top surface and neutral axis of the beam in inch\n",
+"h2 = 6.5 - h1 ; // in inch\n",
+"// Moment of inertia\n",
+"It = (1/12)*(4*6^3) + (4*6)*(h1-3)^2 + (1/12)*(80*0.5^3) + (80*0.5)*(h2-0.25)^2 ; // Moment of inertia of transformed cross section\n",
+"// Material 1\n",
+"s1a = -(M*h1)/It; // Maximum tensile stress in ksi where y = h1\n",
+"s1c = -(M*(-(h2-0.5)))/It; // Maximum compressive stress in ksi where y = -(h2-0.5)\n",
+"disp('psi',s1a*1000,'Maximum tensile stress in wood is')\n",
+"disp('psi',s1c*1000,'Maximum compressive stress in wood is')\n",
+"// Material 2\n",
+"s2a = -(M*(-h2)*n)/It ; // Maximum tensile stress in ksi where y = -h2\n",
+"s2c = -(M*(-(h2-0.5)*n))/It ; // Minimum tensile stress in ksi where y = -(h2-0.5)\n",
+"disp('psi',s2a*1000,' Maximum tensile stress in steel')\n",
+"disp('psi',s2c*1000,' Minimum tensile stress in steel')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.4: EX6_4.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"q = 3000 ; // Uniform load intensity in N/m\n",
+"a = 26.57 ; // tilt of the beam in degree\n",
+"b = 0.1; // width of the beam\n",
+"h = 0.15; // height of the beam\n",
+"L = 1.6 ; // Span of the beam\n",
+"qy = q*cosd(a) ; // Component of q in y direction\n",
+"qz = q*sind(a) ; // Component of q in z direction\n",
+"My = (qz*L^2)/8 ; // Maximum bending moment in y direction\n",
+"Mz = (qy*L^2)/8 ; // Maximum bending moment in z direction\n",
+"Iy = (h*b^3)/12; // Moment of inertia along y\n",
+"Iz = (b*h^3)/12; // Moment of inertia alon z\n",
+"s = ((3*q*L^2)/(4*b*h))*((sind(a)/b)+(cosd(a)/h));\n",
+"sc = -s ; // Maximum compressive stress\n",
+"st = s; // Maximum tensile stress\n",
+"disp('Pa',sc,'Maximum compressive stress in the beam is')\n",
+"disp('Pa',st,'Maximum tensile stress in the beam is')\n",
+"// Neutral axis\n",
+"l = (h/b)^2;\n",
+"t = sind(a)/cosd(a);\n",
+"j = l*(sind(a)/cosd(a));\n",
+"be = atand(j); // Inclination of Neutral axis to z axis\n",
+"disp('degree',be,'Inclination of Neutral axis to z axis is')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.5: Determination_of_the_maximum_bending_stresses_in_the_beam.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"L = 12 ; // Length of the beam in ft\n",
+"P = 10 ; // Load in k acting in vertical direction\n",
+"//Part (a)\n",
+"h = 24 ; // Height of beam in inch\n",
+"Iz = 2100 ; // Moment of inertia along z axis in in4\n",
+"Iy = 42.2 ; // Moment of inertia along y axis in in4\n",
+"s_max = (P*(h/2)*L*12)/Iz ; // Maximum stress in Ksi\n",
+"disp('psi',s_max*1000,'Maximum tensile stress in the beam at the top of the beam')\n",
+"disp('psi',-s_max*1000,'Maximum compressive stress in the beam at the bottom of the beam')\n",
+"//Part (b)\n",
+"a = 1 ; // Angle between y axis and the load\n",
+"My = -(P*sind(a))*L*12 ; // Moment along y-axis in K-in\n",
+"Mz = -(P*cosd(a))*L*12 ; // Moment along z-axis in K-in\n",
+"ba = atand((My*Iz)/(Mz*Iy)); // Orientation of neutral axis\n",
+"z = -3.5; y = 12 ; // Coordinates of the point A and B where maximum stress occur\n",
+"s = ((My*z)/Iy)-((Mz*y)/Iz) ; // Stress in Ksi\n",
+"sa = s ; // Tensile stress at A\n",
+"sb = -s ; // Compressive stress in B\n",
+"disp('psi',sa*1000,'The tensile stress at A is')\n",
+"disp('psi',sb*1000,'The compressive stress at B is')\n",
+"\n",
+"\n",
+"\n",
+"\n",
+""
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.6: Calculation_of_the_bending_stresses_and_location_of_neutral_axis.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"M = 15 ; // Bending moment in k-in\n",
+"t = 10 ; // Angle between line of action of moment and z-axis\n",
+"// Properties of cross section\n",
+"c = 0.634 ; // Location of centroid on the axis of symmetry\n",
+"Iy = 2.28; // Moment of inertia in y-direction in in4\n",
+"Iz = 67.4; // Moment of inertia in z-direction in in4\n",
+"ya = 5 ; za = -2.6+0.634 ; // Coordinates of point A\n",
+"yb = -5 ; zb = 0.634 ; // Coordinates of point B\n",
+"My = M*sind(t); // Moment along y-axis\n",
+"Mz = M*cosd(t); // Moment along z-axis\n",
+"sa = ((My*za)/Iy)-((Mz*ya)/Iz) ; // Bending stress at point A in ksi\n",
+"sb = ((My*zb)/Iy)-((Mz*yb)/Iz) ; // Bending stress at point B in ksi\n",
+"disp('psi',sa*1000,'The bending stress at point A is')\n",
+"disp('psi',sb*1000,'The bending stress at point B is')\n",
+"// Neutral axis\n",
+"j = (Iz/Iy)*(sind(t)/cosd(t)); \n",
+"be = atand(j); // Inclination of neutral axis to z-axis in degree\n",
+"disp('degree',be,'Inclination of neutral axis to z-axis is')\n",
+"\n",
+" "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.9: Determination_of_the_magnitude_of_the_moment.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"b = 5 ; // in inch\n",
+"b1 = 4 ; // in inch\n",
+"h = 9 ; // in inch\n",
+"h1 = 7.5 ; // in inch\n",
+"sy = 33 ; // stress along y axis in ksi\n",
+"M = (sy/12)*((3*b*h^2)-(b+(2*b1))*(h1^2)) ; // Bending moment acting in k-in\n",
+"disp('k-in',M,'the magnitude of the moment M is')"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Mechanics_Of_Material_by_J_M_Gere/7-Analysis_of_Stress_and_Strain.ipynb b/Mechanics_Of_Material_by_J_M_Gere/7-Analysis_of_Stress_and_Strain.ipynb
new file mode 100644
index 0000000..a458a37
--- /dev/null
+++ b/Mechanics_Of_Material_by_J_M_Gere/7-Analysis_of_Stress_and_Strain.ipynb
@@ -0,0 +1,315 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 7: Analysis of Stress and Strain"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.1: Determination_of_the_stresses_acting_on_an_inclined_element.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Let x1, y1 be the transformed direction inclined at 45 deegree to the original\n",
+"sx = 16000; // Direct stress in x-direction in psi\n",
+"sy = 6000; // Direct stress in y-direction ''\n",
+"txy = 4000; // Shear stress in y-direction ''\n",
+"tyx = txy ; // Shear stress in x-direction ''\n",
+"t = 45 ; // Inclination pf plane in degree \n",
+"sx1 = (sx+sy)/2 + ((sx-sy)*(cosd(2*t))/2) + txy*sind(2*t); // Direct stress in x1-direction in psi\n",
+"sy1 = (sx+sy)/2 - ((sx-sy)*(cosd(2*t))/2) - txy*sind(2*t); // Direct stress in y1-direction in psi\n",
+"tx1y1 = - ((sx-sy)*(sind(2*t))/2) + txy*cosd(2*t) // Shear stress in psi\n",
+"disp('psi',sx1,'The direct stress on the element in x1-direction is')\n",
+"disp('psi',sy1,'The direct stress on the element in y1-direction is')\n",
+"disp('psi',tx1y1,'The shear stress on the element')\n",
+"\n",
+"\n",
+""
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.2: Determination_of_stresses_acting_on_inclined_element.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Let x1, y1 be the transformed direction inclined at 15 deegree to the original\n",
+"sx = -46e06; // Direct stress in x-direction in Pa\n",
+"sy = 12e06; // Direct stress in y-direction ''\n",
+"txy = -19e06; // Shear stress in y-direction ''\n",
+"t = -15 ; // Inclination of plane in degree \n",
+"sx1 = (sx+sy)/2 + ((sx-sy)*(cosd(2*t))/2) + txy*sind(2*t) // Direct stress in x1-direction in Pa\n",
+"sy1 = (sx+sy)/2 - ((sx-sy)*(cosd(2*t))/2) - txy*sind(2*t) // Direct stress in y1-direction in Pa\n",
+"tx1y1 = - ((sx-sy)*(sind(2*t))/2) + txy*cosd(2*t) // Shear stress in Pa\n",
+"disp('Pa',sx1,'The direct stress on the element in x1-direction is')\n",
+"disp('Pa',sy1,'The direct stress on the element in y1-direction is')\n",
+"disp('Pa',tx1y1,'The shear stress on the element')\n",
+""
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.3: Determination_of_stresses_acting_on_inclined_element.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"sx = 90e06; // Direct stress in x-direction in Pa\n",
+"sy = 20e06; // Direct stress in y-direction in Pa\n",
+"t = 30 ; // Inclination of element in degree\n",
+"savg = (sx+sy)/2 ; // Average in-plane direct stress\n",
+"txy = 0 ;\n",
+"R = sqrt(((sx-sy)/2)^2+(txy)^2) // Radius of mohr circle\n",
+"// Point D ; at 2t = 60\n",
+"sx1 = savg + R*cosd(2*t) ; // Direct stress at point D \n",
+"tx1y1 = -R*sind(2*t) ; // shear stress at point D\n",
+"disp('Pa',sx1,'The direct stress at point D is')\n",
+"disp('Pa',tx1y1,'The shear stress at point D is')\n",
+"// Point D' ; at 2t = 240\n",
+"sx2 = savg + R*cosd(90 + t); // Direct stress at point D \n",
+"tx2y2 = R*sind(90 + t); // shear stress at point D\n",
+"disp('Pa',sx2,'The direct stress at point D_desh is')\n",
+"disp('Pa',tx2y2,'The shear stress at point D_desh is')\n",
+"\n",
+""
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.4: Determination_of_stresses_acting_on_inclined_element_using_mohrs_circle.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"sx = 90e06; // Direct stress in x-direction in Pa\n",
+"sy = 20e06; // Direct stress in y-direction in Pa\n",
+"t = 30 ; // Inclination of element in degree\n",
+"savg = (sx+sy)/2 ; // Average in-plane direct stress\n",
+"txy = 0 ;\n",
+"R = sqrt(((sx-sy)/2)^2+(txy)^2) // Radius of mohr circle\n",
+"// Point D ; at 2t = 60\n",
+"sx1 = savg + R*cosd(2*t) ; // Direct stress at point D \n",
+"tx1y1 = -R*sind(2*t) ; // shear stress at point D\n",
+"// Point D ; at 2t = 240\n",
+"sx2 = savg + R*cosd(90 + t); // Direct stress at point D \n",
+"tx2y2 = R*sind(90 + t); // shear stress at point D\n",
+"\n",
+""
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.5: Determination_of_stresses_acting_on_inclined_element_using_Mohrs_circle.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"sx = 15000; // Direct stress in x-direction in psi\n",
+"sy = 5000; // Direct stress in y-direction ''\n",
+"txy = 4000 ; // Shear stress in y-direction ''\n",
+"savg = (sx+sy)/2 ; // Average in-plane direct stress\n",
+"sx1 = 15000; tx1y1 = 4000; // Stress acting on face at theta = 0 degree\n",
+"sx1_ = 5000; tx1y1_ = -4000; // Stress acting on face at theta = 0 degree\n",
+"R = sqrt(((sx-sy)/2)^2+(txy)^2) // Radius of mohr circle\n",
+"// Part (a)\n",
+"t = 40 ; // Inclination of the plane in degree\n",
+"f1 = atand(4000/5000) ; // Angle between line CD and x1-axis\n",
+"f2 = 80 - f1 ; // Angle between line CA and x1-axis\n",
+"// Point D ; \n",
+"sx1 = savg + R*cosd(f2); // Direct stress at point D \n",
+"tx1y1 = -R*sind(f2); // shear stress at point D\n",
+"disp('psi',sx1,'The direct stres at point D')\n",
+"disp('psi',tx1y1,'The shear stress at point D')\n",
+"// Point D' ; \n",
+"sx2 = savg - R*cosd(f2) // Direct stress at point D' \n",
+"tx2y2 = R*sind(f2) // shear stress at point D'\n",
+"disp('psi',sx2,'The direct stres at point D_desh')\n",
+"disp('psi',tx2y2,'The shear stress at point D_desh')\n",
+"//Part (b)\n",
+"sp1 = savg + R ; // Maximum direct stress in mohe circle (at point P1)\n",
+"tp1 = f1/2 ; // Inclination of plane of maximum direct stress\n",
+"disp('degree',tp1,'with angle','psi',sp1,'The maximum direct stress at P1 is ')\n",
+"sp2 = savg - R ; // Minimum direct stress in mohe circle (at point P2)\n",
+"tp2 = (f1+180)/2 ; // Inclination of plane of minimum direct stress\n",
+"disp('degree',tp2,'with angle','psi',sp2,'The maximum direct stress at P2 is ')\n",
+"// Part (c)\n",
+"tmax = R ; // Maximum shear stress in mohe circle\n",
+"ts1 = -(90 - f1)/2 // Inclination of plane of maximum shear stress\n",
+"disp('degree',ts1,'with plane incilation of','psi',tmax,'The Maximum shear stress is ')\n",
+"\n",
+"\n",
+"\n",
+""
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.6: Determination_of_stresses_acting_on_inclined_element_using_mohrs_circle.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"sx = -50e06; // Direct stress in x-direction in psi\n",
+"sy = 10e06; // Direct stress in y-direction ''\n",
+"txy = -40e06 ; // Shear stress in y-direction ''\n",
+"savg = (sx+sy)/2 ; // Average in-plane direct stress\n",
+"sx1 = -50e06; tx1y1 = -40e06; // Stress acting on face at theta = 0 degree\n",
+"sx1_ = 10e06; tx1y1_ = 40e06; // Stress acting on face at theta = 0 degree\n",
+"R = sqrt(((sx-sy)/2)^2+(txy)^2); // Radius of mohr circle\n",
+"// Part (a)\n",
+"t = 45 ; // Inclination of the plane in degree\n",
+"f1 = atand(40e06/30e06) // Angle between line CD and x1-axis\n",
+"f2 = 90 - f1 ; // Angle between line CA and x1-axis\n",
+"// Point D ; \n",
+"sx1 = savg - R*cosd(f2); // Direct stress at point D \n",
+"tx1y1 = R*sind(f2); // shear stress at point D\n",
+"disp('Pa',sx1,'The direct stres at point D')\n",
+"disp('Pa',tx1y1,'The shear stress at point D')\n",
+"// Point D' ; \n",
+"sx2 = savg + R*cosd(f2); // Direct stress at point D' \n",
+"tx2y2 = -R*sind(f2); // shear stress at point D'\n",
+"disp('Pa',sx2,'The direct stres at point D_desh')\n",
+"disp('Pa',tx2y2,'The shear stress at point D_desh')\n",
+"//Part (b)\n",
+"sp1 = savg + R ; // Maximum direct stress in mohe circle (at point P1)\n",
+"tp1 =(f1+180)/2 ; // Inclination of plane of maximum direct stress\n",
+"disp('degree',tp1,'with angle','Pa',sp1,'The maximum direct stress at P1 is ')\n",
+"sp2 = savg - R ; // Minimum direct stress in mohe circle (at point P2)\n",
+"tp2 = f1/2 ; // Inclination of plane of minimum direct stress\n",
+"disp('degree',tp2,'with angle','Pa',sp2,'The maximum direct stress at P2 is ')\n",
+"// Part (c)\n",
+"tmax = R ; // Maximum shear stress in mohe circle\n",
+"ts1 = (90 + f1)/2 ;// Inclination of plane of maximum shear stress\n",
+"disp('degree',ts1,'with plane incilation of','Pa',tmax,'The Maximum shear stress is ')\n",
+"\n",
+"\n",
+"\n",
+""
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.7: Determination_of_various_strain_on_inclined_element.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"ex = 340e-06; // Strain in x-direction\n",
+"ey = 110e-06; // Strain in y-direction\n",
+"txy = 180e-06 ; // shear strain\n",
+"// Part (a)\n",
+"t = 30 ; // Inclination of the element in degree\n",
+"ex1 = (ex+ey)/2 + ((ex-ey)/2)*cosd(2*t) + (txy/2)*(sind(2*t)); // Strain in x1 direction (located at 30 degree)\n",
+"tx1y1 = 2*( -((ex-ey)/2)*sind(2*t) + (txy/2)*(cosd(2*t)) ); // Shear starin\n",
+"ey1 = ex+ey-ex1 ; // Strain in y1 direction (located at 30 degree)\n",
+"disp(ex1,' Strain in x1 direction (located at 30 degree) is')\n",
+"disp(tx1y1,'shear strain is')\n",
+"disp(ey1,' Strain in y1 direction (located at 30 degree) is')\n",
+"// Part (b)\n",
+"e1 = (ex+ey)/2 + sqrt(((ex-ey)/2)^2 + (txy/2)^2); // Principle stress\n",
+"e2 = (ex+ey)/2 - sqrt(((ex-ey)/2)^2 + (txy/2)^2); // Principle stress\n",
+"tp1 = (0.5)*atand(txy/(ex-ey)); // Angle to principle stress direction\n",
+"tp2 = 90 + tp1 ; // Angle to principle stress direction\n",
+"e1 = (ex+ey)/2 + ((ex-ey)/2)*cosd(2*tp1) + (txy/2)*(sind(2*tp1)); // Principle stress via another method\n",
+"e2 = (ex+ey)/2 + ((ex-ey)/2)*cosd(2*tp2) + (txy/2)*(sind(2*tp2)); // Principle stress via another method\n",
+"disp('degree',tp1,'with angle',e1,'The Principle stress is ')\n",
+"disp('degree',tp2,'with angle',e2,'The Principle stress is ')\n",
+"// Part (c)\n",
+"tmax = 2*sqrt(((ex-ey)/2)^2 + (txy/2)^2); // Maxmum shear strain\n",
+"ts = tp1 + 45 ; // Orientation of element having maximum shear stress \n",
+"tx1y1_ = 2*( -((ex-ey)/2)*sind(2*ts) + (txy/2)*(cosd(2*ts)) ); // Shear starin assosiated with ts direction\n",
+"disp('degree',ts,'with angle',tx1y1_,'The Maximum shear strain is ')\n",
+"eavg = (e1+e2)/2 ; // Average atrain\n",
+"disp(eavg,'The average strain is')"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Mechanics_Of_Material_by_J_M_Gere/8-Applications_of_Plane_Stress_Pressure_Vessels_Beams_and_Combined_Loadings.ipynb b/Mechanics_Of_Material_by_J_M_Gere/8-Applications_of_Plane_Stress_Pressure_Vessels_Beams_and_Combined_Loadings.ipynb
new file mode 100644
index 0000000..2c237cb
--- /dev/null
+++ b/Mechanics_Of_Material_by_J_M_Gere/8-Applications_of_Plane_Stress_Pressure_Vessels_Beams_and_Combined_Loadings.ipynb
@@ -0,0 +1,352 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 8: Applications of Plane Stress Pressure Vessels Beams and Combined Loadings"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.1: Calculation_of_maximum_permissible_pressure_under_various_conditions.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"d = 18 ; // inner idameter of the hemisphere in inch\n",
+"t = 1/4 ; // thickness of the hemisphere in inch\n",
+"// Part (a)\n",
+"sa = 14000 ; // Allowable tensile stress in Psi\n",
+"Pa = (2*t*sa)/(d/2); // Maximum permissible air pressure in Psi\n",
+"disp('psi',Pa,' Maximum permissible air pressure in the tank (Part(a)) is')\n",
+"// Part (b)\n",
+"sb = 6000 ; // Allowable shear stress in Psi\n",
+"Pb = (4*t*sb)/(d/2) ; // Maximum permissible air pressure in Psi\n",
+"disp('psi',Pb,' Maximum permissible air pressure in the tank (Part(b)) is')\n",
+"// Part (c)\n",
+"e = 0.0003 ; // Allowable Strain in Outer sufrface of the hemisphere\n",
+"E = 29e06 ; // Modulus of epasticity of the steel in Psi\n",
+"v = 0.28 ; // Poissions's ratio of the steel\n",
+"Pc = (2*t*E*e)/((d/2)*(1-v)) ; // Maximum permissible air pressure in Psi\n",
+"disp('psi',Pc,' Maximum permissible air pressure in the tank (Part(c)) is')\n",
+"// Part (d)\n",
+"Tf = 8100 ; // failure tensile load in lb/in \n",
+"n = 2.5 ; // Required factor of safetty against failure of the weld\n",
+"Ta = Tf / n ; // Allowable load in ld/in \n",
+"sd = (Ta*(1))/(t*(1)); // Allowable tensile stress in Psi\n",
+"Pd = (2*t*sd)/(d/2); // Maximum permissible air pressure in Psi\n",
+"disp('psi',Pd,' Maximum permissible air pressure in the tank (Part(d)) is')\n",
+"// Part (e)\n",
+"Pallow = Pb ; // Because Shear stress in the wall governs allowable pressure inside the tank\n",
+"disp('Because Shear stress in the wall governs allowable pressure inside the tank','psi',Pallow,' Maximum permissible air pressure in the tank (Part(e)) is')\n",
+""
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.2: Calculation_of_various_stresses_and_strain_in_cylindrical_part_of_the_vessel.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"a = 55 ; // Angle made by helix with longitudinal axis in degree\n",
+"r = 1.8 ; // Inner radius of vessel in m\n",
+"t = 0.02 ; // thickness of vessel in m\n",
+"E = 200e09 ; // Modulus of ealsticity of steel in Pa\n",
+"v = 0.3 ; // Poission's ratio of steel \n",
+"P = 800e03 ; // Pressure inside the tank in Pa\n",
+"// Part (a)\n",
+"s1 = (P*r)/t ; // Circumferential stress in Pa\n",
+"s2 = (P*r)/(2*t) ; // Longitudinal stress in Pa\n",
+"// Part (b)\n",
+"t_max_z = (s1-s2)/2 ; // Maximum inplane shear stress in Pa\n",
+"t_max = s1/2 ; // Maximum out of plane shear stress in Pa\n",
+"// Part (c)\n",
+"e1 = (s1/(2*E))*(2-v) ; // Strain in circumferential direction \n",
+"e2 = (s2/E)*(1-(2*v)); // Strain in longitudinal direction\n",
+"// Part (d)\n",
+"// x1 is the direction along the helix\n",
+"theta = 90 - a ; \n",
+"sx1 = ((P*r)/(4*t))*(3-cosd(2*theta)); // Stress along x1 direction\n",
+"tx1y1 = ((P*r)/(4*t))*(sind(2*theta)); // Shear stress in x1y1 plane\n",
+"sy1 = s1+s2-sx1 ; // Stress along y1 direction \n",
+"// Mohr Circle Method\n",
+"savg = (s1+s2)/2 ; // Average stress in Pa\n",
+"R = (s1 - s2 )/2 ; // Radius of Mohr's Circle in Pa\n",
+"sx1_ = savg - R*cosd(2*theta) ; // Stress along x1 direction\n",
+"tx1y1_ = R*sind(2*theta); // Shear stress in x1y1 plane\n",
+" \n",
+"\n",
+"\n",
+""
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.3: EX8_3.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"L = 6 ; // Span of the beam in ft\n",
+"P = 10800 ; // Pressure acting in lb\n",
+"c = 2 ; // in ft\n",
+"b = 2; // Width of cross section of the beam in inch\n",
+"h = 6; // Height of the cross section of the beam in inch\n",
+"x = 9 ; // in inch\n",
+"Ra = P/3 ; // Reaction at point at A\n",
+"V = Ra ; // Shear force at section mn \n",
+"M = Ra*x ; // Bending moment at the section mn\n",
+"I = (b*h^3)/12 // Moment of inertia in in4\n",
+"y = -3:0.1:3 ; // Variation along height\n",
+"sx = -(M/I)*y; // Normal stress on crossection mn\n",
+"Q = (b*(h/2-y)).*(y+((((h/2)-y)/2))) ; // First moment of rectangular cross section\n",
+"txy = (V*Q)/(I*b);// Shear stress acting on x face of the stress element\n",
+"s1 = (sx/2)+sqrt((sx/2).^2+(txy).^2) ; // Principal Tesile stress on the cross section\n",
+"s2 = (sx/2)-sqrt((sx/2).^2+(txy).^2) ; // Principal Compressive stress on the cross section\n",
+"tmax = sqrt((sx/2).^2+(txy).^2); // Maximum shear stress on the cross section\n",
+"plot(sx,y,'o')\n",
+"plot(txy,y,'+')\n",
+"plot(s1,y,'--')\n",
+"plot(s2,y,'<')\n",
+"plot(tmax,y)\n",
+"disp('psi',s1,'Principal Tesile stress on the cross section')\n",
+"disp('psi',s2,' Principal Compressive stress on the cross section')\n",
+"// Conclusions \n",
+"s1_max = 14400 ; // Maximum tensile stress in Psi\n",
+"txy_max = 900 ; // Maximum shear stress in Psi\n",
+"t_max = 14400/2 ; // Largest shear stress at 45 degree plane"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.4: Determination_of_stresses_in_the_shaft.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"d = 0.05 ; // Diameter of shaft in m\n",
+"T = 2400 ; // Torque transmitted by the shaft in N-m\n",
+"P = 125000; // Tensile force\n",
+"s0 = (4*P)/(%pi*d^2) // Tensile stress in\n",
+"t0 = (16*T)/(%pi*d^3) // Shear force \n",
+"// Stresses along x and y direction\n",
+"sx = 0 ;\n",
+"sy = s0; \n",
+"txy = -t0 ; \n",
+"s1 = (sx+sy)/2 + sqrt(((sx-sy)/2)^2 + (txy)^2) ; // Maximum tensile stress \n",
+"s2 = (sx+sy)/2 - sqrt(((sx-sy)/2)^2 + (txy)^2) ; // Maximum compressive stress \n",
+"tmax = sqrt(((sx-sy)/2)^2 + (txy)^2) ; // Maximum in plane shear stress \n",
+"disp('Pa',s1,'Maximum tensile stress')\n",
+"disp('Pa',s2,'Maximum compressive stress')\n",
+"disp('Pa',tmax,'Maximum in plane shear stress')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.5: Determination_of_the_maximum_allowable_internal_pressure.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"P = 12 ; // Axial load in K\n",
+"r = 2.1 ; // Inner radius of the cylinder in inch\n",
+"t = 0.15 ; // Thickness of the cylinder in inch\n",
+"ta = 6500 ; // Allowable shear stress in Psi\n",
+"// From in plane sg=hear stress\n",
+"p1 = (ta - 3032)/3.5 ; // allowable internal pressure\n",
+"// Above equation comes from solving the following equation\n",
+"// sx = (p*r)/(2*t) - (P)/(2*%pi*r*t) ;\n",
+"// sy = (p*r)/t ;\n",
+"// s1 = sy\n",
+"// s2 = sx \n",
+"// ta = (s1-s2)/2\n",
+"\n",
+"// From out of the plane shear stress\n",
+"// ta = s1/2\n",
+"p2 = (ta + 3032)/3.5 ; // allowable internal pressure\n",
+"// ta = s2/2\n",
+"p3 = 6500/7 ; // allowable internal pressure\n",
+"\n",
+"p_allow = min(p1,p2,p3); // Minimum pressure would govern the design\n",
+"disp('Becausem inimum pressure would govern the design','psi',p_allow,'Maximum allowable internal pressure ')\n",
+"\n",
+""
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.6: Determination_of_stresses_due_to_wind_pressure.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"d1 = 0.18 ; // Inner diameter of circular pole in m\n",
+"d2 = 0.22 ; // Outer diameter of circular pole in m\n",
+"P = 2000; // Pressure of wind in Pa\n",
+"b = 1.5 ; // Distance between centre line of pole and board in m\n",
+"h = 6.6 ; // Distance between centre line of board and bottom of the ploe in m\n",
+"W = P*(2*1.2) ; // Force at the midpoint of sign \n",
+"V = W ; // Load\n",
+"T = W*b ; // Torque acting on the pole\n",
+"M = W*h ; // Moment at the bottom of the pole\n",
+"I = (%pi/64)*(d2^4-d1^4) ; // Momet of inertia of cross section of the pole\n",
+"sa = (M*d2)/(2*I); // Tensile stress at A \n",
+"Ip = (%pi/32)*(d2^4-d1^4) ; // Polar momet of inertia of cross section of the pole\n",
+"t1 = (T*d2)/(2*Ip); // Shear stress at A and B\n",
+"r1 = d1/2 ; // Inner radius of circular pole in m\n",
+"r2 = d2/2 ; // Outer radius of circular pole in m\n",
+"A = %pi*(r2^2-r1^2); // Area of the cross section\n",
+"t2 = ((4*V)/(3*A))*((r2^2 + r1*r2 +r1^2)/(r2^2+r1^2)) ; // Shear stress at point B \n",
+"// Principle stresses \n",
+"sxa = 0 ; sya = sa ; txya = t1;\n",
+"sxb = 0 ; syb = 0 ; txyb = t1+t2 ;\n",
+"// Stresses at A\n",
+"s1a = (sxa+sya)/2 + sqrt(((sxa-sya)/2)^2 + (txya)^2); // Maximum tensile stress \n",
+"s2a = (sxa+sya)/2 - sqrt(((sxa-sya)/2)^2 + (txya)^2) ; // Maximum compressive stress \n",
+"tmaxa = sqrt(((sxa-sya)/2)^2 + (txya)^2); // Maximum in plane shear stress\n",
+"disp('Pa',s1a,'Maximum tensile stress at point A is')\n",
+"disp('Pa',s2a,'Maximum compressive stress at point A is')\n",
+"disp('Pa',tmaxa,'Maximum in plane shear stress at point A is')\n",
+"// Stress at B \n",
+"s1b = (sxb+syb)/2 + sqrt(((sxb-syb)/2)^2 + (txyb)^2); // Maximum tensile stress \n",
+"s2b = (sxb+syb)/2 - sqrt(((sxb-syb)/2)^2 + (txyb)^2) ; // Maximum compressive stress \n",
+"tmaxb = sqrt(((sxb-syb)/2)^2 + (txyb)^2); // Maximum in plane shear stress \n",
+"disp('Pa',s1b,'Maximum tensile stress at point B is')\n",
+"disp('Pa',s2b,'Maximum compressive stress at point B is')\n",
+"disp('Pa',tmaxb,'Maximum in plane shear stress at point B is')\n",
+"\n",
+""
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.7: Determination_of_stresses_due_to_loads.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"b = 6 ; // Outer dimension of the pole in inch\n",
+"t = 0.5 ; // thickness of the pole\n",
+"P1 = 20*(6.75*24); // Load acting at the midpoint of the platform\n",
+"d = 9 ; // Distance between longitudinal axis of the post and midpoint of platform\n",
+"P2 = 800; // Load in lb\n",
+"h = 52 ; // Distance between base and point of action of P2\n",
+"M1 = P1*d; // Moment due to P1\n",
+"M2 = P2*h; // Moment due to P2\n",
+"A = b^2 - (b-2*t)^2; // Area of the cross section\n",
+"sp1 = P1/A ; // Comoressive stress due to P1 at A and B\n",
+"I = (1/12)*(b^4 - (b-2*t)^4); // Moment of inertia of the cross section\n",
+"sm1 = (M1*b)/(2*I);// Comoressive stress due to M1 at A and B\n",
+"Aweb = (2*t)*(b-(2*t)); // Area of the web\n",
+"tp2 = P2/Aweb ; // Shear stress at point B by lpad P2\n",
+"sm2 = (M2*b)/(2*I);// Comoressive stress due to M2 at A \n",
+"sa = sp1+sm1+sm2 ; // Total Compressive stress at point A\n",
+"sb = sp1+sm1; // Total compressive at point B \n",
+"tb = tp2; // Shear stress at point B\n",
+"// Principle stresses \n",
+"sxa = 0 ; sya = -sa ; txya = 0;\n",
+"sxb = 0 ; syb = -sb ; txyb = tp2 ;\n",
+"// Stresses at A\n",
+"s1a = (sxa+sya)/2 + sqrt(((sxa-sya)/2)^2 + (txya)^2); // Maximum tensile stress \n",
+"s2a = (sxa+sya)/2 - sqrt(((sxa-sya)/2)^2 + (txya)^2); // Maximum compressive stress \n",
+"tmaxa = sqrt(((sxa-sya)/2)^2 + (txya)^2); // Maximum in plane shear stress\n",
+"disp('Psi',s1a,'Maximum tensile stress at point A is')\n",
+"disp('Psi',s2a,'Maximum compressive stress at point A is')\n",
+"disp('Psi',tmaxa,'Maximum in plane shear stress at point A is')\n",
+"// Stress at B \n",
+"s1b = (sxb+syb)/2 + sqrt(((sxb-syb)/2)^2 + (txyb)^2); // Maximum tensile stress \n",
+"s2b = (sxb+syb)/2 - sqrt(((sxb-syb)/2)^2 + (txyb)^2); // Maximum compressive stress \n",
+"tmaxb = sqrt(((sxb-syb)/2)^2 + (txyb)^2); // Maximum in plane shear stress\n",
+"disp('Psi',s1b,'Maximum tensile stress at point B is')\n",
+"disp('Psi',s2b,'Maximum compressive stress at point B is')\n",
+"disp('Psi',tmaxb,'Maximum in plane shear stress at point B is') \n",
+""
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}