diff options
Diffstat (limited to 'Material_Science_by_S_L_Kakani_and_A_Kakani')
16 files changed, 3262 insertions, 0 deletions
diff --git a/Material_Science_by_S_L_Kakani_and_A_Kakani/10-Heat_Treatment.ipynb b/Material_Science_by_S_L_Kakani_and_A_Kakani/10-Heat_Treatment.ipynb new file mode 100644 index 0000000..ef9e072 --- /dev/null +++ b/Material_Science_by_S_L_Kakani_and_A_Kakani/10-Heat_Treatment.ipynb @@ -0,0 +1,60 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 10: Heat Treatment" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 10.1: Determine_the_grain_diameter_of_an_ASTM_Number_8.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Exam:10.1\n", +"clc;\n", +"clear;\n", +"close;\n", +"N=8;//ASTM grain size number\n", +"n=2^(N-1);//Number of grains per inch square at a magnification\n", +"N_1=n*100*100;//Number of grains per inch square without magnification\n", +"N_2=N_1/(25.4)^2;//Number of grains per mm square without magnification\n", +"A_a=1/(N_2);//Average area of each grain(in mm^2)\n", +"D=(A_a)^(1/2);//Average grain diameter(in mm)\n", +"disp(D,'Average grain diameter(in mm)=')" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Material_Science_by_S_L_Kakani_and_A_Kakani/11-Deformation_of_Materials.ipynb b/Material_Science_by_S_L_Kakani_and_A_Kakani/11-Deformation_of_Materials.ipynb new file mode 100644 index 0000000..ae9a34c --- /dev/null +++ b/Material_Science_by_S_L_Kakani_and_A_Kakani/11-Deformation_of_Materials.ipynb @@ -0,0 +1,134 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 11: Deformation of Materials" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 11.1: Determine_the_value_of_critical_resolved_shear_stress.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Exam:11.1\n", +"clc;\n", +"clear;\n", +"close;\n", +"h_1=1;\n", +"k_1=1;\n", +"l_1=1;\n", +"//Miller indices of slip plane\n", +"h_2=1;\n", +"k_2=-1;\n", +"l_2=1;\n", +"//Miller indices of stress plane\n", +"h_3=1;\n", +"k_3=1;\n", +"l_3=0;\n", +"//Miller indices of slip direction\n", +"A=(h_1*h_2+k_1*k_2+l_1*l_2)/(((h_1^2+k_1^2+l_1^2)^(1/2))*((h_2^2+k_2^2+l_2^2)^(1/2)));//Value of cos(x) where x =angle between slip plane and stress plane\n", +"B=(h_1*h_3+k_1*k_3+l_1*l_3)/(((h_1^2+k_1^2+l_1^2)^(1/2))*((h_3^2+k_3^2+l_3^2)^(1/2)));//Value of cos(y) where y =angle between slip direction and stress direction\n", +"C=(1-A^2)^(1/2);//Value of sin(x)\n", +"stress=3.5;//Applied Stress in Mpa\n", +"T_cr=stress*A*B*C;//Critical resolved shear stress(in MPa)\n", +"disp(T_cr,'Critical resolved shear stress(in MPa)=');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 11.3: Find_the_yield_stress.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Exam:11.3\n", +"clc;\n", +"clear;\n", +"close;\n", +"D=0.002;//Grain diameter(in mm)\n", +"d=D*10^(-3);//Grain diameter(in m)\n", +"K=0.63;//Constant(in MNm^(-3/2))\n", +"sigma_i=80;//in MNm^-2\n", +"sigma_y=sigma_i+K*d^(-1/2);//Yield stress for a polycrystalline alloy\n", +"disp(sigma_y,'Yield stress for a polycrystalline alloy(in MN/m^2)');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 11.4: Find_the_yield_stress.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Exam:11.4\n", +"clc;\n", +"clear;\n", +"close;\n", +"sigma_y1=120;//primary yield strength of polycrystalline material(in MN*m^-2)\n", +"sigma_y2=220;//increased yield strength of polycrystalline material(in MN*m^-2)\n", +"d_1=0.04*10^(-3);//primary grain diameter(in meter)\n", +"d_2=0.01*10^(-3);//grain diameter after decreasing(in meter)\n", +"//sigma_y1=sigma_i+K*(d_1)^(-1/2)\n", +"//sigma_y2=sigma_i+K*(d_2)^(-1/2)\n", +"//putting the values and solving the equation\n", +"K=(220-120)/((d_2^(-1/2))-((d_1^(-1/2))));//constant(in MN*m(-3/2))\n", +"sigma_i=sigma_y1-K*(d_1)^(-1/2);//in MN*m^-2\n", +"d=1/((10^4)*(256/645))^(1/2);//grain diameter for grain size ASTM 9(in mm)\n", +"D=d*10^(-3);//grain diameter for grain size ASTM 9(in meter)\n", +"sigma_y=sigma_i+K*(D)^(-1/2);//Yield stress for a polycrystalline alloy for grain size ASTM 9(in MN*m^-2)\n", +"disp(ceil(sigma_y),'Yield stress for a polycrystalline alloy for grain size ASTM 9(in MN*m^-2)=');" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Material_Science_by_S_L_Kakani_and_A_Kakani/12-Oxidation_and_Corrosion.ipynb b/Material_Science_by_S_L_Kakani_and_A_Kakani/12-Oxidation_and_Corrosion.ipynb new file mode 100644 index 0000000..911107f --- /dev/null +++ b/Material_Science_by_S_L_Kakani_and_A_Kakani/12-Oxidation_and_Corrosion.ipynb @@ -0,0 +1,88 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 12: Oxidation and Corrosion" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 12.1: Find_the_distance_at_which_magnisium_anode_capable_of_giving_2MA.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Exam:12.1\n", +"clc;\n", +"clear;\n", +"close;\n", +"D=320*10^-3;//in meter\n", +"L=1;//in meter\n", +"A=%pi*D*L;//Surface area in meter^2\n", +"l=ceil (200/A);\n", +"disp(l,'the distance at which magnisium anode capable of giving 2MA (in meters)=');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 12.2: Quality_of_magnesium_required_per_square_meter_of_the_hull_surface.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Exam:12.2\n", +"clc;\n", +"clear;\n", +"close;\n", +"W=0.0243;//1 mole of magnesium weight(in Kg)\n", +"C=2*96490;//used charge (in A-s)\n", +"A=15*10^(-3);//current density (in A/metre2)\n", +"t=10;//time (in years)\n", +"T=10*365*24*3600;//time (in sec)\n", +"//amount of magnesium required =charge required per m2 of hull surface for a design life of 10 years/(used charge for anode)\n", +"Mg_required=W*A*T/C;//magnesium required per square meter of the hull surface for a design life of 10 years\n", +"disp(Mg_required,'magnesium required per square meter of the hull surface for a design life of 10 years(in Kg/m2)=');" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Material_Science_by_S_L_Kakani_and_A_Kakani/13-Thermal_and_Optical_Properties_of_Materials.ipynb b/Material_Science_by_S_L_Kakani_and_A_Kakani/13-Thermal_and_Optical_Properties_of_Materials.ipynb new file mode 100644 index 0000000..aac573e --- /dev/null +++ b/Material_Science_by_S_L_Kakani_and_A_Kakani/13-Thermal_and_Optical_Properties_of_Materials.ipynb @@ -0,0 +1,59 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 13: Thermal and Optical Properties of Materials" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 13.1: EX13_1.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Exam:13.1\n", +"clc;\n", +"clear;\n", +"close; \n", +"alpha=20*10^(-6);//linear coefficient of thermal expansion per°C\n", +"Sigma=-(172);//compressive stress MPa\n", +"T=20;//Temprature at which rod is stress free(in °C)\n", +"E=100*10^3;//modulus of elasticity (in MPa)\n", +"T_f=T-(Sigma/(alpha*E));//maximum temperature the rod may be heated without exceeding a compressive stress of 172 MPa\n", +"disp(T_f,'maximum temperature(in °C) the rod may be heated without exceeding a compressive stress of 172 MPa=');" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Material_Science_by_S_L_Kakani_and_A_Kakani/14-Electrical_and_Magnetic_Properties_of_Materials.ipynb b/Material_Science_by_S_L_Kakani_and_A_Kakani/14-Electrical_and_Magnetic_Properties_of_Materials.ipynb new file mode 100644 index 0000000..fda0b08 --- /dev/null +++ b/Material_Science_by_S_L_Kakani_and_A_Kakani/14-Electrical_and_Magnetic_Properties_of_Materials.ipynb @@ -0,0 +1,300 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 14: Electrical and Magnetic Properties of Materials" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 14.1: Calculate_the_resistance_of_an_aluminium_wire.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Exam:14.1\n", +"clc;\n", +"clear;\n", +"close;\n", +"l=100;//length of wire\n", +"p=2.66*10^(-8);//resistivity\n", +"A=3*10^(-6);//cross sectional area\n", +"R=p*l/A;//resistance of an aluminium wire\n", +"disp(R,'resistance of an aluminium wire(in Ohm)=');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 14.2: EX14_2.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Exam:14.2\n", +"clc;\n", +"clear;\n", +"close;\n", +"R_Cu=1.56;//Resistivity of pure copper(in micro-ohm-cm)\n", +"R_CuNi = 4.06;//Resistivity of Cu containing two atomic percent (in micro-ohm-cm)\n", +"R_Ni=(R_CuNi-R_Cu)/2;//Increase in resistivity due to one atomic % Ni\n", +"R_CuAg= 1.7;//resistivity of copper, containing one atomic percent silver (in micro-ohm-cm)\n", +"R_Ag=R_CuAg-R_Cu;//Increase in resistivity due to one atomic % Ag\n", +"R_CuNiAg=R_Cu+R_Ni+3*R_Ag;//Resistivity of copper alloy containing one atomic percent Ni and 3 atomic percent Ag\n", +"disp(R_CuNiAg,'Resistivity of copper alloy containing one atomic percent Ni and 3 atomic percent Ag(in micro-ohm-cm)=')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 14.3: EX14_3.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Exam:14.3\n", +"clc;\n", +"clear;\n", +"close;\n", +"R_Cu=1.8*10^(-8);//resistivity of pure copper at room temperature \n", +"R_CuNi=7*10^(-8);//resistivity of Cu 4% Ni alloy at room temperature \n", +"R_Ni=(R_CuNi-R_Cu)/4;//resistivity due to Impurity scattering per % of Ni\n", +"disp(R_Ni,'resistivity due to impurity scattering per percent of Ni in the Cu lattice(in ohm-meter)=')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 14.4: Calculate_the_relative_dielectric_constant_of_a_barium_titanate_crystal.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Exam:14.4\n", +"clc;\n", +"clear;\n", +"close;\n", +"C=10^(-9);//capacitance(in F)\n", +"d=2*10^(-3);//distance of separation in a parallel plate condenser\n", +"E_o=8.854*10^(-12);//dielectric constant\n", +"A=(10*10^(-3))*(10*10^(-3));//area of parallel plate condenser\n", +"//C=E_o*E_r*A/d\n", +"E_r=C*d/(E_o*A);//Relative dielectric constant\n", +"disp(ceil(E_r),'Relative dielectric constant of a barium titanate crystal')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 14.5: Calculate_the_polarizatio.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Exam:14.5\n", +"clc;\n", +"clear;\n", +"close;\n", +"q=1.6*10^(-19);//charge (in C)\n", +"d_1=0.06//shift of the titanium ion from the body centre (in Å)\n", +"d_2=0.08//shift of the oxygen anions of the side faces (in Å)\n", +"d_3=0.06//shift of the oxygen anions of the top and bottom face (in Å) \n", +"D_1=d_1*10^(-10);//shift of the titanium ion from the body centre (in m)\n", +"D_2=d_2*10^(-10);//shift of the oxygen anions of the side faces (in m)\n", +"D_3=d_3*10^(-10);//shift of the oxygen anions of the top and bottom face (in m)\n", +"U_1=4*q*D_1;//dipole moment due to two O2– ions on the four side faces(in C-m)\n", +"U_2=2*q*D_2;//dipole moment due to one O2– on top and bottom(in C-m)\n", +"U_3=4*q*D_3;//dipole moment due to one Ti4+ ion at body centre(in C-m)\n", +"U=U_1+U_2+U_3;//Total dipole moment(in C-m)\n", +"V=4.03*((3.98)^2)*10^(-30);//volume(in m3)\n", +"P=U/V;//polarization the total dipole moments per unit volume\n", +"disp(P,'polarization(in C/m^2)=');\n", +"disp(U,'==')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 14.6: Find_net_magnetic_moment_per_iron_atom_in_the_crystal.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Exam:14.6\n", +"clc;\n", +"clear;\n", +"close;\n", +"V=((2.87)^3)*10^(-30)//Volume of unit cell of BCC iron (in m^3)\n", +"N=2//Number of atoms in the unit cell\n", +"M=1750*10^3;//saturation magnetization of BCC Iron A/m\n", +"M_Net=V*M*(1/N)//net magnetic moment per atom\n", +"Bohr_magneton=9.273*10^(-24);//Bohr_magneton (magnetic moment) in A/m2\n", +"M_moment=M_Net/Bohr_magneton;//The magnetic moment (in units of U_B)\n", +"disp(M_moment,'The magnetic moment (in units of U_B)=');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 14.7: Calculate_the_saturation_magnetization_and_the_saturation_flux_density.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Exam:14.7\n", +"clc;\n", +"clear;\n", +"close;\n", +"p=8.90*10^6;//density of nickel in gm/m3. \n", +"N_A=6.023*10^23;//Avogadro’s number atoms/mol\n", +"At_w=58.71;//Atomic weight of Ni in gm/mol\n", +"N=p*N_A/At_w;//number of atoms/m3\n", +"U_B=9.273*10^(-24);//Bohr_magneton\n", +"M_s=0.60*U_B*N;//saturation magnetization\n", +"pi=22/7;\n", +"U_o=4*pi*10^(-7);//magnetic constant\n", +"B_s=U_o*M_s;//Saturation flux density\n", +"disp(M_s,'the saturation magnetization=');\n", +"disp(B_s,'Saturation flux density=');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 14.8: Calculate_the_saturation_magnetization.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Exam:14.8\n", +"clc;\n", +"clear;\n", +"close;\n", +"//Each cubic unit cell of ferrous ferric oxide contains 8 Fe2+ and 16 Fe3+ ions and\n", +"n_b=32;//\n", +"U_B=9.273*10^(-24);//Bohr_magneton\n", +"a=0.839*10^(-9);//the unit cell edge length in m\n", +"V=a^3;//volume(in m3)\n", +"M_s=n_b*U_B/V;//the saturation magnetization\n", +"disp(M_s,'the saturation magnetization=');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 14.9: Calculate_eddy_current_loss_at_the_normal_voltage_and_frequency.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Exam:14.9\n", +"clc;\n", +"clear;\n", +"close;\n", +"//hysteresis loss (Ph) and the induced emf loss (Pe) are proportional to the frequency\n", +"//Pe is proportional to the square of the induced emf (Pe)\n", +"//Pe + Ph = 750 W (at 25 Hz)\n", +"//4Pe + 2Ph = 2300 W(at 50Hz)\n", +"//solving equation\n", +"P_e=800/2;//induced emf loss \n", +"I_d=4*P_e;//The eddy current loss at the normal voltage and frequency\n", +"disp(I_d,'The eddy current loss at the normal voltage and frequency(in W)=');" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Material_Science_by_S_L_Kakani_and_A_Kakani/15-Semiconductors.ipynb b/Material_Science_by_S_L_Kakani_and_A_Kakani/15-Semiconductors.ipynb new file mode 100644 index 0000000..d8fbd47 --- /dev/null +++ b/Material_Science_by_S_L_Kakani_and_A_Kakani/15-Semiconductors.ipynb @@ -0,0 +1,153 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 15: Semiconductors" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 15.1: Find_the_conductivity_and_resistivity_of_a_pure_silicon_crystal.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Exam:15.1\n", +"clc;\n", +"clear;\n", +"close;\n", +"U_n=1350//mobility of electron in cm2/volt-sec \n", +"U_h=480//hole mobility in cm2/volt-sec\n", +"Sigma=1.072*10^10//density of electron hole pair per cc at 300°K for a pure silicon crystal\n", +"e=1.6*10^(-19);//charge on the electron in C\n", +"Sigma_i=Sigma*e*(U_n+U_h);//Conductivity of pure silicon crystal\n", +"p_i=1/(Sigma_i);//Resistivity of silicon crystal in Ohm-cm\n", +"P_i=p_i*10^(-2);//Resistivity of silicon crystal in Ohm-m\n", +"disp(Sigma_i,'Conductivity of pure silicon crystal(in mho/cm)=');\n", +"disp(P_i,'Resistivity of silicon crystal (in Ohm-m)=');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 15.2: Find_the_resistivity_at_room_temperature.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Exam:15.2\n", +"clc;\n", +"clear;\n", +"close;\n", +"U=1200;//electron mobility in cm2/Volt-sec\n", +"e=1.6*10^(-19);//charge on the electron in C\n", +"n=10^13;//concentration of phosphorus\n", +"sigma=U*e*n;//conductivity of crystal in mho/cm\n", +"p_i=1/sigma;//resistivity of silicon wafer if all donor atom are active\n", +"disp(p_i,'resistivity of silicon wafer if all donor atom are active(in ohm-cm)=');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 15.3: Find_the_resistance_of_an_intrinsic_germanium_rod.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Exam:15.3\n", +"clc;\n", +"clear;\n", +"close;\n", +"U_n=3900//mobility of electron in cm2/volt-sec \n", +"U_h=1900//hole mobility in cm2/volt-sec\n", +"n_i=2.5*10^13;//concentration of electron\n", +"u_n=U_n*10^(-4);//mobility of electron in m2/volt-sec \n", +"u_h=U_h*10^(-4);//hole mobility in m2/volt-sec\n", +"e=1.6*10^(-19);//charge on the electron in C\n", +"Sigma_i=n_i*e*(u_n+u_h)*10^6;//Conductivity\n", +"p_i=1/(Sigma_i);//resistivity of intrinsic germanium rod\n", +"l=1*10^(-2);//length of germanium rod in m\n", +"w=1*10^(-3);//width of germanium rod in m\n", +"t=1*10^(-3);//thick of germanium rod in m\n", +"A=w*t;//Area of cross section in m2\n", +"R=p_i*l/A;//Resistance of an intrinsic germanium rod in Ohm\n", +"disp(R/10^3,'Resistance of an intrinsic germanium rod (in K-Ohm)=');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 15.4: Obtain_density_relation_in_P_type_material.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Exam:15.4\n", +"clc;\n", +"clear;\n", +"close;\n", +"N_a=1.1*10^20;//acceptor density in atoms/m3\n", +"n_i=2.5*10^19;//concentration of majority carrier per m3 \n", +"n_p=(n_i^2)/N_a;//intrinsic density \n", +"R=n_p/n_i;//Ratio of n_p and n_i\n", +"disp(R,'n_p/n_i=');" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Material_Science_by_S_L_Kakani_and_A_Kakani/16-Superconductivity_and_Superconducting_Materials.ipynb b/Material_Science_by_S_L_Kakani_and_A_Kakani/16-Superconductivity_and_Superconducting_Materials.ipynb new file mode 100644 index 0000000..6a8cc92 --- /dev/null +++ b/Material_Science_by_S_L_Kakani_and_A_Kakani/16-Superconductivity_and_Superconducting_Materials.ipynb @@ -0,0 +1,63 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 16: Superconductivity and Superconducting Materials" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 16.1: Energy_gap_in_electron_volts_and_Calculate_the_wavelength_of_a_photon.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Exam:16.1\n", +"clc;\n", +"clear;\n", +"close;\n", +"T_c=4.2;//critical temperature of mercury\n", +"k=1.4*10^(-23);//\n", +"E_g=3*k*T_c;//energy gap (in Joule)\n", +"e=1.6*10^(-19);//charge on the electron \n", +"E=E_g/e;//energy gap (in electron volt)\n", +"h=6.6*10^(-34)// in J-s\n", +"c=3*10^8;//in m/s\n", +"wavelength=h*c/E_g;//wavelength of a photon (in m)\n", +"disp(E,'energy gap (in electron volt)=');\n", +"disp(wavelength,'wavelength of a photon (in m)=');" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Material_Science_by_S_L_Kakani_and_A_Kakani/18-Composites.ipynb b/Material_Science_by_S_L_Kakani_and_A_Kakani/18-Composites.ipynb new file mode 100644 index 0000000..df51480 --- /dev/null +++ b/Material_Science_by_S_L_Kakani_and_A_Kakani/18-Composites.ipynb @@ -0,0 +1,87 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 18: Composites" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 18.1: Calculate_the_modulus_of_elasticity.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Exam:18.1\n", +"clc;\n", +"clear;\n", +"close;\n", +"E_f=69;//modulus of elasticity in GPa\n", +"V_f=40/100;//Volume of glass fibres %\n", +"E_m=3.4;//modulus (in GPa)\n", +"V_m=60/100;//Volume of polyester resin %\n", +"E_cl=E_m*V_m+E_f*V_f;//modulus of elasticity (in Gpa)\n", +"disp(ceil(E_cl),'modulus of elasticity(in Gpa)=');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 18.2: EX18_2.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Exam:18.2\n", +"clc;\n", +"clear;\n", +"close;\n", +"E_f=69;//modulus of elasticity in GPa\n", +"V_f=40/100;//Volume of glass fibres %\n", +"E_m=3.4;//modulus (in GPa)\n", +"V_m=60/100;//Volume of polyester resin %\n", +"E_cl=E_m*E_f/(E_m*V_f+E_f*V_m);//modulus of elasticity when the stress is applied perpendicular to the direction of the fibre alignment(in Gpa)\n", +"disp(E_cl,'modulus of elasticity when the stress is applied perpendicular to the direction of the fibre alignment(in Gpa)=');" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Material_Science_by_S_L_Kakani_and_A_Kakani/2-Atomic_structure_and_electronic_configuration.ipynb b/Material_Science_by_S_L_Kakani_and_A_Kakani/2-Atomic_structure_and_electronic_configuration.ipynb new file mode 100644 index 0000000..698ddc7 --- /dev/null +++ b/Material_Science_by_S_L_Kakani_and_A_Kakani/2-Atomic_structure_and_electronic_configuration.ipynb @@ -0,0 +1,384 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 2: Atomic structure and electronic configuration" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.13: Weight_of_copper_atom_and_weight_of_one_proton.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Exam:2.13\n", +"clc;\n", +"clear;\n", +"close;\n", +"At_w=63.54;//atomic weight of copper\n", +"N=6.023*10^23;//avogadro's number\n", +"W_a=At_w/N;//weight of one atom(in gm)\n", +"W_p=W_a/63;//weight of one proton(in gm)\n", +"disp(W_a,'weight of one atom(in gm)=');\n", +"disp(W_p,'weight of one proton(in gm)=');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.15: percentage_of_Si_in_Copper_silicide.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Exam:2.15\n", +"clc;\n", +"clear;\n", +"close;\n", +"Atw_Cu=63.54;//atomic weight of copper\n", +"Atw_Si=28.09;//atomic weight of silicon\n", +"// 5 atoms of copper working in Cu_5_Si\n", +"Tw_Cu=5*Atw_Cu;//total weight of copper used in copper silicide\n", +"Tw_Si=Atw_Si;//total weight of silicon used in copper silicide\n", +"Percentage=(Tw_Si/(Tw_Cu+Tw_Si))*100;//percentage of Si in Copper silicide\n", +"disp(Percentage,'percentage of Si in Copper silicide(Cu_5_Si)=')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.1: Distance_of_the_closest_approach_alpha_particles_from_the_copper_nucleus.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Exam:2.1\n", +"clc;\n", +"clear;\n", +"close;\n", +"Eg_k=5;//kinetic energy of alpha particles(in MeV)\n", +"Eg_K=5*(10^6)*1.6*(10^-19);//kinetic energy of alpha particles(in J)\n", +"mv2=2*Eg_K;\n", +"pi=22/7;\n", +"phi=180;//firing angle\n", +"Z=29;//Atomic number\n", +"e=1.6*(10^-19);//electron charge(in C)\n", +"Eo=8.85*10^-12;//permittivity of free space\n", +"d=(Z*e^2/(2*pi*Eo*mv2))*(1+cscd(90))//;\n", +"disp(d,'distance of the closest approach alpha particles from the copper nucleus(in meter)=');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.2: radius_and_frequency_of_an_electron_in_the_bohr_first_orbit_in_hydrogen_atom.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Exam:2.2\n", +"clc;\n", +"clear;\n", +"close;\n", +"e=1.6*10^(-19);//electron charge(in C)\n", +"m=9.1*10^(-31);//mass of electron(in Kg)\n", +"E_o=8.854*10^(-12);//permittivity of free space\n", +"h=6.625*10^(-34);//Planck constant\n", +"n=1;//Orbit number\n", +"Z=1;//atomic number\n", +"pi=22/7;\n", +"r_1=(E_o*h^2)/(pi*m*e^2);//first orbit radius of hydrogen atom\n", +"disp(r_1,'first orbit radius of hydrogen atom(in m)=');\n", +"Freq=m*(Z^2)*(e^4)/(4*(E_o^2)*(n^3)*h^3);//\n", +"disp(Freq,'Orbital frequency of electron(in Hz)=');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.3: radius_of_the_second_bohr_orbit_in_a_singly_ionized_helium_atom.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Exam:2.3\n", +"clc;\n", +"clear;\n", +"close;\n", +"Z_1=1;//atomic number for hydrogen\n", +"n_1=1;//first orbit\n", +"r_1=0.529;//radius of first orbit of electron for hydrogen \n", +"Z_2=2;//atomic number for helium\n", +"n_2=2;//second orbit\n", +"k=r_1*Z_1/n_1;\n", +"r_2=k*((n_2)^2)/Z_2;//radius of first orbit of electron for helium\n", +"disp(r_2,'radius of the second bohr orbit in a singly ionized helium atom(in A)=');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.4: Calculate_the_unit_cell_dimensions_and_atomic_diameter.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Exam:2.4\n", +"clc;\n", +"clear;\n", +"close;\n", +"n_1=1;//first orbit\n", +"n_2=2;//second orbit\n", +"n_3=3;//third orbit\n", +"//E_1=-13.6*(Z^2)/(1^2);\n", +"//E_2=-13.6*(Z^2)/(2^2);\n", +"//E_3=-13.6*(Z^2)/(3^2);\n", +"//E_3-E_1=-13.6*(Z^2)*(-8/9);\n", +"//E_2-E_1=-13.6*(Z^2)*(-3/4);\n", +"E_1=-13.6/(1^2);//energy of electron in the first bohr orbit of an atom\n", +"E_2=-13.6/(2^2);//energy of electron in the second bohr orbit of an atom\n", +"E_3=-13.6/(3^2);//energy of electron in the third bohr orbit of an atom\n", +"disp((E_3-E_1)/(E_2-E_1),'ratio of energy released =');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.5: EX2_5.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Exam:2.5\n", +"clc;\n", +"clear;\n", +"close;\n", +"m=9.1*10^(-31);//electron mass (in Kg)\n", +"Z=1;//atomic number\n", +"e=1.6*10^(-19);//electron charge(in C)\n", +"E_o=8.25*10^(-12);//permittivity of free space\n", +"n=1;//first bohr orbit\n", +"h=6.63*10^(-34);//planck constant\n", +"R_ps=m*(e^4)/(4*(E_o^2)*(h^3));//number of revolutions per second\n", +"disp(R_ps,'revolutions per second of an electron in the bohr orbit of hydrogen atom=');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.6: orbital_frequency_of_an_electron_in_the_first_bohr_orbit_in_a_hydrogen_atom.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Exam:2.6\n", +"clc;\n", +"clear;\n", +"close;\n", +"n=1;//first bohr orbit\n", +"Z=1;//atomic number\n", +"m=9.1*10^(-31);//electron mass in Kg.\n", +"e=1.6*10^(-19);//electron charge(in C)\n", +"E_o=8.85*10^(-12);//permittivity of free space\n", +"h=6.63*10^(-34);//planck constant\n", +"v_n=m*(Z^2)*(e^4)/(4*(E_o^2)*(h^3)*(n^3));//orbital frequency of an electron in the first bohr orbit in a hydrogen atom\n", +"disp(v_n,'orbital frequency of an electron in the first bohr orbit in a hydrogen atom(in Hz)=');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.7: kinetic_energy_potential_energy_and_total_energy_of_an_electron.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Exam:2.7\n", +"clc;\n", +"clear;\n", +"close;\n", +"m=9.11*10^-31;//mass of electron(in Kg)\n", +"Z=1;//atomic number\n", +"n=1;//first bohr orbit\n", +"E_o=8.854*10^-12;//permittivity of free space\n", +"h=6.62*10^-34;//planck constant\n", +"e=1.6*10^-19;//electron charge(in C)\n", +"E_k=(m*(Z^2)*(e^4))/(8*(E_o^2)*(n^2)*(h^2));//Kinetic energy(in joule)\n", +"E=E_k/e;//Kinetic energy(in eV)\n", +"E_t=-13.6*(Z^2/n^2);//Total Energy(in eV)\n", +"E_p=E_t-E;//Potential energy(in eV)\n", +"disp(E_t,'Total energy(in eV)=');\n", +"disp(E,'kinetic energy(in eV)=');\n", +"disp(E_p,'potential energy(in eV)=');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.8: velocity_of_an_electron_in_hydrogen_atom_in_bohr_first_orbit.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Exam:2.8\n", +"clc;\n", +"clear;\n", +"close;\n", +"h=6.626*10^-34;//planck constant\n", +"E_o=8.825*10^-12;//permittivity of free space\n", +"e=1.6*10^-19;//electron charge(in C)\n", +"n=1;//first bohr orbit\n", +"Z=1;//atomic number\n", +"v=Z*(e^2)/(2*E_o*n*h);//velocity of electron in hydrogen atom in bohr first orbit\n", +"disp(v,'velocity of electron in hydrogen atom in bohr first orbit(in meter/sec)=');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.9: principal_quantum_number_and_wavelengths_of_radiation_in_both_energies.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Exam:2.9\n", +"clc;\n", +"clear;\n", +"close;\n", +"n_1=1;//electron excited from ground state\n", +"h=6.62*10^-34;//Planck constant\n", +"c=3*10^8;//speed of light\n", +"E_o=8.825*10^-12;//permittivity of free space\n", +"e=1.6*10^-19;//electron charge(in C)\n", +"m=9.11*10^-31;//mass of electron(in Kg)\n", +"E_1=10.2;//energy excites the hydrogen from ground level(in eV)\n", +"K=m*e^4/(8*(E_o^2)*(h^2))//in joule\n", +"K_e=K/e;//in eV\n", +"//E_1=K_e*((1/n_1^2)-(1/n^2))\n", +"//1/(n^2)=1/(n_1^2)-E_1/K_e\n", +"//n^2=1/(1/(n_1^2)-E_1/K_e)\n", +"n=(1/(1/(n_1^2)-E_1/K_e))^(1/2);//principal quntum number when 10.2 eV energy excites electron\n", +"disp(ceil(n),'principal quntum number when 10.2 eV energy excites electron=');\n", +"W_1=h*c/(E_1*e)*10^10;//wavelength of radiation when 10.2 eV energy excites electron\n", +"disp(W_1,'wavelength of radiation when 10.2 eV energy excites electron(in A)=')\n", +"E_2=12.09;//energy excites the hydrogen from ground level(in eV)\n", +"n_2=(1/(1/(n_1^2)-E_2/K_e))^(1/2);//principal quntum number when 12.09 eV energy excites electron\n", +"W_2=h*c/(E_2*e)*10^10;//wavelength of radiation when 12.09 eV energy excites electron\n", +"disp(ceil(n_2),'principal quntum number when 12.09 eV energy excites electron=')\n", +"disp(W_2,'wavelength of radiation when 12.09 eV energy excites electron(in A)=')" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Material_Science_by_S_L_Kakani_and_A_Kakani/3-Crystal_Geometry_Structure_and_Defects.ipynb b/Material_Science_by_S_L_Kakani_and_A_Kakani/3-Crystal_Geometry_Structure_and_Defects.ipynb new file mode 100644 index 0000000..7ba9e91 --- /dev/null +++ b/Material_Science_by_S_L_Kakani_and_A_Kakani/3-Crystal_Geometry_Structure_and_Defects.ipynb @@ -0,0 +1,674 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 3: Crystal Geometry Structure and Defects" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.10: Find_the_angle_Between_normals_to_the_planes.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Exam:3.10\n", +"clc;\n", +"clear;\n", +"close;\n", +"//Miller indices of plane\n", +"h_1=1;\n", +"k_1=1;\n", +"l_1=1;\n", +"h_2=1;\n", +"k_2=2;\n", +"l_2=1;\n", +"angle=acosd((h_1*h_2+k_1*k_2+l_1*l_2)/(((h_1^2+k_1^2+l_1^2)^(1/2))*((h_2^2+k_2^2+l_2^2)^(1/2))));\n", +"disp(angle,'angle Between normals to the planes (111) and (121)(in degrees)=');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.11: Determine_the_packing_efficiency_and_density_of_sodium_chloride.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Exam:3.11\n", +"clc;\n", +"clear;\n", +"close;\n", +"r_Na=0.98;//Radius of Na+(in A)\n", +"r_Cl=1.81;//Radius of Cl-(in A)\n", +"a=2*(r_Na+r_Cl);//Lattice parameter (in A)\n", +"pi=22/7;\n", +"V_i=4*(4/3)*pi*((r_Na^3)+(r_Cl^3));//Volume of ions present in unit cell\n", +"V_u=a^3;//Volume of unit cell\n", +"Apf=V_i/V_u;//Atomic packing fraction\n", +"Ef_p=(Apf)*100;//Packing efficiency(in %)\n", +"AM_sodium=22.99;//Atomic mass of sodium(in amu)\n", +"AM_chlorine=35.45;//Atomic mass of chlorine(in amu)\n", +"M_1=4*(AM_sodium+AM_chlorine)*1.66*10^(-27);//Mass of the unit cell\n", +"a_1=a*10^(-10);//Lattice parameter (in meter)\n", +"V_u1=(a_1)^3;\n", +"Density=M_1/V_u1;\n", +"disp(Ef_p,'Packing efficiency of sodium chloride(in %)=');\n", +"disp(Density,'density of sodium chloride(in Kg/m3)=');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.12: Calculate_the_unit_cell_dimensions_and_atomic_diameter.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Exam:3.12\n", +"clc;\n", +"clear;\n", +"close;\n", +"Density=2.7;//(in g/cm^3)\n", +"n=4;\n", +"m=26.98;//atomic weight of Al\n", +"N_a=6.023*10^(23);//avogadro number\n", +"a=((n*m/(Density*N_a))^(1/3));//Lattice parameter(in Cm)\n", +"A=a*10^(8);//Lattice parameter(in A)\n", +"disp(A,'radius(in A)=');\n", +"r=A/(2*1.414);//radius for fcp structure\n", +"disp(2*r,'Diameter(in A)=');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.13: Calculate_the_interplaner_distance.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Exam:3.13\n", +"clc;\n", +"clear;\n", +"close;\n", +"r=1.245;//radius of nickel (in A)\n", +"a=4*r/(2)^(1/2);//Lattice constant(in A)\n", +"//Miller indices of plane 200\n", +"h_1=2;\n", +"k_1=0;\n", +"l_1=0;\n", +"//Miller indices of plane 111\n", +"h_2=1;\n", +"k_2=1;\n", +"l_2=1;\n", +"d_200=a/((h_1^2)+(k_1^2)+(l_1^2))^(1/2);\n", +"d_111=a/((h_2^2)+(k_2^2)+(l_2^2))^(1/2);\n", +"disp(d_200,'interplaner distance of (200) plane of nickel crystal(in A)=');\n", +"disp(d_111,'interplaner distance of (111) plane of nickel crystal(in A)=');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.14: Find_the_number_of_atoms_per_mm2.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Exam:3.14\n", +"clc;\n", +"clear;\n", +"close;\n", +"a=3.03*10^(-7);//lattice constant(in mm)\n", +"N_100=1/(a^2);//Number of atoms in the (100) plane of a simple cubic structure\n", +"N_110=0.707/(a^2);//Number of atoms in the (110) plane of a simple cubic structure\n", +"N_111=0.58/(a^2);//Number of atoms in the (111) plane of a simple cubic structure\n", +"disp(N_100,'Number of atoms in the (100) plane of a simple cubic structure(in per mm^2)=');\n", +"disp(N_110,'Number of atoms in the (110) plane of a simple cubic structure(in per mm^2)=');\n", +"disp(N_111,'Number of atoms in the (111) plane of a simple cubic structure(in per mm^2)=');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.15: Determine_the_planer_density_of_Ni.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Exam:3.15\n", +"clc;\n", +"clear;\n", +"close;\n", +"r=1.245*10^(-7);//Radius of the Ni atom(in mm)\n", +"NA_100=1+(1/4)*4;//Numbers of atom in (100) plane\n", +"a=4*r/(2)^(1/2);//Lattice constant(in mm)\n", +"Area=a^2;\n", +"P_density=NA_100/Area;\n", +"disp(P_density,'the planer density of Ni (in atoms per mm^2)=');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.16: Calculate_the_planar_atomic_densities_of_planes.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Exam:3.16\n", +"clc;\n", +"clear;\n", +"close;\n", +"N_a1=4*(1/4)+1;//Number of atoms contained in (100) plane\n", +"r=1.75*10^(-7);//radius of lead atom (in mm)\n", +"a_1=2*2^(1/2)*r;//edge of unit cell in case of (100) plane\n", +"PD_100=N_a1/(a_1^2);//Planar density of plane (100)\n", +"N_a2=4*(1/4)+2*(1/2);//Number of atoms contained in (110) plane\n", +"a_21=4*r;//top edge of the plane (110)\n", +"a_22=2*2^(1/2)*r;//vertical edge of the plane (110)\n", +"PD_110=N_a2/(a_21*a_22);//Planar density of plane (110)\n", +"N_a3=3*(1/6)+3/2;//Number of atom contained in (111) plane\n", +"Ar_111=4*(3^(1/2))*r^2;//area of (111) plane\n", +"PD_111=N_a3/Ar_111;//Planar density of plane (111)\n", +"disp(PD_100,'Planar density of plane 100(in atoms/mm^2)=');\n", +"disp(PD_110,'Planar density of plane 110(in atoms/mm^2)=');\n", +"disp(PD_111,'Planar density of plane 111(in atoms/mm^2)=');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.17: Calculate_the_linear_atomic_densities_of_planes.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Exam:3.17\n", +"clc;\n", +"clear;\n", +"close;\n", +"N_a1=(1/2)+1+(1/2);//Number of diameters of atom along (110) direction\n", +"a=3.61*10^(-7);//lattice constant of copper in mm\n", +"L_d1=2^(1/2)*a;//length of the face diagonal in case of (110) direction\n", +"p_110=N_a1/L_d1;//linear atomic density along (110) of copper crystal lattice(in atoms/mm)\n", +"N_a2=(1/2)+(1/2);//Number of diameters of atom along (111) direction\n", +"L_d2=3^(1/2)*a;//length of the face diagonal in case of (111) direction\n", +"p_111=N_a2/L_d2;//linear atomic density along (110) of copper crystal lattice(in atoms/mm)\n", +"disp(p_110,'linear atomic density along (110) of copper crystal lattice(in atoms/mm)=');\n", +"disp(p_111,'linear atomic density along (111) of copper crystal lattice(in atoms/mm)=');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.18: Find_lattice_constant.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Exam:3.18\n", +"clc;\n", +"clear;\n", +"close;\n", +"A=55.8;//atomic weight of Fe\n", +"n=2;//number of atoms per unit cell\n", +"N=6.02*10^(26);//Avogadro's number\n", +"p=7.87*10^3;//density of Fe(in kg/m^3)\n", +"a=((A*n/(N*p))^(1/3))*10^10;//Value of lattice constant\n", +"disp(a,'Value of lattice constant(in A)=');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.19: Find_the_numbers_of_atoms_per_unit_cell.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Exam:3.19\n", +"clc;\n", +"clear;\n", +"close;\n", +"a=2.9*10^(-10);//lattice parameter(in m)\n", +"A=55.8;//atomic weight of Fe\n", +"N=6.02*10^(26);//Avogadro's number\n", +"p=7.87*10^3;//density of Fe(in kg/m^3\n", +"n=(a^3)*N*p/A;//Numbers of atoms per unit cell\n", +"disp(floor(n),'Numbers of atoms per unit cell=');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.20: Calculate_the_line_energy_of_disslocation_in_bcc_iron.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Exam:3.20\n", +"clc;\n", +"clear;\n", +"close;\n", +"a=2.87*10^(-10);//lattice parameter for bcc iron\n", +"b=a*(3^(1/2))/2;//Magnitude of burgers vector\n", +"u=80*10^9;//shear modulus\n", +"E=(1/2)*u*b^2;//line energy of disslocation\n", +"disp(E,'line energy of disslocation(in J/m)=');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.22: Calculate_the_number_of_vacancies.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Exam:3.22\n", +"clc;\n", +"clear;\n", +"close;\n", +"N=6.023*10^23;//avogadro number\n", +"T=1000;//absolute temperature\n", +"R=8.314;//constant\n", +"H_f=100*1000;//enthalpy of formation of vacancies(in J/mol)\n", +"n=N*exp(-(H_f)/(R*T));//number of vacancies created during heating(in per mol)\n", +"V=5.5*10^(-6);//volume of 1 mole of the crystal in m^3\n", +"n_1=n/V;//number of vacancies created during heating(in per m^3)\n", +"disp(n_1,'number of vacancies created during heating(in per m^3)=');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.23: Calculate_the_surface_energy_of_copper.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Exam:3.23\n", +"clc;\n", +"clear;\n", +"close;\n", +"//bond energy per atom of copper=bond energy per bond*numbers of bond per atom*(1/2)\n", +"A=56.4*1000;//\n", +"N=6.023*10^23;//avogadro number\n", +"n_1=12;//numbers of bond per atom\n", +"n_2=3;//bonds broken at the surface\n", +"E=A*n_1/(2*N);//Energy of total bonds\n", +"E_b=E*(n_2/n_1);//Energy of broken bonds on surface\n", +"disp(E_b,'E_b');\n", +"n_a=1.77*10^19;//no. of atoms on {111} planes in copper(in m^-2)\n", +"E_c=n_a*E_b;//Surface energy (enthalpy) of copper\n", +"disp(E_c,'Surface energy (enthalpy) of copper(in J/m^2)=');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.24: Calculate_the_equilibrium_concentration_of_vacancies_in_aluminium.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Exam:3.24\n", +"clc;\n", +"clear;\n", +"close;\n", +"H_f=68*1000;//enthalpy of formation of vacancies(in J/mol)\n", +"T_1=0;//temp (in K)\n", +"T_2=300;//temp (in K)\n", +"R=8.314;//constant\n", +"n=exp(-H_f/(R*T_2));//equilibrium concentration of vacancies in aluminium at 300 K\n", +"disp(n,'equilibrium concentration of vacancies in aluminium at 300 K=');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.25: Determine_the_interplanar_spacing.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Exam:3.25\n", +"clc;\n", +"clear;\n", +"close;\n", +"Wavelength=1.54*10^(-10);//in meter\n", +"Angle=20.3;//in degree\n", +"n=1;//First order\n", +"d=Wavelength*n/(2*sind(Angle));//the interplanar spacing(in Meter)\n", +"disp(d/(10^-10),'the interplanar spacing between atomic plane(in A)=');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.26: Calculate_the_size_of_unit_cell.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Exam:3.26\n", +"clc;\n", +"clear;\n", +"close;\n", +"wavelength=0.58;//in Angstrom\n", +"angle=9.5;//in degree\n", +"n=1;//First order\n", +"d_200=wavelength*n/(2*sind(angle));//interplanar spacing(in Angstrom)\n", +"//Miller indices of plane\n", +"h=2;\n", +"k=0;\n", +"l=0;\n", +"a=d_200*(h^2+k^2+l^2)^(1/2);//Size of unit cell(in Angstrom)\n", +"disp(a,'Size of unit cell(in Angstrom)=');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.27: Calculate_the_Bragg_angle.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Exam:3.27\n", +"clc;\n", +"clear;\n", +"close;\n", +"//Miller indices of plane\n", +"h=1;\n", +"k=1;\n", +"l=1;\n", +"wavelength=0.54;//in angstrom\n", +"a=3.57;//size of a cube\n", +"n=1;\n", +"d_111=a/(h^2+k^2+l^2)^(1/2);//interplanar spacing(in Angstrom)\n", +"angle=asind(n*wavelength/(2*d_111));\n", +"disp(angle,'Bragg angle(in degree)=');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.28: Calculate_the_bragg_reflection_index.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Exam:3.28\n", +"clc;\n", +"clear;\n", +"close;\n", +"d=1.181;//\n", +"wavelength=1.540;//in angstrom\n", +"angle=90;//in degree\n", +"n=2*d*sind(angle)/(wavelength);//the bragg reflection index\n", +"disp(n,'bragg reflection index for BCC crystal=');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.29: Calculate_the_angle_for_3rd_order_reflection.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Exam:3.29\n", +"clc;\n", +"clear;\n", +"close;\n", +"n_1=1;//1st order reflection index\n", +"angle_1=10;//1st order reflection angle\n", +"n_3=3;//3rd order reflection index\n", +"//sind(angle_1)/sind(angle_3)=n_1/n_3\n", +"angle_3=asind(n_3*sind(angle_1)/n_1);//\n", +"disp(angle_3,'3rd order reflection angle=')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.30: Obtain_the_interplanar_spacing_and_miller_indices_of_the_reflection_plane.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Exam:3.30\n", +"clc;\n", +"clear;\n", +"close;\n", +"angle=20.3;//in degree\n", +"wavelength=1.54;//in angstrom\n", +"n=1;\n", +"a=3.16;//lattice parameter in angstrom\n", +"d=n*wavelength/(2*sind(angle));//interplanar spacing\n", +"M_indices=a^2/(d^2);\n", +"disp(d,'interplanar spacing of reflection plane');\n", +"disp(floor(M_indices),'miller indices of the reflection plane');\n", +"disp((101),(110),(011));" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.31: Determine_interatomic_spacing.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Exam:3.31\n", +"clc;\n", +"clear;\n", +"close;\n", +"//Miller indices of plane\n", +"n=1;\n", +"h=1;\n", +"k=1;\n", +"l=1;\n", +"angle=30;//in degree\n", +"wavelength=2;//in angstrom\n", +"d=n*wavelength/(2*sind(angle));//interplanar spacing\n", +"a=d*(h^2+k^2+l^2)^(1/2);//interatomic spacing\n", +"disp(a,'interatomic spacing(in angstrom)=');" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Material_Science_by_S_L_Kakani_and_A_Kakani/4-Bonds_in_solid.ipynb b/Material_Science_by_S_L_Kakani_and_A_Kakani/4-Bonds_in_solid.ipynb new file mode 100644 index 0000000..f00d0ee --- /dev/null +++ b/Material_Science_by_S_L_Kakani_and_A_Kakani/4-Bonds_in_solid.ipynb @@ -0,0 +1,217 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 4: Bonds in solid" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 4.1: distance_at_which_the_dissociation_occurs.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Exam:4.1\n", +"clc;\n", +"clear;\n", +"close;\n", +"r_o=2.8//interatomic distance in Å\n", +"R_o=2.8*10^(-10);//interatomic distance in m\n", +"u_o=8;//released energy in eV\n", +"e=1.6*10^(-19);//charge of electron in C\n", +"U_o=8*e//released energy in Joule\n", +"A=(5/4)*U_o*(R_o^2);//proportionality constant for attraction in J-m2\n", +"B=A*(R_o^8)/5;//proportionality constant for repulsion in J-m2\n", +"r_c=(110*B/(6*A))^(1/8);//interatomic distance at which the dissociation occurs in m\n", +"F=-(2/r_c^3)*(A-5*B/(r_c^8));//the force required to dissociate the molecule in N\n", +"disp(A,'proportionality constant for attraction (in J-m2)=');\n", +"disp(B,'proportionality constant for repulsion (in J-m2)=');\n", +"disp(r_c,'interatomic distance at which the dissociation occurs (in m)=');\n", +"disp(F,'the force required to dissociate the molecule (in N)=');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 4.2: Find_the_repulsive_exponent_n.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Exam:4.2\n", +"clc;\n", +"clear;\n", +"close;\n", +"r_o=3.14;//nearest neighbour equilibrium distance in Å\n", +"R_o=3.14*10^(-10);//nearest neighbour equilibrium distance in m\n", +"K=5.747*10^(-11);//compressibility of KCl in m2/N\n", +"M=1.748;//Madelung constant\n", +"pi=22/7;\n", +"E_o=8.854*10^(-12);\n", +"q=1.6*10^(-19);//electron charge\n", +"n=1+18*(R_o^4)*4*pi*E_o/(K*M*q^2);\n", +"disp(n,'repulsive exponent n=');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 4.3: Find_the_radius_of_Cl_ion.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Exam:4.3\n", +"clc;\n", +"clear;\n", +"close;\n", +"F_1=3.02*10^(-9);//force of attraction b/w ions of Na+ and Cl-\n", +"Z_1=+1;\n", +"Z_2=-1;\n", +"e=1.6*10^(-19);\n", +"E_o=8.854*10^-12;\n", +"pi=22/7;\n", +"r_Na=0.95;//ionic radius of Na+ ion\n", +"r=(-Z_1*Z_2*e^2/(4*pi*E_o*F_1))^(1/2);//Radius of ion in meter\n", +"R=r/10^(-10);//Radius of ion in Angstrom\n", +"r_Cl=(R-r_Na);//Radius of Cl- ion in Angstrom\n", +"disp(r_Cl,'Ionic Radius of Cl- ion (in Angstrom)=');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 4.4: force_of_attraction_between_ions.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Exam:4.4\n", +"clc;\n", +"clear;\n", +"close;\n", +"Z_1=+2;\n", +"Z_2=-2;\n", +"r_Mg=0.65;//radius of Mg++ ion\n", +"r_S=1.84;//radius of S-- ion\n", +"r=r_Mg+r_S;//net radius(in Angstrom)\n", +"R=r*10^(-10);//net radius(in meter)\n", +"e=1.6*10^(-19);\n", +"E_o=8.854*10^-12;\n", +"pi=22/7;\n", +"F=-Z_1*Z_2*e^2/(4*pi*E_o*R^2);//force of attraction between ions(in Newton)\n", +"disp(F,'force of attraction between ions(in Newton)=');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 4.5: How_much_net_energy_is_spent_in_the_process.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Exam:4.5\n", +"clc;\n", +"clear;\n", +"close;\n", +"//Na atom requires +5.14 eV of energy. When this electron is transferred to a vacant position,it gives back –4.02 eV of energy\n", +"E_1=+5.14;//in eV\n", +"E_2=-4.02;//in eV\n", +"NET_energy=E_1+E_2;//in eV\n", +"disp(NET_energy,'Net spent energy in whole process(in eV)=')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 4.6: Estimate_the_fraction_of_hydrogen_bonds_that_are_broken_when_ice_melts.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Exam:4.6\n", +"clc;\n", +"clear;\n", +"close;\n", +"Enthalpy=6.02;//enthalpy of fusion of ice is 6.02 kJ/mol\n", +"E_h=20.5;//Hydrogen bond energy (in kJ/mol)\n", +"//There are two moles of hydrogen bonds per mole of H2O in ice.\n", +"H_b=Enthalpy/(2*E_h);//the fraction of hydrogen bonds that are broken when ice melts\n", +"disp(H_b,'fraction of hydrogen bonds that are broken when ice melts=')" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Material_Science_by_S_L_Kakani_and_A_Kakani/5-Electron_Theory_of_Metals.ipynb b/Material_Science_by_S_L_Kakani_and_A_Kakani/5-Electron_Theory_of_Metals.ipynb new file mode 100644 index 0000000..88d9ab6 --- /dev/null +++ b/Material_Science_by_S_L_Kakani_and_A_Kakani/5-Electron_Theory_of_Metals.ipynb @@ -0,0 +1,335 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 5: Electron Theory of Metals" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 5.10: Find_the_conductivity_of_copper.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Exam:5.10\n", +"clc;\n", +"clear;\n", +"close;\n", +"N_a=6.023*10^23;\n", +"V_c=8.9;//volume of 63.54gm of copper(in cc)\n", +"Aw_c=63.54;//Atomic weight of copper(in a.m.u)\n", +"n=(N_a/(Aw_c/V_c))*10^6;//Number of electrons per m^3\n", +"e=1.6*10^-19;\n", +"m=9.1*10^-31;\n", +"t=2*10^-14;//collision time\n", +"conductivity=n*(e^2)*t/m;//conductivity of copper\n", +"disp(conductivity,'conductivity of copper(in ohm^-1/m)=');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 5.1: Evaluate_the_temperature.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Exam:5.1\n", +"clc;\n", +"clear;\n", +"close;\n", +"//The probability that a particular quantum state at energy E is filled, is given by\n", +"//f(E) =1/(1+exp(E-E_f)/kT)\n", +"e=1.6*10^(-19);//charge on the electron\n", +"dE=0.5*e;//E-E_f in joule\n", +"//0.01=1/(1+exp(x))\n", +"//1+exp(x)=100\n", +"x=log(99);\n", +"k=1.38*10^(-23);//constant\n", +"T=dE/(x*k);//temperature\n", +"disp(ceil(T),'temperature at which there is one per cent probability that a state with an energy 0.5 eV above the Fermi energy will be occupied by an electron(in K)=');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 5.2: Find_the_drift_velocity_of_carriers.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Exam:5.2\n", +"clc;\n", +"clear;\n", +"close;\n", +"n=10^19;//electrons per m^3\n", +"V=0.017;//applied voltage \n", +"d=0.27*10^-2;//distance with material\n", +"e=1.602*10^-19;//in coulomb\n", +"m=9.1*10^-31;//mass of an electron(in kg)\n", +"conductivity=0.01;//in mho.m^-1)\n", +"E=V/d;//Electric field(in V/m)\n", +"v=(conductivity*E/(n*e))*10^2;//drift velocity of carriers(in meter/sec)\n", +"disp(v,'drift velocity of carriers(in meter/sec)=');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 5.3: Find_the_conductivity_of_copper_at_300K.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Exam:5.3\n", +"clc;\n", +"clear;\n", +"close;\n", +"T=300;//Temperature(in Kelevin)\n", +"t=2*10^-14;//time(in sec)\n", +"V_c=8.9;//volume of 63.54gm of copper(in cc)\n", +"Aw_c=63.54;//Atomic weight of copper(in a.m.u)\n", +"e=1.6*10^(-19);\n", +"m=9.1*10^-31;\n", +"N_a=6.023*10^23;//avogadro's number\n", +"n=(N_a/(Aw_c/V_c))*10^6;//Number of electrons per m^3\n", +"conductivity=(e^2)*n*t/m;//conductivity of copper at 300K(in mho/m)\n", +"disp(conductivity,'conductivity of copper at 300K(in mho/m)=');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 5.4: Find_the_mobility_of_condution_electron.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Exam:5.4\n", +"clc;\n", +"clear;\n", +"close;\n", +"t=10^(-14);//mean free time between the collisions(in second)\n", +"e=1.6*10^-19;\n", +"m=9.1*10^-31;\n", +"Mobility=e*t/m;//in m^2/V-s\n", +"disp(Mobility,'mobility of condution electron(in m^2/V-s)=');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 5.5: Find_the_mobility_of_condution_electron_and_drift_velocity.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Exam:5.5\n", +"clc;\n", +"clear;\n", +"close;\n", +"n=6*10^23;//conduction electron per m^3\n", +"conductivity=6.5*10^7;//in mho/m\n", +"E=1;//electric field intensity (in V/m)\n", +"e=1.6*10^-19;\n", +"m=9.1*10^-31;\n", +"Mobility=conductivity/(n*e);//in m^2/V-s\n", +"v=Mobility*E;//drift velocity(in m/sec)\n", +"disp(Mobility,'mobility of condution electron(in m^2/V-s)=');\n", +"disp(v,'drift velocity(in m/sec)=');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 5.6: Find_the_number_of_free_electrons_and_also_calculate_mobility_of_electrons.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Exam:5.6\n", +"clc;\n", +"clear;\n", +"close;\n", +"d=10.5;//density of silver(in gm/cc)\n", +"At_w=107.9;\n", +"e=1.6*10^-19;\n", +"conductivity=6.8*10^5;//in mho/centimeter\n", +"N=6.023*10^23;\n", +"n=N*d/At_w;//number of free electrons\n", +"Mobility=conductivity/(n*e);//mobility of electrons(in cm^2/V-s);\n", +"disp(n,'number of free electrons=');\n", +"disp(Mobility,'mobility of electrons(in cm^2/V-s)=');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 5.7: maximum_velocity_of_an_electron_in_a_metal_and_mobility_of_electrons.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Exam:5.7\n", +"clc;\n", +"clear;\n", +"close;\n", +"E_f=3.75;//Fermi energy(in eV)\n", +"e=1.602*10^-19;\n", +"W_f=e*E_f;//fermi energy in joules\n", +"t=10^-14;//mean free time between the collisions(in second)\n", +"m=9.1*10^-31;//mass of electron\n", +"v_f=(2*W_f/m)^(1/2);//maximum velocity of an electron in a metal(in m/s)\n", +"mobility=e*t/m;//mobility of electrons(in m^2/V-s)\n", +"disp(v_f,'maximum velocity of an electron in a metal(in m/s)=');\n", +"disp(mobility,'mobility of electrons(in m^2/V-s)=')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 5.8: Calculate_the_velocity_of_an_electrons_at_fermi_level.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Exam:5.8\n", +"clc;\n", +"clear;\n", +"close;\n", +"E_f=2.1;//fermi energy(in eV)\n", +"e=1.602*10^-19;\n", +"m=9.1*10^-31;\n", +"W_f=e*E_f;//fermi energy in joules\n", +"v_f=(2*W_f/m)^(1/2);//velocity of an electrons at fermi level(in m/sec)\n", +"disp(v_f,'velocity of an electrons at fermi level(in m/sec)')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 5.9: Estimate_the_mean_path_of_free_electrons_in_pure_copper.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Exam:5.9\n", +"clc;\n", +"clear;\n", +"close;\n", +"t=10^-9;//collision time(in seconds)\n", +"E_f=7;//fermi energy(in eV)\n", +"e=1.6*10^-19;\n", +"m=9.1*10^-31;\n", +"W_f=E_f*e;//fermi energy(in joules)\n", +"v_f=(2*W_f/m)^(1/2);//velocity of an electrons at fermi level(in m/sec)\n", +"P=v_f*t;//Mean free path(in meter)\n", +"disp(P,'Mean free path(in meter)=')" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Material_Science_by_S_L_Kakani_and_A_Kakani/6-Photoelectric_Effect.ipynb b/Material_Science_by_S_L_Kakani_and_A_Kakani/6-Photoelectric_Effect.ipynb new file mode 100644 index 0000000..3b52726 --- /dev/null +++ b/Material_Science_by_S_L_Kakani_and_A_Kakani/6-Photoelectric_Effect.ipynb @@ -0,0 +1,245 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 6: Photoelectric Effect" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 6.1: kinetic_energy_of_electrons_ejected_from_the_surface.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Exam:6.1\n", +"clc;\n", +"clear;\n", +"close;\n", +"h=6.62*10^-34;\n", +"c=3*10^8;\n", +"e=1.6*10^-19;\n", +"Wavelength_1=2300*10^-10;\n", +"W=h*c/Wavelength_1;//Work function\n", +"Wavelength_2=1800*10^-10;\n", +"E_in=h*c/Wavelength_2;\n", +"E=E_in-W;//kinetic energy of the ejected electron(in Joules)\n", +"E_1=E/e;//kinetic energy of the ejected electron(in eV)\n", +"disp(E_1,'kinetic energy of the ejected electron(in eV)=');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 6.2: Calculate_the_threshold_frequency_and_the_corresponding_wavelength.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Exam:6.2\n", +"clc;\n", +"clear;\n", +"close;\n", +"h=6.625*(10^(-34));//Planck's constant(in m2*kg/s)\n", +"c=3*10^8;//speed of light (in m/s)\n", +"e=1.602*10^-19;//electron charge(in coulomb)\n", +"W=2.3;//work (in eV)\n", +"W_1=W*e;//work (in joules)\n", +"v_o=W_1/h;//threshold frequency(in Hz)\n", +"Wavelength=(h*c/W_1)/10^(-10);//Wavelength in Angstrom\n", +"disp(v_o,'threshold frequency(Hz)=');\n", +"disp(Wavelength,'Wavelength (in Angstrom)=');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 6.3: Calculate_the_threshold_frequency_and_the_work_function_of_metal.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Exam:6.3\n", +"clc;\n", +"clear;\n", +"close;\n", +"h=6.625*(10^(-34));//Planck's constant(in m2*kg/s)\n", +"c=3*10^8;//speed of light (in m/s)\n", +"e=1.602*10^-19;//electron charge(in coulomb)\n", +"wavelength=6800*10^-10;//wavelength of radiation\n", +"v_o=c/wavelength;//frequency\n", +"W=h*v_o;//Work function\n", +"disp(v_o,'threshold frequency(in Hz)=')\n", +"disp(W,'work function of metal(in joule)=')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 6.4: Calculate_the_photons_emitted_by_lamp_per_second.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Exam:6.4\n", +"clc;\n", +"clear;\n", +"close;\n", +"h=6.625*(10^(-34));//Planck's constant(in m2*kg/s)\n", +"c=3*10^8;//speed of light (in m/s)\n", +"L_r =150*8/100;//Lamp rating(in joule)\n", +"wavelength=4500*10^-10;//in meter\n", +"W=h*c/wavelength;//work function\n", +"N=L_r/W;//number of photons emitted by lamp per second\n", +"disp(N,'number of photons emitted by lamp per second=')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 6.5: Determine_the_region_of_electrons_spectrum.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Exam:6.5\n", +"clc;\n", +"clear;\n", +"close;\n", +"h=6.6*(10^(-34));//Planck's constant(in m2*kg/s)\n", +"c=3*10^8;//speed of light (in m/s)\n", +"e=1.6*10^-19;//electron charge(in coulomb)\n", +"W=2.24;//work function(in eV)\n", +"W_1=W*e;//work function(in joule)\n", +"v=(W_1/h)*10^-10;//frequency\n", +"wavelength=c/v;//region of electrons spectrum is less than(in angstrom)\n", +"disp(wavelength,'region of electrons spectrum is less than(in angstrom)')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 6.6: Calculate_the_photons_emitted_by_radio_receiver.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Exam:6.6\n", +"clc;\n", +"clear;\n", +"close;\n", +"h=6.625*(10^(-34));//Planck's constant(in m2*kg/s)\n", +"c=3*10^8;//speed of light (in m/s)\n", +"P_o=10*10^3;//Power of radio receiver (in Watt)\n", +"v=440*10^3;//Operating frequency\n", +"E=h*v;//Energy of each electron\n", +"N=P_o/E;//Number of photons emitted/sec\n", +"disp(N,'Number of photons emitted/sec by radio receiver=')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 6.7: wavelength_of_light_which_can_just_eject_electron_from_tungsten_and_from_barrium.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Exam:6.7\n", +"clc;\n", +"clear;\n", +"close;\n", +"W_t=4.52;//Work function for tungesten(in eV)\n", +"W_b=2.5;//Work function for barrium(in eV)\n", +"h=6.62*(10^(-34));//Planck's constant(in m2*kg/s)\n", +"c=3*10^8;//speed of light (in m/s)\n", +"e=1.6*10^-19;//electron charge(in coulomb)\n", +"W_T=W_t*e;//Work function for tungesten(in Joule)\n", +"W_B=W_b*e;//Work function for barrium(in Joule)\n", +"Wavelength_T=(h*c/W_T)*10^10;//wavelength of light which can just eject electron from tungsten\n", +"Wavelength_B=(h*c/W_B)*10^10;//wavelength of light which can just eject electron from barrium\n", +"disp(Wavelength_T,'wavelength of light which can just eject electron from tungsten(in Angstrom)=')\n", +"disp(Wavelength_B,'wavelength of light which can just eject electron from barrium(in Angstrom)=')" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Material_Science_by_S_L_Kakani_and_A_Kakani/7-Diffusion_in_Solids.ipynb b/Material_Science_by_S_L_Kakani_and_A_Kakani/7-Diffusion_in_Solids.ipynb new file mode 100644 index 0000000..e640275 --- /dev/null +++ b/Material_Science_by_S_L_Kakani_and_A_Kakani/7-Diffusion_in_Solids.ipynb @@ -0,0 +1,163 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 7: Diffusion in Solids" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 7.1: find_the_time_required_for_carburization.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Exam:7.1\n", +"clc;\n", +"clear;\n", +"close;\n", +"D=1.28*10^(-11);//diffusion coefficient of carbon in given steel in m2/s\n", +"c_s=0.9;//Surface concentration of diffusion element in the surface\n", +"c_o=0.2;//Initial uniform concentration of the element in the solid\n", +"c_x=0.4;//Concentration of the diffusingelement at a distance x from thesurface\n", +"x=0.5*10^(-3);//depth from the surface in m\n", +"//(c_s-c_x)/(c_s-c_o)=erf(x/(2*(D*t)^(1/2)))\n", +"t=(x/(2*erfinv((c_s-c_x)/(c_s-c_o))*D^(1/2)))^2;//time required for carburization(in sec)\n", +"disp(t,'time required for carburization(in sec)=');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 7.2: time_required.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Exam:7.2\n", +"clc;\n", +"clear;\n", +"close;\n", +"D=4*10^(-17);//diffusion coefficient of carbon in given steel in m2/s\n", +"c_s=3*10^26;//Surface concentration of boron atoms in the surface\n", +"c_1=0;//Initial uniform concentration of the element in the solid\n", +"c_x=10^23;//Concentration of the diffusing element at a distance x from thesurface\n", +"x=2*10^(-6);//depth from the surface in m\n", +"//(c_s-c_x)/(c_s-c_1)=erf(x/(2*(D*t)^(1/2)))\n", +"a=(erfinv((c_s-c_x)/(c_s-c_1)));\n", +"disp(a,'==')\n", +"t=(x^2/(D*4*(2.55)^2));//time required to get a boron content of 1023 atoms per m3 at a depth of 2 micro meter\n", +"disp(t,'time required to get a boron content of 1023 atoms per m3 at a depth of 2 micro meter(in sec)=');\n", +"disp((c_s-c_x)/(c_s-c_1));\n", +"T=(x/(2*(2.55)*D^(1/2)))^2;\n", +"disp(T,'==')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 7.3: find_the_constant_of_the_equation_and_activation_energy.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Exam:7.3\n", +"clc;\n", +"clear;\n", +"close;\n", +"t_1=736;//Temperature in °C\n", +"t_2=782;//Temperature in °C\n", +"T_1=t_1+273;//Temperature in K\n", +"T_2=t_2+273;//Temperature in K\n", +"D_1=2*10^(-13);//Coefficient of diffusion at T_1 (in m2/s)\n", +"D_2=5*10^(-13);//Coefficient of diffusion at T_2 (in m2/s)\n", +"k=1.38*10^(-23);//in J/K\n", +"//log(d_1)=log(d_o)-E/(k*T_1)\n", +"//log(d_2)=log(d_o)-E/(k*T_2)\n", +"E=(log(D_1)-log(D_2))/((1/(k*T_1))-(1/(k*T_2)));//\n", +"disp(E,'activation energy(in J)=');\n", +"D_o=2*10^(-13)/exp(E/(k*T_1));\n", +"disp(D_o,'constant of the equation(in m2/s)=')\n", +"t_4=500;//Temperature in °C\n", +"T_4=t_4+273;//Temperature in °K\n", +"D_4=D_o*exp(E/(k*T_4));//diffusion coefficient at 500°C\n", +"disp(D_4,'diffusion coefficient at 500°C(in m2/s)=')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 7.4: approximate_time_that_will_produce_same_diffussion_at_500_C.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Exam:7.4\n", +"clc;\n", +"clear;\n", +"close;\n", +"D_500=4.8*10^(-14);//Diffusion coefficient for copper in aluminimum at 500*C(in m^2/s)\n", +"D_600=5.3*10^(-13);//Diffusion coefficient for copper in aluminimum at 600*C(in m^2/s)\n", +"t_600=10;//time of diffussion at 600*C(in Hours)\n", +"//D_500*t_500=D_600*t_600\n", +"t_500=D_600*t_600/D_500;//time of diffussion at 500*C\n", +"disp(t_500,'Time at 500*C that will produce the same diffusion as in 600*C(in Hours)=');" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Material_Science_by_S_L_Kakani_and_A_Kakani/8-Mechanical_Properties_of_Materials_and_Mechanical_Tests.ipynb b/Material_Science_by_S_L_Kakani_and_A_Kakani/8-Mechanical_Properties_of_Materials_and_Mechanical_Tests.ipynb new file mode 100644 index 0000000..b7fb386 --- /dev/null +++ b/Material_Science_by_S_L_Kakani_and_A_Kakani/8-Mechanical_Properties_of_Materials_and_Mechanical_Tests.ipynb @@ -0,0 +1,177 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 8: Mechanical Properties of Materials and Mechanical Tests" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 8.1: Determine_the_fracture_strength.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Exam:8.1\n", +"clc;\n", +"clear;\n", +"close;\n", +"Y=180*10^9;//Young's modulus of a certain material(in N/m^2)\n", +"E=1.8;//true surface energy (in J/m^2)\n", +"c=(5/2)*10^-6;//Crack (in meter)\n", +"pi=3.14;\n", +"F_strength=(2*Y*E/(pi*c))^(1/2);\n", +"disp(F_strength*10^-6,'fracture strength(in MN/m^2)=');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 8.2: true_stress_and_strain_with_engineering_stress_and_strain.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Exam:8.2\n", +"clc;\n", +"clear;\n", +"close;\n", +"d_o=12.7;//tensile test specimen diameter (in mm)\n", +"d=12;//tensile test specimen diameter after load (in mm)\n", +"P=76*10^3;//load(in N)\n", +"pi=22/7;\n", +"A_o=(pi/4)*(d_o^2);//Initial area of cross section(in mm^2)\n", +"A=(pi/4)*(d^2);//area of cross section after load of 76 kN\n", +"E_stress=P/A_o;//engineering stress\n", +"T_stress=P/A;//true stress\n", +"T_strain=log(A_o/A);//true strain\n", +"E_strain=exp(T_strain)-1;//engineering strain\n", +"disp(E_stress,'engineering stress(in N/mm^2)=');\n", +"disp(T_stress,'true stress(in N/mm^2)=');\n", +"disp(E_strain,'engineering strain=');\n", +"disp(T_strain,'true strain=');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 8.3: Determine_the_fracture_strength.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Exam:8.3\n", +"clc;\n", +"clear;\n", +"close;\n", +"Y=210*10^9;//Young's modulus of a certain material(in N/m^2)\n", +"E=10;//true surface energy (in J/m^2)\n", +"c=(100/2)*10^-6;//Crack (in meter)\n", +"pi=3.14;\n", +"F_strength=(2*Y*E/(pi*c))^(1/2);\n", +"disp(F_strength,'fracture strength(in Newton/m^2)=');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 8.4: Find_the_resultant_elongation.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Exam:8.4\n", +"clc;\n", +"clear;\n", +"close;\n", +"l_o=305*10^-3;//length of copper piece(in meter)\n", +"E=110*10^9;//surface energy\n", +"stress=276*10^6;//in Pa\n", +"dl=stress*l_o/E;//resultant elongation(in meter)\n", +"disp(dl*10^3,'resultant elongation(in mm)=');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 8.5: Compute_the_strain_hardening_exponent.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Exam:8.5\n", +"clc;\n", +"clear;\n", +"close;\n", +"T_stress=415;//True stress (in Megapascal)\n", +"T_strain=0.10;//True strain \n", +"K=1035;//(in Megapascal)\n", +"n=(log(T_stress)-log(K))/log(T_strain);//\n", +"disp(n,'Strain hardening exponent for an alloy=')" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Material_Science_by_S_L_Kakani_and_A_Kakani/9-Alloys_Systems_Phase_Diagrams_and_Phase_Transformations.ipynb b/Material_Science_by_S_L_Kakani_and_A_Kakani/9-Alloys_Systems_Phase_Diagrams_and_Phase_Transformations.ipynb new file mode 100644 index 0000000..e6ee476 --- /dev/null +++ b/Material_Science_by_S_L_Kakani_and_A_Kakani/9-Alloys_Systems_Phase_Diagrams_and_Phase_Transformations.ipynb @@ -0,0 +1,123 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 9: Alloys Systems Phase Diagrams and Phase Transformations" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 9.1: Find_the_percentage_of_proeutectoid_ferrite.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Exam:9.1\n", +"clc;\n", +"clear;\n", +"close;\n", +"//Fulcrum is at 0.5% carbon\n", +"//from lever rule\n", +"Pro_f=((0.80-0.5)/(0.80-0.0))*100;// % Proeutectoid ferrite\n", +"Pea_f=100-Pro_f;// % Pearlite ferrite\n", +"disp(Pro_f,'% Proeutectoid ferrite=');\n", +"disp(Pea_f,'% Pearlite ferrite=');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 9.2: Degrees_of_freedom_of_a_system_of_two_components.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Exam:9.2\n", +"clc;\n", +"clear;\n", +"close;\n", +"N=2;\n", +"C=2;\n", +"//F=C-P+N\n", +"P_1=1;\n", +"P_2=2;\n", +"P_3=3;\n", +"P_4=4;\n", +"F_1=C-P_1+N;\n", +"F_2=C-P_2+N;\n", +"F_3=C-P_3+N;\n", +"F_4=C-P_4+N;\n", +"disp(F_1,'Degrees of freedom for 1 phase=');\n", +"disp(F_2,'Degrees of freedom for 2 phases=');\n", +"disp(F_3,'Degrees of freedom for 3 phases=');\n", +"disp(F_4,'Degrees of freedom for 4 phases=');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 9.3: Find_the_minimum_number_of_components_in_the_system.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Exam:9.3\n", +"clc;\n", +"clear;\n", +"close;\n", +"P=4;//Number of phases exhibit by a material\n", +"F=0;//Minimum degrees of freedom\n", +"//modified form of the phase rule F=C-P+1\n", +"C=F+P-1;//minimum number of components in the system\n", +"disp(C,'the minimum number of components in the system=')" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} |