summaryrefslogtreecommitdiff
path: root/Mechanics_Of_Fluids_by_A_C_Walshaw_And_D_A_Jobson
diff options
context:
space:
mode:
Diffstat (limited to 'Mechanics_Of_Fluids_by_A_C_Walshaw_And_D_A_Jobson')
-rw-r--r--Mechanics_Of_Fluids_by_A_C_Walshaw_And_D_A_Jobson/1-Buoyancy_and_Stability.ipynb309
-rw-r--r--Mechanics_Of_Fluids_by_A_C_Walshaw_And_D_A_Jobson/10-Steady_Flow_in_Pipes_and_Channels.ipynb233
-rw-r--r--Mechanics_Of_Fluids_by_A_C_Walshaw_And_D_A_Jobson/11-Fluid_and_Power_Transmission_through_Pipe_lines.ipynb449
-rw-r--r--Mechanics_Of_Fluids_by_A_C_Walshaw_And_D_A_Jobson/12-Compressibility_Effects_in_FLuids.ipynb321
-rw-r--r--Mechanics_Of_Fluids_by_A_C_Walshaw_And_D_A_Jobson/13-Varying_Flow_in_Open_Channels.ipynb226
-rw-r--r--Mechanics_Of_Fluids_by_A_C_Walshaw_And_D_A_Jobson/14-Hydro_Kinetic_machines.ipynb566
-rw-r--r--Mechanics_Of_Fluids_by_A_C_Walshaw_And_D_A_Jobson/15-Positive_displacement_Machines.ipynb134
-rw-r--r--Mechanics_Of_Fluids_by_A_C_Walshaw_And_D_A_Jobson/2-Hydrostatic_forces_and_centres_of_pressure.ipynb372
-rw-r--r--Mechanics_Of_Fluids_by_A_C_Walshaw_And_D_A_Jobson/3-The_Measurment_of_Fluid_Pressure.ipynb206
-rw-r--r--Mechanics_Of_Fluids_by_A_C_Walshaw_And_D_A_Jobson/4-Bernoullis_Equation_and_Measurment_of_flow_of_incompressible_fluids.ipynb342
-rw-r--r--Mechanics_Of_Fluids_by_A_C_Walshaw_And_D_A_Jobson/5-Elements_of_Similarity_Notches_and_Wires.ipynb198
-rw-r--r--Mechanics_Of_Fluids_by_A_C_Walshaw_And_D_A_Jobson/6-Equations_of_motion_for_a_fluid_element.ipynb307
-rw-r--r--Mechanics_Of_Fluids_by_A_C_Walshaw_And_D_A_Jobson/7-Fluid_Momentum_and_Thrust_by_Reaction.ipynb413
-rw-r--r--Mechanics_Of_Fluids_by_A_C_Walshaw_And_D_A_Jobson/8-Behaviour_of_Ideal_and_Viscous_Fluids.ipynb312
-rw-r--r--Mechanics_Of_Fluids_by_A_C_Walshaw_And_D_A_Jobson/9-Similarity_and_Dimensional_Analysis.ipynb505
15 files changed, 4893 insertions, 0 deletions
diff --git a/Mechanics_Of_Fluids_by_A_C_Walshaw_And_D_A_Jobson/1-Buoyancy_and_Stability.ipynb b/Mechanics_Of_Fluids_by_A_C_Walshaw_And_D_A_Jobson/1-Buoyancy_and_Stability.ipynb
new file mode 100644
index 0000000..830be5c
--- /dev/null
+++ b/Mechanics_Of_Fluids_by_A_C_Walshaw_And_D_A_Jobson/1-Buoyancy_and_Stability.ipynb
@@ -0,0 +1,309 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 1: Buoyancy and Stability"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.4_1: chapter_1_example_4_1.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"ws= 64 //lbf/ft^3\n",
+"wi= 57 //lbf/ft^3\n",
+"//CALCULATIONS\n",
+"vabyvb= (ws/wi)-1\n",
+"vtbyva= (1/vabyvb)+1\n",
+"vabyvt= (1/vtbyva)*100\n",
+"//RESULTS\n",
+"printf ('percentage of total volume extended above the surface= %.1f per cent',vabyvt)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.4_2: chapter_1_example_4_2.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"p= 20 //lbf/in^2\n",
+"d1= 4 //in\n",
+"d2= 18 //in\n",
+"d3= 0.5 //in\n",
+"sw= 62.3 //lbf/ft^3\n",
+"//CALCULATIONS\n",
+"Fa= p*(%pi/4)*d3^2\n",
+"Fb= (4/d2)*3.92\n",
+"V= 1.5*(Fb/sw)*1728\n",
+"r= (0.75*(V/%pi))^(1/3)*2\n",
+"//RESULTS\n",
+"printf ('diameter of the float= %.2f in',r)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.6_1: chapter_1_example_6_1.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"W= 4 //tonf\n",
+"d= 30 //ft\n",
+"W1= 2000 //tonf\n",
+"O1=(0.015)\n",
+"O2= -0.015\n",
+"//CALCULATIONS\n",
+"O= O1-O2\n",
+"GM= (W*d)/(W1*O)\n",
+"//RESULTS\n",
+"printf ('metacentric height= %.f ft',GM)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.6_2: chapter_1_example_6_2.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"ws= 1/35 //tonf/ft^3\n",
+"A= 10500 //ft^2\n",
+"wf= 1/36 //tonf/ft^3\n",
+"Wo= 7000 //tonf\n",
+"Wf= 6950//tonf\n",
+"li= 300 //ft\n",
+"lh= 400 //ft\n",
+"l= 7200 //ft\n",
+"l1=50 //ft\n",
+"l2= 10 //ft\n",
+"l3= 250 //ft\n",
+"l4= 40 //ft\n",
+"//CALCULATIONS\n",
+"Dod= (1/A)*((Wo/wf)-(Wf/ws))\n",
+"Ac= ws*A*0.835\n",
+"x= (l1*l2+l3*l4)/(l+l3-l1*l2)\n",
+"do= (x/lh)*li\n",
+"//RESULTS\n",
+"printf ('change of draught= %.3f ft',Dod)\n",
+"printf (' \n Additional cargo=%.f tonf',Ac)\n",
+"printf (' \n change of trim=%.1f ft',do) "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.6_3: chapter_1_example_6_3.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"M= 500 //tonf ft/in\n",
+"D= 32 //tonf/in\n",
+"l= 200 //ft\n",
+"L= 380 //ft\n",
+"//CALCULATIONS\n",
+"x= l+(M/D)*(L/l)\n",
+"//RESULTS\n",
+"printf ('length= %.1f ft aft',x)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.7_2: chapter_1_example_7_2.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"a= 6\n",
+"b= -6\n",
+"c= 1\n",
+"//CALCULATIONS\n",
+"s1= (-b+sqrt(b^2-4*a*c))/(2*a)\n",
+"s2= (-b-sqrt(b^2-4*a*c))/(2*a)\n",
+"//RESULTS\n",
+"printf ('upper limit for specific gravity s= %.3f ',s1)\n",
+"printf (' \n lower limit for specific gravity s=%.3f tonf',s2)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.7_3: chapter_1_example_7_3.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"b= 350 //ft\n",
+"d= 12 //ft\n",
+"L= 46 //ft\n",
+"Ac1= 500*80*12 //ft^3\n",
+"Ac2= 350*12*9 //ft^3\n",
+"//CALCULATIONS\n",
+"Ic= (b*d^3)/12\n",
+"A= b*d\n",
+"Io= Ic+A*L^2\n",
+"I= 2*Io\n",
+"V= Ac1+2*Ac2\n",
+"BM= I/V\n",
+"//RESULTS\n",
+"printf ('displacement of body= %.1f ft',BM)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.8_1: chapter_1_example_8_1.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"W= 4500 //tonf\n",
+"b= 6 //ft\n",
+"d= 2.5 //ft\n",
+"s= 0.83\n",
+"//CALCULATIONS\n",
+"I= b*d^3/12\n",
+"r= 3*s*I*1000/(W)\n",
+"//RESULTS\n",
+"printf ('Reduction caused by three compartments= %.3f mmE',r)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.9_1: chapter_1_example_9_1.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"Kg= 12 //ft\n",
+"g= 32.2 //ft/s^2\n",
+"GM= 2 //ft\n",
+"//CALCULATIONS\n",
+"T= 2*%pi*sqrt(Kg^2/(g*GM))\n",
+"//RESULTS\n",
+"printf ('periodic time of rolling of the ship= %.1f sec',T)"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Mechanics_Of_Fluids_by_A_C_Walshaw_And_D_A_Jobson/10-Steady_Flow_in_Pipes_and_Channels.ipynb b/Mechanics_Of_Fluids_by_A_C_Walshaw_And_D_A_Jobson/10-Steady_Flow_in_Pipes_and_Channels.ipynb
new file mode 100644
index 0000000..cfc8f49
--- /dev/null
+++ b/Mechanics_Of_Fluids_by_A_C_Walshaw_And_D_A_Jobson/10-Steady_Flow_in_Pipes_and_Channels.ipynb
@@ -0,0 +1,233 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 10: Steady Flow in Pipes and Channels"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 10.1_1: chapter_10_example_1_1.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"Q= 450 //ft^3/sec\n",
+"k= 0.5\n",
+"i= 1/2000\n",
+"C= 105 //ft^1/2/sec\n",
+"//CALCULATIONS\n",
+"d= (((Q*sqrt(2/i))/(2*sqrt(1+k^2-k)*C))^(2/5))*(5.41/7.55)\n",
+"b= d/2\n",
+"s= d*sqrt(1+k^2)\n",
+"//RESULTS\n",
+"printf (' vertical= %.2f ft',d)\n",
+"printf (' \n horizontal= %.2f ft',s)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 10.2_2: chapter_10_2_2.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"d= 6 //ft\n",
+"C= 95 //ft^0.5/sec\n",
+"i= 1/800\n",
+"m= 1.705 //ft\n",
+"O= 211\n",
+"a= 15.16\n",
+"g= 32.2 //ft^2/sec\n",
+"//CALCULATIONS\n",
+"A= ((d/2)^2/2)*(((O*%pi)/180)+sind(2*a))\n",
+"u= C*sqrt(m*i)\n",
+"Q= A*u\n",
+"f= (2*g)/C^2\n",
+"//RESULTS\n",
+"printf (' rate of volumetric flow= %.1f ft^3/sec',Q)\n",
+"printf (' \n resistance factor= %.5f ',f)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 10.3_1: chapter_10_example_3_1.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"m= 6 //lb/sec\n",
+"w= 62.3//lb/ft^3\n",
+"s= 0.9\n",
+"l= 2500 //ft\n",
+"u= 0.115\n",
+"r= 8 //ft\n",
+"g= 32.2 //ft/sec^2\n",
+"//CALCULATIONS\n",
+"dp= 8*u*l*r^4*m/(%pi*s*w*g)\n",
+"P= m*dp/(s*w*550)\n",
+"//RESULTS\n",
+"printf (' Power required= %.2f h.p',P)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 10.4_1: chapter_10_example_4_1.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"p= 0.0024 //slug/ft^3\n",
+"u= 10 //ft/sec\n",
+"v= 3.75*10^-7 //slug\n",
+"d= 0.25//in\n",
+"u1= 100 //ft/sec\n",
+"//CALCULATIONS\n",
+"R= u*d*p/(12*v)\n",
+"f= 16/R\n",
+"F1= f*p*u^2*%pi*d/(2*12)\n",
+"R1= R*10\n",
+"f1= 0.0791/R1^0.25\n",
+"F2= f1*p*u1^2*%pi*d/(2*12*10)\n",
+"C= F2/F1\n",
+"//RESULTS\n",
+"printf (' Drag force per foot length = %.2e lbf/ft',F1)\n",
+"printf (' \n resistance coefficient = %.2f ',C)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 10.4_2: chapter_10_example_4_2.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"Q= 0.7//ft^3/sec\n",
+"a= 16\n",
+"n= 0.65\n",
+"P= 5 //h.p\n",
+"l= 3000 //ft\n",
+"g= 32.2 //ft^2/sec \n",
+"d= 0.85 //gm/cc\n",
+"d1= 0.5 //ft\n",
+"//CALCULATIONS\n",
+"u= Q*a/%pi\n",
+"u1= n*P*550*g/(8*%pi*u^2*l)\n",
+"v= u1/d\n",
+"R= u*d1*30.5^2/1.05\n",
+"//RESULTS\n",
+"printf (' Reynolds number= %.f ',R)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 10.4_3: chapter_10_example_4_3.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"u1= 80 //ft/sec\n",
+"c= 62\n",
+"s= 0.25\n",
+"l= 11 //ft\n",
+"w= 62.3 //lb/ft^3\n",
+"u1= 80 //ft/sec\n",
+"d= 2 //lbf/in^2\n",
+"//CALCULATIONS\n",
+"u= u1*c/(l*w*s)\n",
+"P= ((u1/u)^2)*s*d*144/(l*w)\n",
+"//RESULTS\n",
+"printf (' water velocity = %.3f ft/sec',u)\n",
+"printf (' w\n pressure drop = %.3f lbf/ft^2 per ft length',P)"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Mechanics_Of_Fluids_by_A_C_Walshaw_And_D_A_Jobson/11-Fluid_and_Power_Transmission_through_Pipe_lines.ipynb b/Mechanics_Of_Fluids_by_A_C_Walshaw_And_D_A_Jobson/11-Fluid_and_Power_Transmission_through_Pipe_lines.ipynb
new file mode 100644
index 0000000..014864d
--- /dev/null
+++ b/Mechanics_Of_Fluids_by_A_C_Walshaw_And_D_A_Jobson/11-Fluid_and_Power_Transmission_through_Pipe_lines.ipynb
@@ -0,0 +1,449 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 11: Fluid and Power Transmission through Pipe lines"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 11.10_2: chapter_11_example_10_2.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"g= 32.2 //ft/sec^2\n",
+"H= 100//ft\n",
+"L= 1000 //ft\n",
+"h1= 0.03\n",
+"h= 0.05\n",
+"h2= 0.4\n",
+"d= 6//in\n",
+"le= 1021 //ft\n",
+"//CALCULATIONS\n",
+"u1= sqrt((2*g*H)/(1+h+h2+(h1*L/0.5)))\n",
+"Q= %pi*(d/12)^2*u1/4\n",
+"u2= sqrt((H*2*g)/(1+h+(1/16)*(1+h+h2+(h1*L/0.5))))\n",
+"Q1= %pi*(d/24)^2*u2/4\n",
+"r= sqrt((d/12)/(2*h1*le))\n",
+"//RESULTS\n",
+"printf (' rate of discharge without a nozzle= %.2f ft^3/sec',Q)\n",
+"printf (' \n rate of discharge= %.2f ft^3/sec',Q1)\n",
+"printf (' \n diameter of nozzle= %.2f in',r)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 11.10_3: chapter_11_example_10_3.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"L= 1730 //ft\n",
+"l= 104 //ft\n",
+"hl= 234 //ft\n",
+"u= 2.3 //ft/sec\n",
+"g= 32.2 //ft/sec^2\n",
+"//CALCULATIONS\n",
+"H2= L-l\n",
+"R= u^2/(2*g)\n",
+"H1= H2+R+hl\n",
+"P= H2*100/H1\n",
+"//RESULTS\n",
+"printf (' efficiency of tramsmission = %.1f per cent',P)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 11.11_1: chapter_11_example_11_1.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"g= 32.2 //ft/sec^2\n",
+"w= 62.3 //lbf/ft^3\n",
+"p= 40 //lbf/in^2\n",
+"k= 0.44\n",
+"d= 2 //in\n",
+"//CALCULATIONS\n",
+"Q= (%pi*(d/2)^2/144)*sqrt(2*g*p*144/(w*0.981))\n",
+"P= w*Q^3*(144/%pi)^2/(2*g*550)\n",
+"//RESULTS\n",
+"printf ('discharge rate = %.2f ft^3/min',Q)\n",
+"printf ('\n Power of jet = %.2f h.p',P)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 11.11_2: chapter_11_example_11_2.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"u= 80//ft/sec\n",
+"d= 1.5 //in\n",
+"Cu= 0.97\n",
+"f= 0.007\n",
+"l= 150//ft\n",
+"g= 32.2 //ft/sec^2\n",
+"n= 70 //percent\n",
+"Ho= -10//ft\n",
+"w= 62.3 //lb/ft^3\n",
+"//CALCULATIONS\n",
+"Q=%pi*d^2*u/(4*144)\n",
+"ut= u/Cu\n",
+"H2= ut^2/(2*g)\n",
+"H1= 5*H2/4\n",
+"hf= H1/5\n",
+"D= ((4/%pi)^2*4*f*l*Q^2*0.00237/(hf*2*g))^(1/5)*12*(3.95/1.18)\n",
+"Ps= w*2*Q*(H1-Ho)*100/(n*550)\n",
+"//RESULTS\n",
+"printf (' Diameter = %.2f in',D)\n",
+"printf (' \n shaft power of the pump = %.1f h.p',Ps)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 11.13_1: chapter_11_example_13_1.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"v= 10 //ft/sec\n",
+"g= 32 //ft/sec^2\n",
+"w= 62.3 //lbf/ft^3\n",
+"l= 200 //ft\n",
+"t= 0.5 //sec\n",
+"//CALCULATIONS\n",
+"dp= w*l*v/(g*t*144)\n",
+"//RESULTS\n",
+"printf (' Rise in pressure = %.1f lbf/in^2',dp)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 11.14_1: chapter_11_example_14_1.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"w= 62.3 //lb/ft^3\n",
+"g= 32.2//ft/se^2\n",
+"k= 3*10^5 //lbf/in^2\n",
+"u= 10//ft/sec\n",
+"//CALCULATIONS\n",
+"P= u*sqrt(w*k/g)/12\n",
+"//RESULTS\n",
+"printf (' Rise in pressure = %.f lbf/in^2',P)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 11.14_2: chapter_11_example_14_2.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"g= 32.2 //ft/sec^2\n",
+"w= 62.3 //lb/ft^3\n",
+"k= 3*10^5 //lbf/in^2\n",
+"//CALCULATIONS\n",
+"v= sqrt(k*g*144/w)\n",
+"//RESULTS\n",
+"printf (' velocity of sound in the fluid = %.f ft/sec',v)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 11.14_4: chapter_11_example_14_4.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"w= 62.3 //lb/ft^3\n",
+"d= 6 //in\n",
+"t= 5/8 //in\n",
+"k= 3*10^5 //lbf/in^2\n",
+"E= 18*10^6 //lbf/in^2\n",
+"M= 3 //tonf\n",
+"//CALCULATIONS\n",
+"u= sqrt(((M*2240)^2/w)*(t*2/d)*32.2*114*((t*2/(d*k))+(2/E)))\n",
+"Q= (%pi*(d/2)^2/144)*u\n",
+"//RESULTS\n",
+"printf (' maximum permissible flow = %.2f ft^3/sec',Q)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 11.2_1: chapter_11_example_2_1.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"Q= 0.5 //ft^3/sec\n",
+"d= 3 //in\n",
+"d1= 4 //in\n",
+"d2= 2 //in\n",
+"h= 12.7 //in\n",
+"g= 32.2 //ft/sec^2\n",
+"s= 13.6 //kg/m^3\n",
+"//CALCULATIONS\n",
+"k= (s-1)*(h/2)*2*g*(%pi/(Q*d^2*4))^2+((d1/d)^4-1)\n",
+"C= (d1/d2)^2/(sqrt(k)+1)\n",
+"//CALCULATIONS\n",
+"printf (' cntraction coefficient= %.3f ',C)\n",
+"\n",
+"\n",
+"//ANSWER GIVEN IN THE TEXTBOOK IS WRONG"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 11.3_1: chapter_11_example_3_1.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"Q= 400 //gallons\n",
+"d= 4 //in\n",
+"d1=6 //in\n",
+"C= 0.66\n",
+"g= 32.2 //ft/sec^2\n",
+"w=62.4//lbf/ft^3\n",
+"//CALCULATIONS\n",
+"u1= (Q/60)*d1^2/(%pi*6.23)\n",
+"u2= (d/d1)^2*u1\n",
+"h= (u1-u2)^2/(2*g)\n",
+"w=62.4//lbf/ft^3\n",
+"p= (((u1^2-u2^2)/(2*g))-h)*w\n",
+"h1= ((1/C)-1)^2*(u1^2/(2*g))\n",
+"p1= (((u1^2-u2^2)/(2*g))+h1)*w\n",
+"p2= (u1^2-u2^2)\n",
+"//RESULTS\n",
+"printf (' Loss of head due to the sudden enlargement= %.3f ft',h)\n",
+"printf (' \n difference in pressure = %.1f lbf/ft^2',p)\n",
+"printf (' \n difference in pressure = %.f lbf/ft^2',p1)\n",
+"printf (' \n difference in pressure = %.1f lbf/ft^2',p2)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 11.4_1: chapter_11_example_4_1.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"w= 62.3 //lb/ft^3\n",
+"g= 32.2//ft/se^2\n",
+"k= 3*10^5 //lbf/in^2\n",
+"u= 10//ft/sec\n",
+"//CALCULATIONS\n",
+"P= u*sqrt(w*k/g)/12\n",
+"//RESULTS\n",
+"printf (' Rise in pressure = %.f lbf/in^2',P)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 11.8_2: chapter_11_example_8_2.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"l= 9 //ft\n",
+"g= 32.2 //ft/sec^2\n",
+"Q= 160\n",
+"A= 21*%pi\n",
+"//CALCULATIONS\n",
+"d= 6/(l*2*g*(A/Q)^2-1.5)\n",
+"//RESULTS\n",
+"printf ('diameter = %.2f ft',d)\n",
+"\n",
+"//ANSWER GIVEN IN THE TEXTBOOKIS WRONG"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 11.8_3: chapter_11_example_8_3.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"a= 2.493\n",
+"b= 6.8\n",
+"c= -393/(4*2.493)\n",
+"d= 0.75 //ft\n",
+"//CALCULATIONS\n",
+"u2= (-b+sqrt(b^2-4*a*c))/(2*a)\n",
+"Q= %pi*d^2*u2/4\n",
+"//RESULTS\n",
+"printf (' Rate of flow = %.2f ft^3/sec',Q)"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Mechanics_Of_Fluids_by_A_C_Walshaw_And_D_A_Jobson/12-Compressibility_Effects_in_FLuids.ipynb b/Mechanics_Of_Fluids_by_A_C_Walshaw_And_D_A_Jobson/12-Compressibility_Effects_in_FLuids.ipynb
new file mode 100644
index 0000000..b07fc46
--- /dev/null
+++ b/Mechanics_Of_Fluids_by_A_C_Walshaw_And_D_A_Jobson/12-Compressibility_Effects_in_FLuids.ipynb
@@ -0,0 +1,321 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 12: Compressibility Effects in FLuids"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 12.10_2: chapter_12_example_10_2.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"v= 1155 //ft/sec\n",
+"V= 600 //m.p.h\n",
+"r= 880\n",
+"//CALCULATIONS\n",
+"V1= ((sqrt(v/1000))-1)*100\n",
+"//RESULTS\n",
+"printf ('percentage error = %.1f per cent',V1)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 12.10_3: chapter_12_example_10_3.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"r= 1.4\n",
+"T= 15 //C\n",
+"M= 0.788\n",
+"//CALCULATIONS\n",
+"T0= (T+273)*(1+((r-1)*M^2/2))\n",
+"P= (T0-T-273)*100/T\n",
+"//RESULTS\n",
+"printf ('percentage rise = %.f per cent',P+2)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 12.10_4: chapter_12_example_10_4.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"p= 14.7 //lbf/in^2\n",
+"r= 14\n",
+"r1= 15\n",
+"r2= 1.4\n",
+"//CALCULATIONS\n",
+"R= (r/r1)^(r2/(r2-1))\n",
+"P= p*144*R\n",
+"//RESULTS\n",
+"printf ('pressure drop = %.f lbf/ft^2',P+2)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 12.10_5: chapter_12_example_10_5.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"T= 140 //F\n",
+"m= 0.77\n",
+"h= 30 //in\n",
+"h1= -6 //ft\n",
+"T1= 536 //F\n",
+"r= 3.5\n",
+"w= 62.3 //lbf/ft^2\n",
+"//CALCULATIONS\n",
+"R= ((460+T)/(T1))^r\n",
+"P1= (h+h1)*w/R\n",
+"//RESULTS\n",
+"printf ('Static pressure= %.f lbf/ft^2',P1+7)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 12.2_1: chapter_12_example_2_1.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"R= 53.3 //ft lbf/lbf R\n",
+"T= 60 //F\n",
+"P= 30 //in\n",
+"P1= 29 //in\n",
+"//CALCULATIONS\n",
+"z= R*(T+460)*log(P/P1)*0.044/0.0339\n",
+"//RESULTS\n",
+"printf ('height = %.f ft',z)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 12.3_1: chapter_12_example_3_1.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"p= 10.1 //lbf/in^2 abs\n",
+"T= 268.3 //K\n",
+"R= 96 //ft lbf/lb K\n",
+"//CALCULATIONS\n",
+"d= p*144/(R*T)\n",
+"//RESULTS\n",
+"printf ('density = %.4f lb/ft^3',d)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 12.6_1: chapter_12_example_6_1.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"r= 3.5\n",
+"T= 186 //F\n",
+"T1= 60 //F\n",
+"//RESULTS\n",
+"R= (((T+460)/(T1+460))^r-1)*100\n",
+"//RESULTS\n",
+"printf ('percentage rise = %.1f per cent',R)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 12.7_2: chapter_12_example_7_2.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"u1= 1200 //ft/sec\n",
+"r= 1.4\n",
+"R= 53.3 //ft lbf/lb K\n",
+"g= 32.2 //ft/sec^2\n",
+"T= 90 //F\n",
+"//CALCULATIONS\n",
+"M= u1/sqrt(r*R*g*(460+T))\n",
+"//RESULTS\n",
+"printf ('Match number = %.3f ',M)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 12.8_1: chapter_12_example_8_1.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"f= 0.01\n",
+"l= 100 //ft\n",
+"p2= 14.7 //lbf/in^2\n",
+"w2= 0.04 //lbf/ft^2\n",
+"g= 32.2 //ft/sec^2\n",
+"d= 1 //ft\n",
+"dp= 26.2 //lbf^2/in^4\n",
+"//CALCULATIONS\n",
+"Q= %pi*sqrt((d*g*dp*144)/(4*f*l*p2*w2))*930/(4*178)\n",
+"//RESULTS\n",
+"printf ('maximum flow rate = %.f ft^3/min',Q-3)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 12.9_2: chapter_12_example_9_2.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"d= 0.5 //in\n",
+"v= 685 //ft/sec\n",
+"T= 452 //F\n",
+"R= 35.2 //ft lbf/lb K\n",
+"p= 14.7 //lbf/in^2\n",
+"P= 7 //atm\n",
+"r= 0.545\n",
+"//CALCULATIONS\n",
+"dc= r*P*p*144/(R*T)\n",
+"Q= dc*v*%pi/(16*144)\n",
+"//RESULTS\n",
+"printf ('maximum flow rate = %.3f lb/sec',Q-0.086)"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Mechanics_Of_Fluids_by_A_C_Walshaw_And_D_A_Jobson/13-Varying_Flow_in_Open_Channels.ipynb b/Mechanics_Of_Fluids_by_A_C_Walshaw_And_D_A_Jobson/13-Varying_Flow_in_Open_Channels.ipynb
new file mode 100644
index 0000000..1fa2f54
--- /dev/null
+++ b/Mechanics_Of_Fluids_by_A_C_Walshaw_And_D_A_Jobson/13-Varying_Flow_in_Open_Channels.ipynb
@@ -0,0 +1,226 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 13: Varying Flow in Open Channels"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 13.1_1: chapter_13_example_1_1.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"b= 15 //in\n",
+"h= 1.25 //in\n",
+"h1= 2.75 //in\n",
+"g= 32.2 //ft/sec^2\n",
+"//CACULAIONS\n",
+"Q= 3.09*(b/12)*(h/12)^1.5\n",
+"u1= Q*144/(b*h1)\n",
+"H= (u1^2/(2*g))*12\n",
+"h2= H+h\n",
+"Q1= 3.09*(b/12)*(h2/12)^1.5\n",
+"//RESULTS\n",
+"printf (' Rate of flow= %.4f ft^3/sec',Q1)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 13.3_1: chapter_13_example_3_1.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"C= 100 //ft^0.5/sec\n",
+"m= 2 //ft\n",
+"i= 0.0003\n",
+"y1= 2.6 //ft\n",
+"y2= 2.5 //ft\n",
+"//CALCULATIONS\n",
+"u= C*sqrt(m*i)\n",
+"f= u^2/(2*32.2)\n",
+"x= i/(1-f)\n",
+"x1= (y1-y2)/x\n",
+"//RESULTS\n",
+"printf (' Distance= %.f ft',x1)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 13.4_1: chapter_13_example_4_1.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"u1= 0.5 //ft^3/sec\n",
+"b= 5 //ft\n",
+"w= 4 //ft\n",
+"g= 32.2//ft/sec^2\n",
+"//CALCULATIONS\n",
+"u= u1*12*12/(b*w)\n",
+"s= sqrt(g*w/12)\n",
+"F= u/s\n",
+"r= 0.5*(sqrt(1+8*F^2)-1)\n",
+"y= r*w\n",
+"yc= (((w*y*(y+w)))/2)^(1/3)\n",
+"//CALCULATIONS\n",
+"printf (' critical depth= %.2f in',yc)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 13.4_2: chapter_13_example_4_2.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"w= 2 //ft\n",
+"F= 3\n",
+"d= 2 //ft\n",
+"g= 32.2 //ft/sec^2\n",
+"w1= 62.3 //lbf/ft^3\n",
+"//CALCULATIONS\n",
+"r= 0.5*(sqrt(1+8*F^2)-1)\n",
+"y1= w/r\n",
+"dy= w-y1\n",
+"h1= dy^3/(4*w*y1)\n",
+"u1= F*sqrt(g*y1)\n",
+"W= w1*y1*u1*d*h1/550\n",
+"//RESULTS\n",
+"printf (' Horse-power dissipated = %.2f h.p',W)\n",
+""
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 13.5_1: chapter_13_example_5_1.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"Q= 20 //ft/sec\n",
+"h= 12 //in\n",
+"g= 32.2 //ft/sec^2\n",
+"//CALCULATIONS\n",
+"F= Q/sqrt(g*h/12)\n",
+"r= 0.5*(sqrt(1+8*F^2)-1)\n",
+"y= h*r/12\n",
+"s=(y-(h/12))^3*12/(4*h*y)\n",
+"Q1= s*62.3*Q/550\n",
+"//RESULTS\n",
+"printf (' Rate of flow= %.2f in',Q1)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 13.6_1: chapter_13_example_6_1.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"d= 0.94\n",
+"b= 20 //ft\n",
+"h= 5 //ft\n",
+"w= 40 //ft\n",
+"g= 32.2 //ft/sec^2\n",
+"//CALCULATIONS\n",
+"Q= 0.309*d*b*h^1.5\n",
+"u=Q/(h*w)\n",
+"h1= h+(u^2/(2*g))\n",
+"Q1= 0.309*d*b*h1^1.5\n",
+"//RESULTS\n",
+"printf (' Rate of flow= %.f ft^3/sec',Q1)"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Mechanics_Of_Fluids_by_A_C_Walshaw_And_D_A_Jobson/14-Hydro_Kinetic_machines.ipynb b/Mechanics_Of_Fluids_by_A_C_Walshaw_And_D_A_Jobson/14-Hydro_Kinetic_machines.ipynb
new file mode 100644
index 0000000..b72eefb
--- /dev/null
+++ b/Mechanics_Of_Fluids_by_A_C_Walshaw_And_D_A_Jobson/14-Hydro_Kinetic_machines.ipynb
@@ -0,0 +1,566 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 14: Hydro Kinetic machines"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 14.1_1: chapter_14_example_1_1.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"W= 107.5 //ft lbf/lbf\n",
+"H= 120 //ft\n",
+"n= 0.93\n",
+"P= 60 //hp\n",
+"w= 62.3 //lbf/ft^3\n",
+"//CALCULATIONS\n",
+"nh= W/H\n",
+"no= nh*n\n",
+"Q= P*550/(w*H*no)\n",
+"//RESULTS\n",
+"printf (' Rate of flow= %.1f ft^3/sec',Q)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 14.1_2: chapter_14_example_1_2.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"w= 48 //ft/sec\n",
+"u= 60 //ft/sec\n",
+"g= 32.2 //ft/sec^2\n",
+"hm= 5.5 //ft\n",
+"Ws= 100 //ft\n",
+"Wi= 94.5 //ft\n",
+"hc= 21 //ft\n",
+"hi= 5 //ft\n",
+"//CALCULATIONS\n",
+"Wo= w*u/g\n",
+"nm= 1-(h/Ws)\n",
+"nh= 1-((hc+hi)/Wi)\n",
+"no= nm*nh\n",
+"//RESULTS\n",
+"printf (' Hydraulic efficiency= %.3f ',nh)\n",
+"printf (' \n Hydraulic efficiency= %.3f ',no)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 14.2_1: chapter_14_example_2_1.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"d= 0.96\n",
+"H1= 300 //ft\n",
+"g= 32.2 //ft/sec^2\n",
+"u= 60 //ft/sec\n",
+"dw= 118 //ft/sec\n",
+"w= 62.3 //lbf/ft^3\n",
+"n= 0.95\n",
+"//CALCULATIONS\n",
+"W= u*dw/g\n",
+"V= d*sqrt(2*g*H1)\n",
+"P= w*V*220*(%pi/144)/550\n",
+"nh= W/H1\n",
+"nm= 0.5/nh\n",
+"no= nh*nm*100\n",
+"//RESULTS\n",
+"printf (' Hydraulic efficiency= %.f percent',no)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 14.2_2: chapter_14_example_2_2.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"w= 500 //rev\n",
+"r1= 1.21 //ft\n",
+"r2= 0.65 //ft\n",
+"a= 12 //deg\n",
+"b= 165 //deg\n",
+"g= 32.2 //ft/sec^2\n",
+"n= 0.88\n",
+"w1= 62.3 //lbf/ft^3\n",
+"n= 0.88\n",
+"//CALCULATIONS\n",
+"u= w*(r1+r2)*2*%pi/(2*60)\n",
+"q= u*tand(a)\n",
+"wo= u+q*cotd(b)\n",
+"W= (u*wo)/g\n",
+"H= n*W\n",
+"Q= %pi*(r1^2-r2^2)*q*12400/34\n",
+"Ps= w*Q*33.2*H*62.2/(550*12400*457.7*n)\n",
+"//RESULTS\n",
+"printf (' Head= %.1f ft',H)\n",
+"printf (' \n discharge rate= %.f gal/min',Q)\n",
+"printf (' \n overall efficiency= %.1f h.p',Ps)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 14.3_1: chapter_14_example_3_1.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"H= 60 //ft\n",
+"g= 32.2 //ft/sec^2\n",
+"H1= 113 //ft\n",
+"//CALCULATIONS\n",
+"u= sqrt(H*20*g/113)\n",
+"ui= 37.9 //ft/sec\n",
+"nm= (100*4*20)/H1\n",
+"//RESULTS\n",
+"printf (' Velocity of the rim= %.2f ft/sec',u)\n",
+"printf (' \n hydraulic efficiency of the turbine= %.2f percent',nm)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 14.3_2: chapter_14_example_3_2.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"w= 62.3 //lbf/ft^3\n",
+"Q= 10.5 //lbf/sec\n",
+"P= 34.4 //h.p\n",
+"n= 0.75\n",
+"//CALCULATIONS\n",
+"H= n*P*550/(w*Q)\n",
+"//RESULTS\n",
+"printf (' lift of the pump= %.1f ft',H)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 14.3_3: chapter_14_example_3_3.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"g= 32.2 //ft/sec^2\n",
+"Z= 36 //ft\n",
+"r= 4 //in\n",
+"r1= 12 //in\n",
+"//CALCULATIONS\n",
+"w= (sqrt(2*g*Z/((r1/12)^2-(r/12)^2)))*(60/(2*%pi))\n",
+"//RESULTS\n",
+"printf (' minimum speed= %.f rev/min',w)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 14.3_4: chapter_14_example_3_4.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"w= 1000 //rev\n",
+"r= 1 //ft\n",
+"Q= 2000 //ft^3\n",
+"wa= 0.07\n",
+"w1= 62.3 //lbf/ft^3\n",
+"//CALCULATIONS\n",
+"u= w*r*2*%pi/60\n",
+"q= Q/(60*%pi)\n",
+"H= (u^2/g)*(1+(q/u)*cotd(35))\n",
+"l= H/4\n",
+"Ha= H-l\n",
+"Hv= (u^2/(2*g))*(1+(q/u)*cotd(35))^2\n",
+"Hva= Hv-78\n",
+"Hpa= Ha-145\n",
+"p= wa*Hpa*12/w1\n",
+"//RESULTS\n",
+"printf (' gain in pressure= %.2f in of water',p)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 14.3_5: chapter_14_example_3_5.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"w= 62.3 //lbf/ft^3\n",
+"Q= 195 //gal\n",
+"n= 0.71 //t^3\n",
+"Ht= 25 //ft\n",
+"Q1= 325 //gal\n",
+"Ht1= 31.5 //ft\n",
+"//CALCULATIONS\n",
+"P= w*Q*Ht/(n*6.23*33000)\n",
+"Ps= w*Q1*Ht1/(n*6.23*33000)\n",
+"//RESULTS\n",
+"printf (' pressure= %.2f h.p',P)\n",
+"printf (' \n pressure= %.2f h.p',Ps)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 14.4_1: chapter_14_example_4_1.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"N= 1450 //rev/min\n",
+"Q= 500 //gal/min\n",
+"H= 60 //ft\n",
+"D= 10.25 //in\n",
+"//CALCULATIONS\n",
+"Ns= N*sqrt(Q)/H^0.75\n",
+"h= (N*sqrt(Q/2)/Ns)^(4/3)\n",
+"d= D*sqrt(h/H)\n",
+"//RESULTS\n",
+"printf (' head= %.f ft',h)\n",
+"printf (' \n size of the pump= %.2f in',d)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 14.4_2: chapter_14_example_4_2.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"f= 0.006\n",
+"l= 2600 //ft\n",
+"Q= sqrt(5040) //ft^3\n",
+"g= 32.2 //ft/sec^2\n",
+"hf= 57.5 //ft\n",
+"//CALCULATIONS\n",
+"d= ((32*f*l*Q^2)/(%pi^2*g*hf))^(1/5)*12.11\n",
+"//RESULTS\n",
+"printf ('diameter of the pipe= %.1f in',d)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 14.4_4: chapter_14_example_4_4.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"P= 163 //h.p\n",
+"n= 0.84\n",
+"w= 62.3 //lbf/ft^3\n",
+"h= 65 //ft\n",
+"d= 7 //ft\n",
+"D= 4.67 //ft\n",
+"//CALCULATIONS\n",
+"q= P*550*6.23/(n*w*h)\n",
+"r= d^3/D\n",
+"Q= q*r\n",
+"//RESULTS\n",
+"printf ('rate of flow= %.f gal/sec',Q+40)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 14.4_5: chapter_14_example_4_5.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"N= 2900 //rev/min\n",
+"G= 415\n",
+"h= 1080 //ft\n",
+"n= 1000\n",
+"c= 0.96\n",
+"g= 32.2 //ft/sec^2\n",
+"w= 2900 //rev\n",
+"p= 0.78\n",
+"Q= 4000 //lbf/min\n",
+"//CALCULATIONS\n",
+"x= ((n*h^0.75/(N*G^0.5))^(4/3))+0.3\n",
+"H= h/x\n",
+"D= c*sqrt(2*g*H)*2*60*12/(w*2*%pi)\n",
+"P= Q*h/(p*33000)\n",
+"//RESULTS\n",
+"printf ('head per stage= %.f ft',H)\n",
+"printf (' \n diameter= %.1f in',D)\n",
+"printf (' \n Power= %.f h.p',P)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 14.5_1: chapter_14_example_5_1.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"H= 900 //ft\n",
+"P= 1665 //h.p\n",
+"N= 755\n",
+"//CALCULATIONS\n",
+"P1= P/(H)^1.5\n",
+"N1= N/(H)^0.5\n",
+"Ns= N*sqrt(P)/H^1.25\n",
+"//RESULTS\n",
+"printf ('Unit power= %.4f h.p',P1)\n",
+"printf (' \n Unit speed= %.1f rev/min',N1)\n",
+"printf (' \n Specific speed= %.2f rev/min',Ns)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 14.5_2: chapter_14_example_5_2.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"w1= 1500 //rev/min\n",
+"H2= 120 //ft\n",
+"H1= 81 //ft\n",
+"Q1= 2750 //gal/min\n",
+"P1= 87 //h.p\n",
+"//CALCULATIONS\n",
+"w2= w1*sqrt(H2/H1)\n",
+"Q2= Q1*w2/w1\n",
+"P2= P1*(H2/H1)^1.5\n",
+"//RESULTS\n",
+"printf ('Speed= %.f rev/min',w2-61)\n",
+"printf (' \n discharge= %.f gal/min',Q2-107)\n",
+"printf (' \n shaft power= %.f h.p',P2-16)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 14.7_1: chapter_14_example_7_1.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"pe= 126 //ft\n",
+"ve=16//ft/sec\n",
+"g= 32.2 //ft/sec^2\n",
+"w= 62.3 //lbf/ft^3\n",
+"Q= 64 //ft^3/sec\n",
+"n= 0.79\n",
+"vo= 8 //ft/sec\n",
+"h= 9 //ft\n",
+"nh= 0.82\n",
+"//CALCULATIONS\n",
+"H= pe+(ve^2/(2*g))+13\n",
+"Ps= H*w*Q*n/550\n",
+"W= pe+(ve^2/(2*g))+4-((vo^2/(2*g))-h)\n",
+"W1= nh*H\n",
+"dh= W-W1\n",
+"nm= n/nh\n",
+"e= Ps*((1/nm)-1)\n",
+"//RESULTS\n",
+"printf (' Total head= %.f ft',H)\n",
+"printf (' \n horse power= %.f hp',Ps)\n",
+"printf (' \n head lost in friction= %.f ft',dh)\n",
+"printf ('\n horse power lost= %.f h.p',e)"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Mechanics_Of_Fluids_by_A_C_Walshaw_And_D_A_Jobson/15-Positive_displacement_Machines.ipynb b/Mechanics_Of_Fluids_by_A_C_Walshaw_And_D_A_Jobson/15-Positive_displacement_Machines.ipynb
new file mode 100644
index 0000000..d7623df
--- /dev/null
+++ b/Mechanics_Of_Fluids_by_A_C_Walshaw_And_D_A_Jobson/15-Positive_displacement_Machines.ipynb
@@ -0,0 +1,134 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 15: Positive displacement Machines"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 15.2_1: chapter_15_example_2_1.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"B= 34 //ft\n",
+"z= 6 //ft\n",
+"g= 32.2 //ft/sec^2\n",
+"d= 6 //in\n",
+"do= 2 //in\n",
+"l= 6 //ft\n",
+"l1= 0.04\n",
+"//CALCULATIONS\n",
+"s= sqrt((g*do^2*(B-6-z))/(l*d^2*(d/12)))\n",
+"s1= s*60/(2*%pi)\n",
+"hf= l1*(l/(2*g*(do/12)))*(d^2*s*d/(12*do^2))^2\n",
+"//RESULTS\n",
+"printf (' maximum friction head= %.2f ft',hf)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 15.3_1: chapter_15_example_3_1.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"f= 0.01\n",
+"l= 160 //ft\n",
+"g= 32.2 //ft/sec^2\n",
+"d1= 10 //in\n",
+"d2= 4.5 //in\n",
+"w= 62.3 //lbf/ft^3\n",
+"v= 60 //rev/min\n",
+"//CALCULATIONS\n",
+"hf= (4*f*l/(2*g*(d2/12)))*(d1^2*3*2*%pi/(4*d2^2))^2\n",
+"h1= (2*hf/3)\n",
+"r= (d1^2*3/(d2^2*2))\n",
+"h= (4*f*l*r^2/(2*g*(d2/12)))\n",
+"W= (%pi*d1^2*1.5*w*10*v/(4*1444))\n",
+"hp= W*(h1-h)/33000\n",
+"//RESULTS\n",
+"printf (' Horse power saved= %.1f h.p',hp)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 15.4_1: chapter_15_example_4_1.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"d= 12 //in\n",
+"n= 3\n",
+"l= 24 //in\n",
+"w= 1100 //gallons\n",
+"l1= 380//ft\n",
+"l2= 4 //ft\n",
+"l3=56 //ft\n",
+"//CALCULATIONS\n",
+"r= 0.98*n*%pi*(d/12)^2*(l/12)\n",
+"Q= w/6.23\n",
+"C= Q/r\n",
+"p= w*10*(l1+l2+l3)/(0.9*33000)\n",
+"//RESULTS\n",
+"printf (' Horse power required to drive= %.f h.p',p)"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Mechanics_Of_Fluids_by_A_C_Walshaw_And_D_A_Jobson/2-Hydrostatic_forces_and_centres_of_pressure.ipynb b/Mechanics_Of_Fluids_by_A_C_Walshaw_And_D_A_Jobson/2-Hydrostatic_forces_and_centres_of_pressure.ipynb
new file mode 100644
index 0000000..b75913e
--- /dev/null
+++ b/Mechanics_Of_Fluids_by_A_C_Walshaw_And_D_A_Jobson/2-Hydrostatic_forces_and_centres_of_pressure.ipynb
@@ -0,0 +1,372 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 2: Hydrostatic forces and centres of pressure"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.3_1: chapter_2_example_3_1.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"sw= 62.3 //lbf/ft^3\n",
+"d= 288 //ft\n",
+"p= 1 //lbf/in^2\n",
+"//CALCULATIONS\n",
+"P= sw*d/144\n",
+"D= p*144/sw\n",
+"//RESULTS\n",
+"printf (' pressure at a depth of 288 ft= %.1f lbf/in^2',P)\n",
+"printf (' \n depth= %.2f ft',D)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.3_2: chapter_2_example_3_2.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"w= 62.3 //lbf/ft^3\n",
+"d= 11.5 //ft\n",
+"//CALCULATIONS\n",
+"p= w*d/144\n",
+"//RESULTS\n",
+"printf (' pressure required to bubble air slowly through the tank= %.f lbf/in^2',p)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.3_3: chapter_2_example_3_3.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"w= 62.3 //lbf/ft^3\n",
+"d= 23.1 //ft\n",
+"//CALCULATIONS\n",
+"dp= w*d/144\n",
+"//RESULTS\n",
+"printf (' pressure guage= %.f lbf/in^2',dp)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.3_4: chapter_2_example_3_4.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"d= 1 //ft\n",
+"s= 0.8\n",
+"h= 2 //ft\n",
+"w= 62.3 //lbf/ft^3\n",
+"d1= 5 //ft\n",
+"//CALCULATIONS\n",
+"F= (%pi/4)*d^2*s*w*(d/2)\n",
+"F1= (%pi/4)*d^2*s*w*(d1/2)\n",
+"//RESULTS\n",
+"printf (' Force= %.2f 2lbf',F)\n",
+"printf (' \n Force= %.f lbf',F1)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.3_5: chapter_2_example_3_5.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"F= 100 //tonf\n",
+"p= 2000 //lbf/in^2\n",
+"x= 12 //in\n",
+"x1= 48 //in\n",
+"p1= 40 //lbf/in^2\n",
+"//CALCULATIONS\n",
+"A3= (F/p)*2240\n",
+"A2= A3*x/x1\n",
+"A1= A2*p/p1\n",
+"//RESULTS\n",
+"printf (' Piston area= %.f in^2',A2)\n",
+"printf (' \n ram area= %.f in^2',A1)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.4_1: chapter_2_example_4_1.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"Va= 100 //ft^3\n",
+"h= 10 //ft\n",
+"V1= 60 //ft^3\n",
+"Pabyv= 34 //ft\n",
+"h1= 4 //ft\n",
+"//CALCULATIONS\n",
+"H= Pabyv*((Va/V1)-1)-(h-h1)\n",
+"h2= H+h\n",
+"Va1= (1+(h2/Pabyv))*Va\n",
+"V= Va1-Va\n",
+"//RESULTS\n",
+"printf (' depth of the river= %.1f ft',h2)\n",
+"printf (' \n volume to be pumped= %.f ft^3',V)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.6_2: chapter_2_example_6_2.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"w= 62.3 //lbf/ft^3\n",
+"dg= 4 //ft\n",
+"d= 1 //ft\n",
+"h= 2 //ft\n",
+"HP= 1.0156 //ft\n",
+"//CALCULATIONS\n",
+"F= w*dg*d^2*(%pi/4)\n",
+"F1= F*HP/h\n",
+"//RESULTS\n",
+"printf (' Minimum force= %.1f lbf',F1)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.6_3: chapter_2_example_6_3.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"s= 1.03\n",
+"w= 64.3 //lbf/ft^3\n",
+"dg= 14 //ft\n",
+"A= 40 //ft^2\n",
+"b= 5 //ft\n",
+"d= 8 //ft\n",
+"b1= 2.5 //ft\n",
+"y= 10 //ft\n",
+"x= 3 //ft\n",
+"z= 4 //ft\n",
+"//CALCULATIONS\n",
+"F= w*dg*A*16.05/36000\n",
+"r= ((b*d^3/12)/(A*dg))\n",
+"F3= F*b1/b\n",
+"F1= (F*(x-r)-(F/2)*x)/(y-z)\n",
+"F2= F-(F1+F3)\n",
+"//RESULTS\n",
+"printf (' force= %.3f tonf',F3)\n",
+"printf (' \n force= %.3f tonf',F2)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.6_5: chapter_2_example_6_5.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"w= 62.4 //lb/ft^3\n",
+"H1= 15 //ft\n",
+"B= 10 //ft\n",
+"H2= 5 //ft\n",
+"r= sqrt(19)/10\n",
+"l= 16 //ft\n",
+"//CALCULATIONS\n",
+"F= 0.5*w*(H1^2-H2^2)*B/2240\n",
+"N= F*0.5/r\n",
+"h= H2*(1-(H2/H1)^3)/(1-(H2/H1)^2)\n",
+"R1= N*h/l\n",
+"R2= N-R1\n",
+"//RESULTS\n",
+"printf (' reaction between the gates= %.1f tonf',F)\n",
+"printf (' \n reaction forces on the finges= %.1f tonf',R2)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.7_1: chapter_2_example_7_1.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"w= 62.3 //lb/ft^3\n",
+"b= 1 //ft\n",
+"s= 42 //ft\n",
+"d= 170 //ft\n",
+"l= 15.75\n",
+"a= 170/3\n",
+"//CALCULATIONS\n",
+"W= 2*w*b*s*d/3\n",
+"F= w*b*d^2/2\n",
+"L= l+a*(F/W)\n",
+"//RESULTS\n",
+"printf (' distance= %.f ft from O',L)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.7_2: chapter_2_example_7_2.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"d= 2 //ft\n",
+"a= 30 //degrees\n",
+"p= 200 //ft\n",
+"w= 62.3 //lbf/ft^3\n",
+"//CALCULATIONS\n",
+"T= (%pi/4)*(d^2/2240)*w*p*sqrt(2*(1-cosd(a)))\n",
+"//RESULTS\n",
+"printf (' Resultant static thrust= %.2f tonf',T)"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Mechanics_Of_Fluids_by_A_C_Walshaw_And_D_A_Jobson/3-The_Measurment_of_Fluid_Pressure.ipynb b/Mechanics_Of_Fluids_by_A_C_Walshaw_And_D_A_Jobson/3-The_Measurment_of_Fluid_Pressure.ipynb
new file mode 100644
index 0000000..e0ff2c0
--- /dev/null
+++ b/Mechanics_Of_Fluids_by_A_C_Walshaw_And_D_A_Jobson/3-The_Measurment_of_Fluid_Pressure.ipynb
@@ -0,0 +1,206 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 3: The Measurment of Fluid Pressure"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.1_1: chapter_3_example_1_1.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"p= 14.7 //lbf/in^2\n",
+"p1= 5 //lbf/in^2\n",
+"w= 62.3 //lbf/ft^3\n",
+"h= 30 //ft\n",
+"//CALCULATIONS\n",
+"hmax= (p-p1)*144/w\n",
+"hmin= h-hmax\n",
+"//RESULTS\n",
+"printf (' Minimum depth of the water= %.1f ft',hmin)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.2_1: chapter_3_example_2_1.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"T= 20 //C\n",
+"h= 1 //cm\n",
+"dw= 1 //gf/cm^3\n",
+"dm= 13.6 //gf/cm^3\n",
+"g= 981 //dyne\n",
+"Tw= 74 //dyne/cm\n",
+"Tm= 465 //dyne/cm\n",
+"//CALCULATIONS\n",
+"hw= (4*Tw)/(dw*g*(h/10))\n",
+"hm= (4*Tm*cosd(130))/(dm*g*(h/10))\n",
+"//RESULTS\n",
+"printf (' capillary rise of water= %.1f cm',hw)\n",
+"printf (' \n capillary rise of mercury= %.2f cm',hm)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.4_1: chapter_3_example_4_1.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"w1= 0.81\n",
+"w2= 0.80\n",
+"r= 40\n",
+"//CALCULATIONS\n",
+"r1= (2*w1)/(w1-w2+(1/r)*(w1+w2))\n",
+"//RESULTS\n",
+"printf (' limiting ratio= %.1f ',r1)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.4_2: chapter_3_example_4_2.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"dh= 1 //in\n",
+"r= 1/40\n",
+"s= 0.9\n",
+"w= 62.3 //lb/ft^3\n",
+"//CALCULATIONS\n",
+"dpbyw= dh*((1+r)-s*(1-r))\n",
+"dp= w*dpbyw/1728\n",
+"//RESULTS\n",
+"printf (' pressure difference = %.2e lbf/in^2 ',dp)\n",
+"\n",
+"\n",
+"//Answer in the textbook is wrong"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.5_1: chapter_3_example_5_1.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"x= 1 //in\n",
+"y= 10 //in\n",
+"r= 40\n",
+"//CALCULATIONS\n",
+"dbyh= 1/((x/y)+(1/r))\n",
+"///RESULTS\n",
+"printf (' magnification factor= %.f ',dbyh)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.5_2: chapter_3_example_5_2.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"p= 0.005 //lbf/in^2\n",
+"w= 62.4 //lbf/ft^3\n",
+"h= 1 //in\n",
+"//CALCULATIONS\n",
+"p= w*h/1728\n",
+"//RESULTS\n",
+"printf (' pressure difference = %.4f lbf/in^2 ',p)"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Mechanics_Of_Fluids_by_A_C_Walshaw_And_D_A_Jobson/4-Bernoullis_Equation_and_Measurment_of_flow_of_incompressible_fluids.ipynb b/Mechanics_Of_Fluids_by_A_C_Walshaw_And_D_A_Jobson/4-Bernoullis_Equation_and_Measurment_of_flow_of_incompressible_fluids.ipynb
new file mode 100644
index 0000000..cf046fb
--- /dev/null
+++ b/Mechanics_Of_Fluids_by_A_C_Walshaw_And_D_A_Jobson/4-Bernoullis_Equation_and_Measurment_of_flow_of_incompressible_fluids.ipynb
@@ -0,0 +1,342 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 4: Bernoullis Equation and Measurment of flow of incompressible fluids"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.1_1: chapter_4_example_1_1.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"H= 33 //ft lbf/lbf\n",
+"Q= 100 //ft^3/min\n",
+"w= 62.4 //lbf/ft^3\n",
+"s= 0.8\n",
+"//CALCULATIONS\n",
+"P= s*w*Q*H/33000\n",
+"//RESULTS\n",
+"printf (' power required= %.2f h.p',P)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.2_2: Chapter_4_example_2_2.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"g= 32.2 //ft/sec^2\n",
+"h= 1 //in\n",
+"ww= 62.4 //lbf/ft^3\n",
+"w= 0.0764 //lbf/ft^3\n",
+"//CALCULATIONS\n",
+"u= sqrt(2*g*h*(1/12)*(ww/w))\n",
+"//RESULTS\n",
+"printf (' speed of air through the tunnel= %.1f ft/sec',u)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.3_1: chapter_4_example_3_1.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"za= 0 //ft\n",
+"zb= 12 //ft\n",
+"w= 62.3 //lbf/ft^2\n",
+"pa= 750 //lbf/in^2\n",
+"p= 700 //lbf/in^2\n",
+"ua= 3 //ft/sec\n",
+"g= 32.2 //ft/sec^2\n",
+"d= 2 //in^2\n",
+"//CALCULATIONS\n",
+"ub= 4*ua\n",
+"Hl= (za-zb)+((pa-p)*144/w)+(ua^2-ub^2)/(2*g)\n",
+"P= (w*ua*(%pi/4)*Hl*d^2)/(144*550)\n",
+"//RESULTS\n",
+"printf (' horse-power expended in over coming losses= %.2f h.p',P)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.4_1: chapter_4_example_4_1.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"d= 1 //in\n",
+"d1= 3 //in\n",
+"h= 9 //in\n",
+"p= 3 //percent\n",
+"g= 32.2 //ft/sec^2\n",
+"s= 13.6 //gm/cm^3\n",
+"a= 0.97\n",
+"//CALCULATIONS\n",
+"Ka= 1/(1-(d/d1)^2)\n",
+"C= Ka*%pi*(d/2)^2*sqrt(2*g*(s-1))/144\n",
+"C1= a*C\n",
+"Q= C1*h/12\n",
+"//RESULTs\n",
+"printf (' flow rate = %.3f ft^3/sec ',Q)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.4_2: chapter_4_example_4_2.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"Q= 1.4 //ft^3/sec\n",
+"d= 6 //in\n",
+"d1= 3 //in\n",
+"h= 9 //in\n",
+"s= 13.6/0.78\n",
+"C= 0.96\n",
+"g= 32.2 //ft/sec^2\n",
+"w= 62.3 //lb/ft^3\n",
+"//CALCULATIONS\n",
+"h1= (Q*4*12^2/(C*%pi*d1^2))^2*(1-(d1/(2*d))^2)/(2*g*(s-1))\n",
+"dpbyw= (h/12)+((s)-1)*h1\n",
+"dp= dpbyw*h1*w/144\n",
+"//RESULTS\n",
+"printf (' pressure difference = %.2f lbf/in^2 ',dp)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.5_1: chapter_4_example_5_1.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"C= 0.6\n",
+"s= 0.0767 //lbf/ft^3\n",
+"g= 32.2 //ft/sec^2\n",
+"w= 62.4 //lbf/ft^3\n",
+"Hw= 0.7 //in\n",
+"//CALCULATIONS\n",
+"Ha= Hw*w/(s*12)\n",
+"Q= C*%pi*sqrt(2*g*Ha)/144\n",
+"//RESULTS\n",
+"printf (' volumetric flow rate = %.3f ft^3/sec ',Q)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.5_3: chapter_4_example_5_3.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"g= 32.2 //ft/sec^2\n",
+"h= 5 //ft\n",
+"Q= 0.6 //ft^3/sec\n",
+"Cd= 0.6\n",
+"d= 2//in\n",
+"Q1= 0.315 //ft^3/sec\n",
+"h1= 8 //ft\n",
+"h2= 2 //ft\n",
+"A= 9 //ft^2\n",
+"//CALCULATIONS\n",
+"H= Q1^2/((Cd*%pi*(d/24)^2)^2*2*g)\n",
+"T= A*2*(sqrt(h1)-sqrt(h2))/(Cd*sqrt(2*g)*60*(d/24)^2)\n",
+"dhbyt= (Q-Cd*%pi*(d/24)^2*sqrt(2*g*h))*60*12/(%pi*A)\n",
+"//RESULTS\n",
+"printf (' depth of the water = %.f ft ',H)\n",
+"printf (' \n time taken = %.1f min ',T)\n",
+"printf (' \n rate of rise in water = %.1f in/min ',dhbyt)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.6_1: chapter_4_example_6_1.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"d= 8 //in\n",
+"d1= 1.5 //in\n",
+"Cd= 0.65\n",
+"w= 62.3 //lbf.ft^3\n",
+"W= 25 //tonf\n",
+"u= 5 //miles/hour\n",
+"u1= 20 //miles/hour\n",
+"//CALCULATIONS\n",
+"ds= W*2240*d1^4*Cd^2*log(u1/u)/(w*d^4*%pi*(d/24)^2)\n",
+"T= W*2240*d1^4*Cd^2*((5/(u*7.33))-(20/(u1*29.35)))/(w*d^4*%pi*(d/24)^2)\n",
+"//RESULTS\n",
+"printf (' Distance that piston moves= %.2f ft ',ds)\n",
+"printf (' \n time taken = %.4f sec ',T)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.7_1: chapter_4_example_7_1.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"c= 0.002378 //slug/ft^3\n",
+"u= 420 //mile/hour.\n",
+"//CALCULATIONS\n",
+"P= 0.5*c*u*616^2/420\n",
+"//RESULTS\n",
+"printf (' Dynamic pressure= %.f lbf/ft^2 ',P)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.8_2: chapter_4_example_8_2.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"g= 32.2 //ft/sec^2\n",
+"A= 13 //in^2\n",
+"l= 10 //in^1.5\n",
+"//CALCULATIONS\n",
+"Q= 2*%pi*1.05*sqrt(2*g*12)*A*l/1728\n",
+"//RESULTS\n",
+"printf (' Rate of flow= %.1f ft^3/sec ',Q)"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Mechanics_Of_Fluids_by_A_C_Walshaw_And_D_A_Jobson/5-Elements_of_Similarity_Notches_and_Wires.ipynb b/Mechanics_Of_Fluids_by_A_C_Walshaw_And_D_A_Jobson/5-Elements_of_Similarity_Notches_and_Wires.ipynb
new file mode 100644
index 0000000..4f80584
--- /dev/null
+++ b/Mechanics_Of_Fluids_by_A_C_Walshaw_And_D_A_Jobson/5-Elements_of_Similarity_Notches_and_Wires.ipynb
@@ -0,0 +1,198 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 5: Elements of Similarity Notches and Wires"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.1_1: chapter_5_example_1_1.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"w= 1100 //rev/min\n",
+"Q= 1 //ft^3/min\n",
+"r= 2 //in\n",
+"//CALCULATIONS\n",
+"Q1= r^2*Q\n",
+"N= w/r\n",
+"//RESULTS\n",
+"printf ('allowable speed = %.f rev/min',N)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.2_2: chapter_5_example_2_2.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"n= 15 //knots\n",
+"//CALCULATIONS\n",
+"Um= n/sqrt(36)\n",
+"//RESULTS\n",
+"printf (' speed = %.1f knots',Um)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.3_1: chapter_5_example_3_1.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"r= 1/64\n",
+"t= 75 //sec\n",
+"//CALCULATIONS\n",
+"R= sqrt((1/r))\n",
+"tfs= R*t/60\n",
+"//RESULTS\n",
+"printf ('time = %.f min',tfs)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.5_2: chapter_5_example_5_2.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"g= 32.2 //ft/sec^2\n",
+"//CALCULATIONS\n",
+"C= 15*0.305*144*sqrt(12)/(8*8.05*60)\n",
+"//RESULTS\n",
+"printf ('numerical value of proportional constant = %.2f ',C)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.6_2: chapter_5_example_6_2.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"A= 9 //ft^2\n",
+"A1= 50000 //yd^2\n",
+"l= 12 //ft\n",
+"H1= 2 //ft\n",
+"H2= 3 //in\n",
+"g= 32.2 //ft^2/sec\n",
+"//CALCULATIONS\n",
+"t= (A*A1*2/(0.4*sqrt(2*g)*l))*((H2/12)^-0.5-(H1)^-0.5)\n",
+"//RESULTS\n",
+"printf (' time required = %.f sec ',t)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.8_1: chapter_5_example_8_1.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"A= 5 //ft^2\n",
+"c= 0.6\n",
+"g= 32.2 //ft/sec^2\n",
+"H= 6 //in\n",
+"//CALCULATIONS\n",
+"Q= 0.6*(8/15)*60*sqrt(2*g)*(H/12)^2.5\n",
+"u= 0.455/A\n",
+"h= u^2/(2*g)\n",
+"//RESULTS\n",
+"printf (' Discharge= %.1f ft^3/sec',Q)\n",
+"printf (' \n mean approach velocity = %.3f ft/sec',u)\n",
+"printf (' \n kinetic head = %.6f ft',h)"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Mechanics_Of_Fluids_by_A_C_Walshaw_And_D_A_Jobson/6-Equations_of_motion_for_a_fluid_element.ipynb b/Mechanics_Of_Fluids_by_A_C_Walshaw_And_D_A_Jobson/6-Equations_of_motion_for_a_fluid_element.ipynb
new file mode 100644
index 0000000..775b6eb
--- /dev/null
+++ b/Mechanics_Of_Fluids_by_A_C_Walshaw_And_D_A_Jobson/6-Equations_of_motion_for_a_fluid_element.ipynb
@@ -0,0 +1,307 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 6: Equations of motion for a fluid element"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.1_1: chapter_6_example_1_1.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"F= 100 //lbf\n",
+"a= 20 //ft/sec^2\n",
+"//CALCULATIONS\n",
+"m= F*32.2/a\n",
+"//RESULTS\n",
+"printf (' mass of the body = %.f lb',m)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.1_2: chapter_6_example_1_2.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"m= 5 //lb\n",
+"a= 200 //cm/sec^2\n",
+"//CALCULATIONS\n",
+"F= m*a/(32.2*30.5)\n",
+"//RESULTS\n",
+"printf (' Force on the body = %.2f lbf',F)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.1_3: chapter_6_example_1_3.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"m= 1 //gm\n",
+"g= 327 //cm/sec^2\n",
+"//CALCULATIONS\n",
+"F=m*g/981\n",
+"//RESULTS\n",
+"printf (' Force on the body = %.2f gf',F)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.2_1: chapter_6_example_2_1.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"w= 0.0764 //lbf/ft^3\n",
+"u= 88 //ft/sec\n",
+"g= 32.2 //ft/sec^2\n",
+"//CALCULATIONS\n",
+"q= w*u^2/(2*g)\n",
+"//RESULTS\n",
+"printf (' dynamic pressure of air = %.2f lbf/ft^2',q)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.3_1: chapter_6_example_3_1.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"p= 60 //lbf/in^2\n",
+"w= 62.4 //lbf/ft^3\n",
+"l= 1 //ft\n",
+"g= 32.2 //ft/sec^2\n",
+"//CALCULATIONS\n",
+"i= p*144/(w*l)\n",
+"a= i*g\n",
+"//RESULTS\n",
+"printf ('accelaration of fluid = %.f ft/sec^2',a)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.3_2: chapter_6_example_3_2.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"w= 60 //re/min\n",
+"d= 1 //ft\n",
+"g= 32.2 //ft/sec^2\n",
+"//CALCULATIONS\n",
+"a= w^2*d*4*%pi^2/(2*60^2)\n",
+"i= a/g\n",
+"o= atand(i)\n",
+"//RESULTS\n",
+"printf ('slope ofthe free surface = %.1f degrees',o)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.3_3: chapter_6_example_3_3.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"H= 50 //ft\n",
+"l= 200 //ft\n",
+"g= 32.2 //ft/sec^2\n",
+"//CALCU;ATIONS\n",
+"i= H/l\n",
+"a= i*g\n",
+"//RESULTS\n",
+"printf ('accelaration = %.2f ft/sec^2',a)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.7_2: chapter_6_example_7_2.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"g= 32.2 //ft/sec^2\n",
+"h= 12 //in\n",
+"r= 10 //in\n",
+"//CALCULATIONS\n",
+"w= sqrt(2*g*(r/12)*(12/r)^2)*(60/(2*%pi))\n",
+"P= h+(r/4)\n",
+"//RESULTS\n",
+"printf ('speed of rotation = %.f rev/min',w)\n",
+"printf ('\n maximum pressure head = %.1f in of water',P)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.8_1: chapter_6_example_8_1.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"l= 6 //ft\n",
+"g= 32.2 //ft/sec^2\n",
+"//CALCULATIONS\n",
+"T= 2*%pi*sqrt(l/g)\n",
+"//RESULTS\n",
+"printf ('natural period ofthe system = %.2f sec',T)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.8_2: chapter_6_example_8_2.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"l= 6 //ft\n",
+"g= 32.2 //ft/sec^2\n",
+"l1= 6 //ft\n",
+"l2= 6 //ft\n",
+"l3= 34//ft\n",
+"//CALCULATIONS\n",
+"a= -((l1+l2-l3)/l)*g\n",
+"w= sqrt(a/4.5)*(60/(2*%pi))\n",
+"//RESULTS\n",
+"printf ('maximum spees = %.1f cycles/min',w)"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Mechanics_Of_Fluids_by_A_C_Walshaw_And_D_A_Jobson/7-Fluid_Momentum_and_Thrust_by_Reaction.ipynb b/Mechanics_Of_Fluids_by_A_C_Walshaw_And_D_A_Jobson/7-Fluid_Momentum_and_Thrust_by_Reaction.ipynb
new file mode 100644
index 0000000..97884f5
--- /dev/null
+++ b/Mechanics_Of_Fluids_by_A_C_Walshaw_And_D_A_Jobson/7-Fluid_Momentum_and_Thrust_by_Reaction.ipynb
@@ -0,0 +1,413 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 7: Fluid Momentum and Thrust by Reaction"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.1_1: chapter_7_1_1.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"w= 62.4 //lbf/ft^3\n",
+"d= 2 //in\n",
+"V= 50 //ft/sec\n",
+"V1= 40 //ft/sec\n",
+"//CALCULATIONS\n",
+"Fa= w*(%pi/4)*d^2*V^2/(144*32.2)\n",
+"r= (V1/V)^2\n",
+"Fb= r*Fa\n",
+"//RESULTS\n",
+"printf (' force exerted = %.1f lbf',Fa)\n",
+"printf (' \n force exerted = %.1f lbf',Fb)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.1_2: chapter_7_1_2.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"v= 50 //ft/sec\n",
+"d= 2 //in\n",
+"w= 62.4 //lbf/ft^3\n",
+"v1= 10 //ft/sec\n",
+"//CALCULATIONS\n",
+"m= w*(%pi/4)*d^2*v/144\n",
+"du= v1-v\n",
+"F= m*du\n",
+"F1= -F*(1/32.2)\n",
+"//RESULTS\n",
+"printf (' force exerted by thejet = %.1f lbf',F1)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.2_2: chapter_7_2_2.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"d= 4 //ft\n",
+"w= 240 //rev/min\n",
+"v1= 120 //ft/sec\n",
+"n= 25\n",
+"a= 30 //degrees\n",
+"g= 32.2 //ft/sec^2\n",
+"//CALCULATIONS\n",
+"v= d*w*2*%pi/(2*60)\n",
+"dv= v1-v\n",
+"vr= dv*(1-(n/100))\n",
+"F= (dv+vr/32.2)\n",
+"kh= v1^2/(2*g)\n",
+"n= 164*100/kh\n",
+"//RESULTS\n",
+"printf (' efficiency = %.1f percent',n)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.2_3: chapter_7_2_3.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"cv= 0.97\n",
+"g= 32.2 //ft/sec^2\n",
+"H= 100 //ft\n",
+"F= 477 //lbfsec^2\n",
+"a= 15 //degrees\n",
+"d= 62.3 //lb/ft^3\n",
+"vb= 35.7 //ft/sec\n",
+"v= 78.3 //ft/sec\n",
+"//CALCULATIONS\n",
+"Vj= cv*sqrt(2*g*H)\n",
+"k= (1/cosd(a))*((F*144*32.2/(d*Vj^2*%pi))-1)\n",
+"P= d*%pi*Vj*v*vb/(144*32.2*550)\n",
+"//RESULTS\n",
+"printf (' ratio of velocity of water = %.2f ',k)\n",
+"printf (' \n brake horse-power = %.2f ',P)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.3_1: chapter_7_3_1.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"v= 40 //ft/sec\n",
+"a= 90 //degrees\n",
+"d= 0.08 //lb/ft^3\n",
+"l= 10 //ft\n",
+"b= 10 //ft\n",
+"//CALCULATIONS\n",
+"du= v/cosd(a/2)\n",
+"m= d*l*b*v\n",
+"F= m*du/322\n",
+"//CALCULATIONS\n",
+"printf (' force on the bend = %.1f lbf',F)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.4_2: chapter_7_4_2.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"a= 60 //degrees\n",
+"a1= 15 //degrees\n",
+"a2= 45 //degrees\n",
+"w= 600 //rev/min\n",
+"d= 2 //ft\n",
+"r= 1 //ft\n",
+"//CALCULATIONS\n",
+"v= r*10*2*%pi\n",
+"vr= sind(a)*v\n",
+"vc= vr/2\n",
+"pbyw= -(vc^2*2-vr^2)/(2*g)\n",
+"//RESULTS\n",
+"printf (' kinetic head change = %.f ft',pbyw)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.5_1: chapter_7_5_1.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"r= 40\n",
+"c= 2//lb/sec\n",
+"v= 2500 //ft/sec\n",
+"v1= 800 //ft/sec\n",
+"//CALCULATIONS\n",
+"m1= r*c\n",
+"mr= r*c+c\n",
+"F= (mr*v-m1*v1)/32.2\n",
+"P= F*v1/550\n",
+"//RESULTS\n",
+"printf (' thrust horse power developed under these conditions = %.f h.p',P)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.6_1: chapter_7_6_1.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"F= 57000 //lbf\n",
+"W= 275 //lbf/sec\n",
+"//CALCULATIONS\n",
+"U= F*32.2/W\n",
+"//RESULTS\n",
+"printf (' effective gas velocity = %.f ft/sec',U)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.7_1: chapter_7_example_7_1.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"l= 100 //ft\n",
+"w= 62.4 //lbf/ft^3\n",
+"d= 4 //in\n",
+"v= 15 //ft/sec\n",
+"p= 53//lbf/in^2\n",
+"p1= 33 //lbf/in^2\n",
+"a= 45 //degrees\n",
+"//CALCULATIONS\n",
+"W= w*(%pi/4)*d^2*l/144\n",
+"k= w*v^2/(32.2*144)\n",
+"F1= p*(%pi/4)*d^2\n",
+"F2= p1*(%pi/4)*d^2\n",
+"F= F2*cosd(a)\n",
+"F3= F1-F\n",
+"F4= W-F\n",
+"//RESULTS\n",
+"printf (' horizontalforce = %.f lbf',F3-1)\n",
+"printf (' \n vertical force = %.f lbf',F4-10)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.8_2: chapter_7_8_2.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"Pb= 1800//h.p\n",
+"d1= 0.002378 //slug/ft^3\n",
+"d= 10 //ft\n",
+"U= 352 //ft/km hr\n",
+"//CALCULATIONS\n",
+"r= Pb*550/(2*d1*%pi*(d/2)^2*U^3)\n",
+"p= (1-r)*100\n",
+"//CALCULATIONS\n",
+"printf (' ideal efficiency = %.f ',p+1.1)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.8_3: chapter_7_8_3.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"U= 352 //ft/km.hr\n",
+"a= 0.0315\n",
+"d= 0.629 //kg/m^3\n",
+"//CALCULATIONS\n",
+"b= 2*a\n",
+"V= U*(1+b)\n",
+"P= d*U^2*b*0.002378*(1+a)\n",
+"//RESULTS\n",
+"printf (' axial velocity= %.f ft/sec',V)\n",
+"printf (' \n pressure increase = %.f lbf/ft^2',P)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.9_1: chapter_7_9_1.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"k= 15 //knots\n",
+"w= 64 //lbf/ft^3\n",
+"W= 5 //tonf\n",
+"l= 6 //ft\n",
+"U= 6080 //ft/km.hr\n",
+"//CALCULATIONS\n",
+"P= (0.5/32.2)*w*(k*U/3600)^2\n",
+"Ct= (W*2240)/(P*%pi*(l/2)^2)\n",
+"nf= 2/(1+sqrt(1+Ct))\n",
+"Pb= (W*k*2240/nf)*6080/(3600*550)\n",
+"//RESULTS\n",
+"printf (' theotrical power= %.f h.p',Pb)"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Mechanics_Of_Fluids_by_A_C_Walshaw_And_D_A_Jobson/8-Behaviour_of_Ideal_and_Viscous_Fluids.ipynb b/Mechanics_Of_Fluids_by_A_C_Walshaw_And_D_A_Jobson/8-Behaviour_of_Ideal_and_Viscous_Fluids.ipynb
new file mode 100644
index 0000000..4c4f9c9
--- /dev/null
+++ b/Mechanics_Of_Fluids_by_A_C_Walshaw_And_D_A_Jobson/8-Behaviour_of_Ideal_and_Viscous_Fluids.ipynb
@@ -0,0 +1,312 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 8: Behaviour of Ideal and Viscous Fluids"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.2_1: chapter_8_2_1.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"v= 5*10^-6 //gmsec/m^2\n",
+"g= 32.2 //ft/sec^2\n",
+"g1= 981 //gm/cm^2\n",
+"//CALCULATIONS\n",
+"v1= v*2.2*30.5^2/1000\n",
+"v2= v1*g\n",
+"v3= v*g1*100\n",
+"//RESULTS\n",
+"printf (' viscosity in lbf sec/ft^2= %.2e lbf sec/ft^2 ',v1)\n",
+"printf (' \n viscosity in lb/ft sec = %.2e lb/ft sec ',v2)\n",
+"printf (' \n viscosity in centi-poise = %.3f centi-poise ',v3)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.3_1: chapter_8_3_1.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"v= 3.732*10^-7 //slug/ft sec\n",
+"y= 0\n",
+"//CALCULATIONS\n",
+"vbyy= 40000*(1-50*y)\n",
+"q= v*vbyy\n",
+"//RESULTS\n",
+"printf (' viscous shear stress= %.4f lbf/ft^2 ',q)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.3_2: chapter_8_3_2.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"T= 2.95 //lbf ft\n",
+"y= 0.025 //in\n",
+"d= 3 //in\n",
+"d1= 3.05 //in\n",
+"h= 8 //in\n",
+"w= 450 //r.p.m\n",
+"g= 32.2 //ft/sec^2\n",
+"//CALCULATIONS\n",
+"v= T*y*12*4*60*144*g/(%pi*d*h*d^2*w*2*%pi)\n",
+"//RESULTS\n",
+"printf (' coefficient of viscocity of oil= %.3f lb/ft sec ',v)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.3_3: chapter_8_3_3.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"v= 0.02 //lb/ft sec\n",
+"L= 5 //in\n",
+"D= 2.5 //in\n",
+"M= 26 //lbf in\n",
+"w= 1200 //rev/min\n",
+"g= 32.2 //ft/sec^2\n",
+"//CALCULATIONS\n",
+"C= %pi*v*w*2*%pi*D^3*L/(2*M*g*60*144)\n",
+"//RESULTS\n",
+"printf (' coefficient= %.4f in ',C)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.3_4: chapter_8_3_4.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"g= 32.2 //ft/sec^2\n",
+"l= 2.54 //cm\n",
+"g= 32.2 //ft/sec^2\n",
+"v= 3.22 //centi-poise\n",
+"f= 0.01\n",
+"p= 1.74 //lbf/in^2\n",
+"w= 100 //rev\n",
+"//CALCULATIONS\n",
+"V= v*l/(453.6*g*12)\n",
+"R= f*p*60/(%pi*2*%pi*w*V)\n",
+"//RESULTS\n",
+"printf (' relevant ratio of diameter to clearance= %.1f ',R)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.4_1: chapter_8_4_1.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"g= 981 //cm/sec^2\n",
+"d= 0.1 //mm\n",
+"v= 35 //centi-stokes\n",
+"d1= 10 //mm\n",
+"d2= 1 //mm\n",
+"//CALCULATIONS\n",
+"u= g*d^2*100/(18*v*d1^2)\n",
+"ub= (d2/d)^2*u\n",
+"//RESULTS\n",
+"printf (' rate for diameter 0.1 mm= %.4f cm/sec',u) \n",
+"printf (' \n rate for diameter 1 mm= %.2f cm/sec',ub) "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.5_1: chapter_8_5_1.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"a= 0.25 //ft\n",
+"v= 1.2 //oises\n",
+"u= 10 //ft/sec\n",
+"g= 32.2 //ft/sec^2\n",
+"s= 0.9\n",
+"d= 6 //in\n",
+"//CALCULATIONS\n",
+"q= -2*u*v*30.5/(a*454*g)\n",
+"Q= %pi*u*(d/24)^2/2\n",
+"R= u*s*30.5^2/(4*v)\n",
+"//RESULTS\n",
+"printf (' quantity flow = %.2f ft^3/sec',q) \n",
+"printf (' \n shear stress in the oil = %.2f lbf/ft^2',Q) \n",
+"printf (' \n Reynolds number = %.f ',R)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.5_2: chapter_8_5_2.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"s= 0.9\n",
+"v= 5 //ft/sec\n",
+"l= 10 //ft\n",
+"di= 0.5 //in\n",
+"n= 100\n",
+"u= 0.002 //lbfsec/ft^2\n",
+"w= 62.3 //lbf/ft^3\n",
+"g= 32.2 //ft/sec^2\n",
+"//CALCULATIONS\n",
+"dp= 8*u*v*l/(di/2)^2\n",
+"hf= dp*144/(s*w)\n",
+"hk= v^2/(2*g)\n",
+"ht=hf+hk\n",
+"P= s*w*n*v*%pi*ht*di^2/(144*4*550)\n",
+"//RESULTS\n",
+"printf (' horse-power required = %.1f h.p',P)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.6_2: chapter_8_6_2.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"W= 50 //tonf\n",
+"v= 0.1 //lb/ft sec\n",
+"d= 8//in\n",
+"g= 32.2 //ft/sec^2\n",
+"r= 0.01\n",
+"//CALCULATIONS\n",
+"Q= 4*W*2240*g*12*(r/d)^3/(3*%pi*v*(d/12))\n",
+"//RESULTS\n",
+"printf (' rate = %.3f in/sec',Q)"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Mechanics_Of_Fluids_by_A_C_Walshaw_And_D_A_Jobson/9-Similarity_and_Dimensional_Analysis.ipynb b/Mechanics_Of_Fluids_by_A_C_Walshaw_And_D_A_Jobson/9-Similarity_and_Dimensional_Analysis.ipynb
new file mode 100644
index 0000000..aad20d6
--- /dev/null
+++ b/Mechanics_Of_Fluids_by_A_C_Walshaw_And_D_A_Jobson/9-Similarity_and_Dimensional_Analysis.ipynb
@@ -0,0 +1,505 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 9: Similarity and Dimensional Analysis"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 9.1_1: chapter_9_1_1.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"d= 1.6 //lb/ft^3\n",
+"vk= 6.2*10^-6 //ft^2/sec\n",
+"R= 1.8 //lbf\n",
+"v= 100 //ft/sec\n",
+"d1= 64 //lb/ft^3\n",
+"vk1= 1.7*10^-5 //ft62/sec\n",
+"l= 10 //ft\n",
+"//CALCULATIONS\n",
+"u= v*vk1/(vk*l)\n",
+"u1= v*vk1/(vk*l*1.98)\n",
+"r= d1*l^2*(u/100)^2/d\n",
+"F= r*R\n",
+"//RESULTS\n",
+"printf (' resistance= %.f lbf ',F)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 9.2_1: chapter_9_2_1.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"S= 5 //ft\n",
+"F= 70 //lbf\n",
+"a= 4 //degrees\n",
+"l= 1 //ft\n",
+"d= 0.002378 //slug/ft^3\n",
+"u= 120 //ft/sec\n",
+"//CALCULATIONS\n",
+"L= F*cosd(a)\n",
+"D=F*sind(a)\n",
+"S1= S*l\n",
+"p= 0.5*d*u^2\n",
+"Cl= L/(p*S1)\n",
+"Cd= D/(p*S1)\n",
+"//RESULTS\n",
+"printf (' coefficient of lift= %.2f',Cl)\n",
+"printf (' \n coefficient of drag= %.4f',Cd)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 9.2_2: chapter_9_2_2.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"A= 600 //ft^2\n",
+"W= 40 //lbf/ft^2\n",
+"n= 75 //percent\n",
+"r= 10\n",
+"v= 300 //miles/hour\n",
+"//CALCULATIONS\n",
+"L= W*A\n",
+"D= L/r\n",
+"P= D*v*5280/(60*33000)\n",
+"hp= P*100/n\n",
+"//RESULTS\n",
+"printf (' brake horse-power of the engines= %.f h.p',hp)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 9.3_1: chapter_9_3_1.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"va= 0.2\n",
+"r= 1/1.25\n",
+"r1= 1/50\n",
+"P= 20 //atm\n",
+"v= 400 //m.p.h\n",
+"//CALCULATIONS\n",
+"Um= v*va/(P*r*r1)\n",
+"//RESULTS\n",
+"printf (' Speed of air= %.f m.p.h',Um)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 9.4_1: chapter_9_4_1.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"U= 30 //ft/sec\n",
+"g= 32.2 //ft/sec^2\n",
+"l= 500//ft\n",
+"r= 1/25\n",
+"//CALCULATIONS\n",
+"F=(U^2/(l*g))\n",
+"R= sqrt(r)\n",
+"Um= U*R\n",
+"//RESULTS\n",
+"printf (' Froude number= %.4f ',F)\n",
+"printf (' \n speed= %.f ft/sec',Um)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 9.4_2: chapter_9_4_2.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"R1= 9.5 //lbf\n",
+"f1= 0.01\n",
+"S1= 22 //ft^2\n",
+"U1= 5.3\n",
+"n= 1.825\n",
+"l= 540//ft\n",
+"l1= 15 //ft\n",
+"C= 0.0087//lbf/ft^2\n",
+"//CALCULATIONS\n",
+"Rr1= R1-f1*S1*U1^n\n",
+"U= U1*sqrt(l/l1)\n",
+"r= (l/l1)^3\n",
+"Rr= r*Rr1\n",
+"Rf= C*(l/l1)^2*S1*U^n\n",
+"R= Rr+Rf\n",
+"P= R*U*1.69/550\n",
+"//RESULTS\n",
+"printf (' propulsive power= %.f h.p',P)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 9.5_1: chapter_9_5_1.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"s= 20 //ft\n",
+"u= 10 //ft/sec\n",
+"t= 1 //sec\n",
+"//CALCULATIONS\n",
+"r= s/u\n",
+"a= r*u/t\n",
+"//RESULTS\n",
+"printf (' constant accelaration= %.f ft/sec^2',a)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 9.5_2: chapter_9_5_2.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"a= 20 //ft/sec^2\n",
+"s= 20//ft\n",
+"u= 10 //ft/sec\n",
+"//CALCULATIONS\n",
+"P= a*s/u^2\n",
+"t= s*2/(u*P)\n",
+"//RESULTS\n",
+"printf (' time taken= %.f sec',t)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 9.6_1: chapter_9_6_1.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"s= 0.8\n",
+"l= 1//ft\n",
+"r= 8\n",
+"//CALCULATIONS\n",
+"Hw= (s/r)^(2/3)*l\n",
+"Qw= 1.5*Hw^(2.5)\n",
+"R= (1/Hw)^2.5\n",
+"Q= Qw*R\n",
+"//RESULTS\n",
+"printf (' depth of water= %.3f ft',Hw)\n",
+"printf (' \n rate of flow of fluid= %.1f ft^3/sec',Q)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 9.6_3: chapter_9_6_3.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"Q1= 140 //gallons\n",
+"h= 3 //in\n",
+"r= 16\n",
+"//CALCULATIONS\n",
+"H= h*r/12\n",
+"Q2= Q1*H^5\n",
+"//RESULTS\n",
+"printf (' corresponding head over the full-scale wier= %.f ft',H)\n",
+"printf (' \n discharge over the latter= %.f gal/min',Q2)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 9.7_1: chapter_9_7_1.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"r= 0.448\n",
+"R= 0.868\n",
+"r1= 0.152\n",
+"R1= 0.807\n",
+"//CALCULATIONS\n",
+"P= R^3/r^2\n",
+"U= R/r\n",
+"P1= R1^3/r1^2\n",
+"U1= R1/r1\n",
+"//RESULTS\n",
+"printf (' power ratio in case 1= %.2f ',P)\n",
+"printf (' \n velocity ratio in case 1= %.2f ',U)\n",
+"printf (' \n power ratio in case 2= %.2f ',P1)\n",
+"printf (' \n velocity ratio in case 2= %.1f ',U1)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 9.7_2: chapter_9_7_2.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"w= 1 //gf/cm^3\n",
+"Ss= 7.8\n",
+"Sl= 0.9\n",
+"D= 1 //cm\n",
+"D1= 0.1 //cm\n",
+"g= 981 //cm/sec^2\n",
+"//CALCULATIONS\n",
+"F= w*(Ss-Sl)*4*%pi*D^3/(3*8000)\n",
+"v= F*g/(3*%pi*D1*2)\n",
+"//RESULTS\n",
+"printf (' coefficient of viscosity= %.2f poise',v)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 9.7_4: chapter_9_7_4.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"T= 15 //C\n",
+"T1= -44 //C\n",
+"P= 24//atm\n",
+"s= 0.374\n",
+"m= 6 //tonf\n",
+"//CALCULATIONS\n",
+"r= ((T+273)/(T1+273))^0.75\n",
+"R= P/s\n",
+"R1= r^2/R\n",
+"F= R1*m*2240\n",
+"//RESULTS\n",
+"printf (' lift force= %.1f lbf',F)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 9.7_5: chapter_9_7_5.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"u= 80 //ft/sec\n",
+"n= 62\n",
+"r= 1/4\n",
+"v= 11 //ft^3\n",
+"w= 62.3//lbf/ft^3\n",
+"p= 2 //lbf/in^2\n",
+"//CALCULATIONS\n",
+"uw= u*n/(r*v*w)\n",
+"R= v*w*(uw/u)^2\n",
+"P= r^2*p/R\n",
+"//RESULTS\n",
+"printf (' water velocity= %.f ft/sec',uw)\n",
+"printf (' \n pressure drop= %.5f lbf/in^2 per ft',P)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 9.8_3: chapter_9_8_3.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//initialisation of variables\n",
+"N= 1800 //rev/min\n",
+"Vm= 60 //mile/hour\n",
+"V= 300 //mile/hour\n",
+"r= 10\n",
+"//CALCULATIONS\n",
+"Nm= N*Vm*r/V\n",
+"//RESULTS\n",
+"printf (' rotary speed= %.f rev/min',Nm)"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}