summaryrefslogtreecommitdiff
path: root/Mass_Transfer_Operations_by_R_E_Treybal/7-Humidification_Operation.ipynb
diff options
context:
space:
mode:
Diffstat (limited to 'Mass_Transfer_Operations_by_R_E_Treybal/7-Humidification_Operation.ipynb')
-rw-r--r--Mass_Transfer_Operations_by_R_E_Treybal/7-Humidification_Operation.ipynb994
1 files changed, 994 insertions, 0 deletions
diff --git a/Mass_Transfer_Operations_by_R_E_Treybal/7-Humidification_Operation.ipynb b/Mass_Transfer_Operations_by_R_E_Treybal/7-Humidification_Operation.ipynb
new file mode 100644
index 0000000..983fc29
--- /dev/null
+++ b/Mass_Transfer_Operations_by_R_E_Treybal/7-Humidification_Operation.ipynb
@@ -0,0 +1,994 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 7: Humidification Operation"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.10: Lewis_Relatio.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clear;\n",
+"clc;\n",
+"\n",
+"// Illustration 7.10\n",
+"// Page:241\n",
+"\n",
+"printf('Illustration 7.10 - Page:241\n\n');\n",
+"\n",
+"// solution\n",
+"\n",
+"//****Data****//\n",
+"Tg = 60;// [OC]\n",
+"Y_prime = 0.050;// [kg toulene/kg air]\n",
+"//*****//\n",
+"\n",
+"// Wet Bulb temparature\n",
+"Dab = 0.92*10^(-5);// [square m/s]\n",
+"density_air = 1.060;// [kg/cubic cm];\n",
+"viscocity_G = 1.95*10^(-5);// [kg/m.s]\n",
+"Sc = viscocity_G/(density_air*Dab);\n",
+"// From Eqn. 7.28\n",
+"hG_by_kY = 1223*(Sc^0.567);// [J/kg.K]\n",
+"// Soln. of Eqn. 7.26 by trial & error method:\n",
+"// (Tg-Tw) = (Yas_prime-Y_prime)*(lambda_w/hG_by_kY)\n",
+"Tw = 31.8;// [OC]\n",
+"printf('Wet Bulb Temparature:%f OC\n',Tw);\n",
+"\n",
+"// Adiabatic Saturation Temparature\n",
+"C_air = 1005;// [J/kg.K]\n",
+"C_toulene = 1256;// [J/kg.K]\n",
+"Cs = C_air+(C_toulene*Y_prime);// [J/kg.K]\n",
+"// Soln. of Eqn. 7.21 by trial & error method:\n",
+"// (Tg-Tas) = (Yas_prime-Y_prime)*(lambda_as/Cs)\n",
+"Tas = 25.7;// [OC]\n",
+"printf('Adiabatic Saturation Temparature: %f OC\n',Tas);"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.11: Adiabatic_Operations.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clear;\n",
+"clc;\n",
+"\n",
+"// Illustration 7.11\n",
+"// Page: 249\n",
+"\n",
+"printf('Illustration 7.11 - Page: 249\n\n');\n",
+"\n",
+"// solution\n",
+"\n",
+"//****Data****//\n",
+"L_min = 2.27;// [kg/square m.s]\n",
+"G_min = 2;// [kg/square m.s]\n",
+"L2_prime = 15;// [kg/s]\n",
+"Q = 270;// [W]\n",
+"Templ2 = 45;// [OC]\n",
+"Tempg1 = 30;// [OC]\n",
+"Tempw1 = 24;// [OC]\n",
+"Kya = 0.90;// [kg/cubic m.s]\n",
+"//*******//\n",
+"\n",
+"H1_prime = 72;// [kJ/kg dry air]\n",
+"Y1_prime = 0.0160;// [kg water/kg dry air]\n",
+"Templ1 = 29;// [OC]\n",
+"Cal = 4.187;// [kJ/kg]\n",
+"// Equilibrium Data:\n",
+"// Data = [Temp.(OC),H_star(kJ/kg)]\n",
+"Data_star = [29 100;32.5 114;35 129.8;37.5 147;40 166.8;42.5 191;45 216];\n",
+"// The operating line for least slope:\n",
+"H2_star = 209.5;// [kJ/kg]\n",
+"Data_minSlope = [Templ1 H1_prime;Templ2 H2_star];\n",
+"deff('[y] = f14(Gmin)','y = ((L2_prime*Cal)/Gmin)-((H2_star-H1_prime)/(Templ2-Templ1))');\n",
+"Gmin = fsolve(2,f14);// [kg/s]\n",
+"Gs = 1.5*Gmin;// [kg/s]\n",
+"// For the Operating Line:\n",
+"y = deff('[y] = f15(H2)','y = ((H2-H1_prime)/(Templ2-Templ1))-((L2_prime*Cal)/Gs)');\n",
+"H2 = fsolve(2,f15);// [kJ/kg dry air]\n",
+"Data_opline = [Templ1 H1_prime;Templ2 H2];\n",
+"scf(4);\n",
+"plot(Data_star(:,1),Data_star(:,2),Data_minSlope(:,1),Data_minSlope(:,2),Data_opline(:,1),Data_opline(:,2));\n",
+"xgrid();\n",
+"legend('Equilibrium line','Minimum Flow Rate Line','Operating Line');\n",
+"xlabel('Liquid Temperature, 0C');\n",
+"ylabel('Enthalphy Of Air Water vapour, kJ / kg dry air');\n",
+"// Tower cross section Area:\n",
+"Al = L2_prime/L_min;// [square m]\n",
+"Ag = Gs/G_min;// [square m]\n",
+"A = min(Al,Ag);// [square m]\n",
+"// Data from operating line:\n",
+"// Data1 = [Temp.(OC),H_prime(kJ/kg)]\n",
+"Data1 = [29 72;32.5 92;35 106.5;37.5 121;40 135.5;42.5 149.5;45 163.5];\n",
+"// Driving Force:\n",
+"Data2 = zeros(7,2);\n",
+"// Data2 = [Temp[OC],driving Force]\n",
+"for i = 1:7\n",
+" Data2(i,1) = Data1(i,1);\n",
+" Data2(i,2) = 10^2/(Data_star(i,2)-Data1(i,2));\n",
+"end\n",
+"// The data for operating line as abcissa is plotted against driving force;\n",
+"Area = 3.25;\n",
+"// From Eqn. 7.54\n",
+"deff('[y] = f16(Z)','y = Area-(Kya*Z/G_min)');\n",
+"Z = fsolve(2,f16);\n",
+"printf('The height of tower is %f m\n',Z);\n",
+"NtoG = 3.25;\n",
+"HtoG = G_min/Kya;// [m]\n",
+"\n",
+"// Make up water\n",
+"// Assuming the outlet air is essentially saturated:\n",
+"Y2_prime = 0.0475;// [kg water/kg dry air]\n",
+"E = G_min*(A)*(Y2_prime-Y1_prime);// [kg/s]\n",
+"// Windage loss estimated as 0.2 percent\n",
+"W = 0.002*L2_prime;// [kg/s]\n",
+"ppm_blowdown = 2000;// [ppm]\n",
+"ppm_makeup = 500;// [ppm]\n",
+"// Since the weight fraction are proportional to the corresponding ppm values:\n",
+"B = (E*ppm_makeup/(ppm_blowdown-ppm_makeup))-W;// [kg/s]\n",
+"M = B+E+W;// [kg/s]\n",
+"printf('The makeup water is estimated to be %f kg/s\n',M);"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.12: Adiabatic_Operations.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clear;\n",
+"clc;\n",
+"\n",
+"// Illustration 7.12\n",
+"// Page: 252\n",
+"\n",
+"printf('Illustration 7.12 - Page: 252\n\n')\n",
+"// solution\n",
+"\n",
+"//****Data****//\n",
+"Tempg1 = 32;// [OC]\n",
+"Tempw1 = 28;// [OC]\n",
+"//******//\n",
+"\n",
+"H1 = 90;// [kJ/kg]\n",
+"H1_prime = 72;// [kJ/kg dry air]\n",
+"H2_prime = 163.6;// [kJ/kg dry air]\n",
+"deff('y = f17(H2)','y = (H2-H1)-(H2_prime-H1_prime)');\n",
+"H2 = fsolve(2,f17);// [kJ/kg dry air]\n",
+"// Slope of Operating Line same as Operating Line as Illustration 7.11\n",
+"slopeOperat = (163.5-72)/(45-29);\n",
+"deff('[y] = f18(Temp)','y = slopeOperat*(Temp-Tempg1)+H1');\n",
+"Temp = 30:0.01:45;\n",
+"// Equilibrium Data:\n",
+"// Data = [Temp.(OC),H_star(kJ/kg)]\n",
+"Data_star = [29 100;32.5 114;35 129.8;37.5 147;40 166.8;42.5 191;45 216];\n",
+"scf(5);\n",
+"plot(Data_star(:,1),Data_star(:,2),Temp,f18);\n",
+"xgrid();\n",
+"legend('Equilibrium Line','operating Line');\n",
+"xlabel('Liquid Temperature, C');\n",
+"ylabel('Enthalphy Of Air Water vapour, kJ/kg dry air');\n",
+"// The Value for NtoG & HtoG will be same as in Illustration 7.11\n",
+"NtoG = 3.25;\n",
+"HtoG = 2.22;// [m]\n",
+"// By hit & trial method:\n",
+"Temp = 37.1;// [OC]\n",
+"printf('The Temperature to which water is to be cooled is %f OC\n',Temp);"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.13: Recirculating_Liquid_Gas_Humididification.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clear;\n",
+"clc;\n",
+"\n",
+"// Illustration 7.13\n",
+"// Page: 254\n",
+"\n",
+"printf('Illustration 7.13\n\n');\n",
+"\n",
+"// solution\n",
+"\n",
+"// Given\n",
+"Tempg1=65;// [OC]\n",
+"Y1_prime=0.0170;// [kg water/kg dry air]\n",
+"// Using adiabatic satursion line on Fig. 7.5 (Pg 232)\n",
+"Tempas=32;// [OC]\n",
+"Yas_prime=0.0309;// [kg water/kg dry air]\n",
+"Tempg2=45;// [OC]\n",
+"Z=2;// [m]\n",
+"//*******//\n",
+"\n",
+"Y2_prime=0.0265;// [kg water/kg dry air]\n",
+"deff('[y]=f19(Kya_by_Gs)','y=log((Yas_prime-Y1_prime)/(Yas_prime-Y2_prime))-(Kya_by_Gs*Z)');\n",
+"Kya_by_Gs=fsolve(1,f19);// [1/m]\n",
+"\n",
+"// For the extended chamber:\n",
+"Z=4;// [m]\n",
+"deff('[y]=f20(Y2_prime)','y=log((Yas_prime-Y1_prime)/(Yas_prime-Y2_prime))-(Kya_by_Gs*Z)');\n",
+"Y2_prime=fsolve(0.029,f20);//[kg water/kg dry air] \n",
+"// With the same adiabatic curve:\n",
+"Tempg2=34;// [OC]\n",
+"printf('The Outlet Conditions are:\n');\n",
+"printf('Absolute Humidity is %f kg water/kg dry air\n',Y2_prime);\n",
+"printf('Dry Bulb Temperature is %f OC\n',Tempg2);"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.14: Dehumidification_Of_Air_Water_Mixture.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clear;\n",
+"clc;\n",
+"\n",
+"// Illustration 7.14\n",
+"// Page: 256\n",
+"\n",
+"printf('Illustration 7.14 - Page: 256\n\n');\n",
+"\n",
+"// solution\n",
+"\n",
+"//****Data****//\n",
+"// a = N2 b = CO\n",
+"// Entering gas\n",
+"Y1_prime = 0;// [kg water/kg dry air]\n",
+"Pt = 1;// [atm]\n",
+"Tempg1 = 315;// [OC]\n",
+"G_prime = 5;// [square m/s]\n",
+"\n",
+"// Temp of the tower:\n",
+"Templ2 = 18;// [OC]\n",
+"Density_L2 = 1000; //[kg/square m]\n",
+"viscocity_L2 = 1.056*10^(-3);// [kg/m.s]\n",
+"Tempg2 = 27;// [OC]\n",
+"\n",
+"Mb = 28;// [kg/kmol]\n",
+"Ma = 18.02;// [kg/kmol]\n",
+"Density_G1 = (Mb/22.41)*(273/(Tempg1+273));// [kg/square m]\n",
+"G1 = G_prime*(Density_G1);// [kg/s]\n",
+"\n",
+"// Since the outlet gas is nearly saturated:\n",
+"Y_prime = 0.024;// [kg water/kg dry air]\n",
+"Y2_prime = 0.022;// [kg water/kg dry air, assumed]\n",
+"G2 = G1*(1+Y2_prime);// [kg/s]\n",
+"Mav = (1+Y2_prime)/((1/Mb)+(Y2_prime/Ma));// [kg/kmol]\n",
+"Density_G2 = (Mav/22.4)*(273/(Templ2+273));// [kg/square m]\n",
+"L2_by_G2 = 2;\n",
+"abcissa = L2_by_G2*(Density_G2/(Density_L2-Density_G2))^(1/2);\n",
+"// From Fig. 6.34:\n",
+"// For a gas pressure drop of 400 N/square m/m\n",
+"ordinate = 0.073;\n",
+"// From Table 6.3:\n",
+"Cf = 65;\n",
+"J = 1;\n",
+"deff('[y] = f21(G2_prime)','y = ((G2_prime^2)*Cf*(viscocity_L2^0.1)*J/(Density_G2*(Density_L2-Density_G2)))-ordinate');\n",
+"// Tentative data:\n",
+"G2_prime = fsolve(2,f21);// [kg/square m.s]\n",
+"Area = G1/G2_prime;// [square m]\n",
+"dia = sqrt(4*Area/%pi);// [m]\n",
+"\n",
+"// Final data:\n",
+"dia = 1.50;// [m]\n",
+"Area = %pi*dia^2/4;// [square m]\n",
+"Gs_prime = G1/Area;// [kg/square m.s]\n",
+"G2_prime = G2/Area;// [kg/square m.s]\n",
+"L2_prime = L2_by_G2*G2_prime;// [kg/square m.s]\n",
+"// From Eqn. 7.29:\n",
+"deff('[y] = f22(L1_prime)','y = (L2_prime-L1_prime)-(Gs_prime*(Y2_prime-Y1_prime))');\n",
+"L1_prime = fsolve(2,f22);\n",
+"Cb = 1089;// [J/kg.K]\n",
+"Ca = 1884;// [J/kg.K]\n",
+"Cs1 = Cb+(Y1_prime*Ca);// [J/(kg dry air).K]\n",
+"Cs2 = Cb+(Y2_prime*Ca);// [J/(kg dry air).K]\n",
+"Tempo = Templ2;// [base temp.,K]\n",
+"lambda = 2.46*10^6;// [J/kg]\n",
+"CaL = 4187;// [J/kg K]\n",
+"// From Eqn. 7.31:\n",
+"deff('[y] = f23(Templ1)','y = ((L2_prime*CaL*(Templ2-Tempo))+(Gs_prime*Cs1*(Tempg1-Tempo)))-((L1_prime*CaL*(Templ1-Tempo))+(Gs_prime*(Cs2*(Tempg2-Tempo))+(Y2_prime*lambda)))');\n",
+"Templ1 = fsolve(2,f23);\n",
+"// At Templ1 = 49.2 OC\n",
+"viscocity_L = 0.557*10^(-3);// [kg/m.s]\n",
+"Density_L = 989;// [kg/square m]\n",
+"K = 0.64;// [w/m.K]\n",
+"Prl = CaL*viscocity_L/K;\n",
+"\n",
+"// For Entering Gas:\n",
+"viscocity_G1 = 0.0288*10^(-3);// [kg*/m.s]\n",
+"Dab = 0.8089*10^(-4);// [square m/s]\n",
+"ScG = viscocity_G1/(Density_G1*Dab);\n",
+"PrG = 0.74;\n",
+"\n",
+"// From Illustration 6.7:\n",
+"a = 53.1;// [square m/square m]\n",
+"Fga = 0.0736;// [kmol/square m]\n",
+"Hga = 4440;// [W/square m.K]\n",
+"Hla = 350500;// [W/square m.K]\n",
+"// At the bottom, by several trial:\n",
+"Tempi = 50.3;// [OC]\n",
+"pai = 93.9/760;// [atm]\n",
+"paG = 0;// [atm]\n",
+"// By Eqn. 7.64:\n",
+"dY_prime_by_dZ = -(Ma*Fga/Gs_prime)*log((1-(pai/Pt))/(1-(paG/Pt)));// [(kg H2O/kg dry gas)/m]\n",
+"Hg_primea = -(Gs_prime*Ca*dY_prime_by_dZ)/(1-exp((Gs_prime*Ca*dY_prime_by_dZ)/(Hga)));// [W/square m.K]\n",
+"dTempg_by_dZ = -(Hg_primea*(Tempg1-Tempi)/(Gs_prime*Cs1));// [OC/m]\n",
+"Tempi = (Templ1)+((Gs_prime*(Cs1*dTempg_by_dZ)+((Ca*(Tempg1))-(CaL*(Templ1))+(((CaL-Ca)*(Tempo))+lambda))*dY_prime_by_dZ)/((Gs_prime*CaL*dY_prime_by_dZ)-Hla));// [OC]\n",
+"// Assume:\n",
+"delta_Tempg = -30;// [OC]\n",
+"delta_Z = delta_Tempg/(dTempg_by_dZ);// [m]\n",
+"Tempg = Tempg1+delta_Tempg;// [OC]\n",
+"Y_prime = Y1_prime+(dY_prime_by_dZ)*delta_Z;// [kg H2O/kg dry gas]\n",
+"paG = Y_prime/(Y_prime+(Ma/Mb));// [atm]\n",
+"Cs = Cb+Ca*(Y_prime);// [J/(kg dry air).K]\n",
+"// Water balance, From Eqn. 7.29:\n",
+"deff('[y] = f24(L_prime)','y = (L2_prime-L_prime)-(Gs_prime*(Y_prime-Y1_prime))');\n",
+"L_prime = fsolve(2,f24);// [kg/square m.s]\n",
+"\n",
+"deff('[y] = f25(Templ)','y = ((L_prime*CaL*(Templ-Tempo))+(Gs_prime*Cs1*(Tempg1-Tempo)))-((L1_prime*CaL*(Templ1-Tempo))+(Gs_prime*(Cs*(Tempg-Tempo))+(Y_prime*lambda)))');\n",
+"Templ = fsolve(2,f25);\n",
+"// This process is repeated several times until gas temp falls to Tempg2\n",
+"// The value of Y2_prime was calculated to be 0.0222 which is sufficiently close to the assumed value.\n",
+"// Z = sum of all delta_Z\n",
+"Z = 1.54;// [m]\n",
+"printf('The diameter of tower is %f m\n',dia);\n",
+"printf('The packed height is %f m\n',Z);"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.15: Nonadiabatic_Operation.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clear;\n",
+"clc;\n",
+"\n",
+"// Illustration 7.15\n",
+"// Page: 267\n",
+"\n",
+"printf('Illustration 7.15 - Page: 267\n\n');\n",
+"\n",
+"// solution\n",
+"\n",
+"//***Data***//\n",
+"w = 0.75;// [m]\n",
+"OD = 19.05/1000;// [m]\n",
+"l = 3.75;// [m]\n",
+"n = 20;\n",
+"t = 1.65/1000;// [m]\n",
+"Ws = 2.3;// [kg/s]\n",
+"Wal = 10;// [kg/s]\n",
+"Wt = 4;// [kg/s]\n",
+"Density = 800;// [kg/cubic m]\n",
+"viscocity = 0.005;// [kg/m.s]\n",
+"K = 0.1436;// [W/m.K]\n",
+"Ct = 2010;// [J/kg.K]\n",
+"Cal = 4187;// [J/kg.K]\n",
+"Y1_prime = 0.01;// [kg H2O/kg dry air]\n",
+"Y2_prime = 0.06;// [kg H2O/kg dry air]\n",
+"TempT = 95;// [OC]\n",
+"//*****//\n",
+"\n",
+"Free_area = (w-(n*OD))*l;// [square m]\n",
+"Gs_min = 2.3/Free_area;// [kg/square m.s]\n",
+"Yav_prime = (Y1_prime+Y2_prime)/2;// [kg H2O/kg dry air]\n",
+"// From Eqn. 7.86:\n",
+"ky = 0.0493*(Gs_min*(1+Yav_prime))^0.905;// [kg/square m.s.delta_Y_prime]\n",
+"// From Fig. 7.5:\n",
+"H1_prime = 56000;// [J/kg]\n",
+"Ao = 400*%pi*OD*l;// [square m]\n",
+"// Cooling water is distributed over 40 tubes & since tubes are staggered\n",
+"geta = Wal/(40*2*l);// [kg/m.s]\n",
+"geta_by_OD = geta/OD;// [kg/square m.s]\n",
+"// Assume:\n",
+"TempL = 28;// [OC]\n",
+"// From Eqn. 7.84:\n",
+"hL_prime = (982+(15.58*TempL))*(geta_by_OD^(1/3));// [W/square m.K]\n",
+"// From Eqn. 7.85:\n",
+"hL_dprime = 11360;// [W/square m.K]\n",
+"// From Fig. 7.5 (Pg 232)\n",
+"m = 5000;// [J/kg.K]\n",
+"Ky = 1/((1/ky)+(m/hL_dprime));\n",
+"ID = (OD-(2*t));// [m]\n",
+"Ai = %pi*(ID^2)/4;// [square m]\n",
+"Gt_prime = Wt/(n*Ai);// [kg/square m.s]\n",
+"Re = ID*Gt_prime/viscocity;\n",
+"Pr = Ct*viscocity/K;\n",
+"// From a standard correlation:\n",
+"hT = 364;// [W/square m.K]\n",
+"Dav = (ID+OD)/2;// [m]\n",
+"Zm = (OD-ID)/2;// [m]\n",
+"Km = 112.5;// [W/m.K]\n",
+"// From Eqn. 7.67:\n",
+"Uo = 1/((OD/(ID*hT))+((OD/Dav)*(Zm/Km))+(1/hL_prime));// [W/square m.K]\n",
+"// From Eqn. 7.75:\n",
+"alpha1 = -(((Uo*Ao)/(Wt*Ct))+((Uo*Ao)/(Wal*Cal)));\n",
+"alpha2 = m*Uo*Ao/(Wt*Ct);\n",
+"// From Eqn. 7.76:\n",
+"beeta1 = Ky*Ao/(Wal*Cal);\n",
+"beeta2 = -((m*Ky*Ao/(Wal*Cal))-(Ky*Ao/Ws));\n",
+"y = deff('[y] = f26(r)','y = (r^2)+((alpha1+beeta2)*r)+((alpha1*beeta2)-(alpha2*beeta1))');\n",
+"r1 = fsolve(10,f26);\n",
+"r2 = fsolve(0,f26);\n",
+"beeta2 = 1.402;\n",
+"// From Eqn. 7.83:\n",
+"// N1-(M1*(r1+alpha1)/beeta1) = 0............................................(1)\n",
+"// N2-(M2*(r2+alpha2)/beeta2) = 0............................................(2)\n",
+"// From Eqn. 7.77:\n",
+"// At the top:\n",
+"x1 = 1;\n",
+"// TempL2+(M1*exp(r1*x1))+(M2*exp(-(r2*x1))) = TempL.........................(3)\n",
+"// From Eqn. 7.78:\n",
+"// At the bottom:\n",
+"x2 = 0;\n",
+"// H1_star-N1-N2 = H1_prime..................................................(4)\n",
+"// From Eqn. 7.80:\n",
+"// ((M1/r1)*(exp(r1)-1))+((M2*r2)*(exp(r2)-1)) = (Tempt-TempL)...............(5)\n",
+"// From Eqn. 7.81:\n",
+"// ((N1/r1)*(exp(r1)-1))+((N2*r2)*(exp(r2)-1)) = (H1_star-H1_prime)..........(6)\n",
+"// From Eqn. 7.91 & Eqn. 7.92:\n",
+"// Uo*Ao*(TempT-TempL)=Ky*Ao*(H1_star-H1_prime)..............................(7)\n",
+"\n",
+"// Elimination of M's & N's by solving Eqn. (1) to (4) and (7) simultaneously:\n",
+"// and from Fig. 7.5 (Pg 232):\n",
+"TempL1=28;// [OC]\n",
+"H1_star=(Uo*Ao*(TempT-TempL)/(Ky*Ao))+H1_prime;// [J/kmol]\n",
+"// Solving (1) to (4) simultaneously:\n",
+"a = [1 -(r1+alpha1)/beeta1 0 0;0 0 1 -(r2+alpha1)/beeta1;0 exp(r1*x1) 0 exp(r2*x1);1 0 1 0];\n",
+"b = [0;0;TempT-TempL1;H1_star-H1_prime];\n",
+"soln = a\b;\n",
+"N1 = soln(1);\n",
+"M1 = soln(2);\n",
+"N2 = soln(3);\n",
+"M2 = soln(4);\n",
+"// By Eqn. 5\n",
+"delta_Temp = ((M1/r1)*(exp(r1)-1))+((M2*r2)*(exp(r2)-1));// [OC]\n",
+"Q = Uo*delta_Temp*Ao;\n",
+"TempT1 = TempT-(Q/(Wt*Ct));// [OC]\n",
+"H2_prime = Q/(Ws)+H1_prime;// [J/kg]\n",
+"printf('Temparature to which oil was cooled: %f OC\n',TempT1);"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.1: Interpolation_Between_Data.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clear;\n",
+"clc;\n",
+"\n",
+"// Illustration 7.1\n",
+"// Page: 222\n",
+"\n",
+"printf('Illustration 7.1 - Page: 222\n\n');\n",
+"\n",
+"// Solution\n",
+"\n",
+"// ****Data****//\n",
+"Temp1 = 273+26.1;// [K]\n",
+"P1 = 100;// [mm Hg]\n",
+"Temp2 = 273+60.6;// [K]\n",
+"P2 = 400;// [mm Hg]\n",
+"P = 200;// [mm Hg]\n",
+"//*****//\n",
+"\n",
+"deff('[y] = f12(T)','y = ((1/Temp1)-(1/T))/((1/Temp1)-(1/Temp2))-((log(P1)-log(P))/(log(P1)-log(P2)))');\n",
+"T = fsolve(37,f12);// [K]\n",
+"printf('At %f 0C, the vapour pressure of benzene is 200 mm Hg\n',T-273);"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.2: Reference_Substance_Plots.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clear;\n",
+"clc;\n",
+"\n",
+"// Illustration 7.2:\n",
+"// Page: 223\n",
+"\n",
+"printf('Illustration 7.2 - Page: 223\n\n');\n",
+"printf('Illustration 7.2 (b)\n\n');\n",
+"\n",
+"// Solution (b)\n",
+"\n",
+"// At 100 OC,\n",
+"PH2O = 760;// [Vapour pressure of water, mm of Hg]\n",
+"// From Fig. 7.2 (Pg 224)\n",
+"// At this value,\n",
+"PC6H6 = 1400;// [Vapour pressure of benzene, mm of Hg]\n",
+"printf('Vapour Pressure of benzene at 100 OC is %d mm of Hg\n\n', PC6H6);\n",
+"\n",
+"printf('Illustration 7.2 (c)\n\n');\n",
+"\n",
+"// Solution (c)\n",
+"\n",
+"// Reference: H20\n",
+"// At 25 OC\n",
+"m = 0.775;\n",
+"Mr = 18.02;// [kg/kmol]\n",
+"lambdar = 2443000;// [N/m.kg]\n",
+"M = 78.05;// [kg/kmol]\n",
+"// From Eqn. 7.6:\n",
+"lambda = m*lambdar*Mr/M;// [N/m.kg]\n",
+"printf('Latent Heat of Vaporization at 25 OC is %f kN/m.kg\n',lambda/1000);"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.3: Enthalpy.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clear;\n",
+"clc;\n",
+"\n",
+"// Illustration 7.3\n",
+"// Page: 226\n",
+"\n",
+"printf('Illustration 7.3 - Page: 226\n\n');\n",
+"\n",
+"// solution\n",
+"\n",
+"// ****Data****//\n",
+"m = 10;// [kg]\n",
+"Cvap = 1.256;// [kJ/kg.K]\n",
+"Cliq = 1.507;// [kJ/kg.K]\n",
+"Temp1 = 100;// [OC]\n",
+"Temp4 = 10;// [OC]\n",
+"//******//\n",
+"\n",
+"// Using Fig 7.2 (Pg 224):\n",
+"Temp2 = 25;// [OC]\n",
+"// Using the notation of Fig. 7.3:\n",
+"H1_diff_H2 = Cvap*(Temp1-Temp2);// [kJ/kg]\n",
+"// From Illustration 7.2:\n",
+"H2_diff_H3 = 434;// [Latent Heat of Vaporisation, kJ/kg]\n",
+"H3_diff_H4 = Cliq*(Temp2-Temp4);// [kJ/kg]\n",
+"H1_diff_H4 = H1_diff_H2+H2_diff_H3+H3_diff_H4;// [kJ/kg]\n",
+"H = m*H1_diff_H4;// [kJ]\n",
+"printf('Heat evolved for 10 kg Benzene is %f kJ\n',H);"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.4: Vapour_Gas_Mixture.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clear;\n",
+"clc;\n",
+"\n",
+"// Illustration 7.4\n",
+"// Page: 227\n",
+"\n",
+"printf('Illustration 7.4 - Page: 227\n\n');\n",
+"\n",
+"// solution\n",
+"\n",
+"//****Data****//\n",
+"// A = benzene vapour; B = Nitrogen Gas\n",
+"P = 800;// [mm Hg]\n",
+"Temp = 273+60;// [K]\n",
+"pA = 100;// [mm Hg]\n",
+"//******//\n",
+"\n",
+"pB = P-pA;// [mm Hg]\n",
+"MA = 78.05;// [kg/kmol]\n",
+"MB = 28.08;// [kg/kmol]\n",
+"\n",
+"// Mole Fraction\n",
+"printf('On the Basis of Mole Fraction\n');\n",
+"yAm = pA/P;\n",
+"yBm = pB/P;\n",
+"printf('Mole Fraction of Benzene is %f\n',yAm);\n",
+"printf('Mole Fraction of Nitrogen is %f\n',yBm);\n",
+"printf('\n');\n",
+"\n",
+"// Volume Fraction\n",
+"printf('On the Basis of Volume Fraction\n');\n",
+"// Volume fraction is same as mole Fraction\n",
+"yAv = yAm;\n",
+"yBv = yBm;\n",
+"printf('Volume Fraction of Benzene is %f\n',yAv);\n",
+"printf('Volume Fraction of Nitrogen is %f\n',yBv);\n",
+"printf('\n');\n",
+"\n",
+"// Absolute Humidity\n",
+"printf('On the basis of Absolute humidity\n')\n",
+"Y = pA/pB;// [mol benzene/mol nitrogen]\n",
+"Y_prime = Y*(MA/MB);// [kg benzene/kg nitrogen]\n",
+"printf('The concentration of benzene is %f kg benzene/kg nitrogen\n',Y_prime);"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.5: Saturated_Vapour_Gas_Mixture.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clear;\n",
+"clc;\n",
+"\n",
+"// Illustration 7.5\n",
+"// Page: 228\n",
+"\n",
+"printf('Illustration 7.5 - Page: 228\n\n');\n",
+"\n",
+"printf('Illustration 7.5 (a)\n\n');\n",
+"// solution(a)\n",
+"\n",
+"//****Data****//\n",
+"// A = benzene vapour; B = Nitrogen Gas\n",
+"P = 1;// [atm]\n",
+"//*****//\n",
+"\n",
+"MA = 78.05;// [kg/kmol]\n",
+"MB = 28.02;// [kg/kmol]\n",
+"// Since gas is saturated, from Fig. 7.2 (Pg 224):\n",
+"pA = 275/760;// [atm]\n",
+"Y = pA/(P-pA);// [kmol benzene/kmol nitrogen]\n",
+"Y_prime = Y*(MA/MB);// [kg benzene/kg nitrogen]\n",
+"printf('The concentration of benzene is %f kg benzene/kg nitrogen\n\n',Y_prime);\n",
+"\n",
+"printf('Illustration 7.5 (b)\n\n');\n",
+"// solution(b)\n",
+"\n",
+"// A = benzene vapour; B = CO2\n",
+"MA = 78.05;// [kg/kmol]\n",
+"MB = 44.01;// [kg/kmol]\n",
+"// Since gas is saturated, from Fig. 7.2:\n",
+"pA = 275/760;// [atm]\n",
+"Y = pA/(P-pA);// [kmol benzene/kmol CO2]\n",
+"Y_prime = Y*(MA/MB);// [kg benzene/kg CO2]\n",
+"printf('The concentration of benzene is %f kg benzene/kg CO2\n',Y_prime);"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.6: Air_Water_System.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clear;\n",
+"clc;\n",
+"\n",
+"// Illustration 7.6\n",
+"// Page: 234\n",
+"\n",
+"printf('Illustration 7.6 - Page: 234\n\n');\n",
+"\n",
+"// solution\n",
+"\n",
+"//****Data****//\n",
+"// A = water vapour; B = air\n",
+"TempG = 55;// [OC]\n",
+"P = 1.0133*10^(5);// [N/square m]\n",
+"Y_prime = 0.030;// [kg water/kg dry air]\n",
+"//******//\n",
+"\n",
+"MA = 18.02;// [kg/kmol]\n",
+"MB = 28.97;// [kg/kmol]\n",
+"\n",
+"// Percent Humidity\n",
+"// From psychrometric chart, at 55 OC\n",
+"Ys_prime = 0.115;// [kg water/kg dry air]\n",
+"percent_Humidity = (Y_prime/Ys_prime)*100;\n",
+"printf('The sample has percent Humidity = %f %%\n',percent_Humidity);\n",
+"\n",
+"// Molal Absolute Humidity\n",
+"Y = Y_prime*(MB/MA);// [kmol water/kmol dry air]\n",
+"printf('Molal Absolute Humidity of the sample is %f kmol water/kmol dry air\n',Y);\n",
+"\n",
+"// Partial Pressure\n",
+"pA = Y*P/(1+Y);// [N/square m]\n",
+"printf('The Partial Pressure Of Water is %f N/square m\n',pA);\n",
+"\n",
+"// Relative Humidity\n",
+"pa = 118*133.3;// [vapour pressure of water at 55 OC,N/square m]\n",
+"relative_Humidity = (pA/pa)*100;\n",
+"printf('The sample has relative Humidity = %f %%\n',relative_Humidity);\n",
+"\n",
+"// Dew Point\n",
+"// From psychrometric chart,\n",
+"dew_point = 31.5;// [OC]\n",
+"printf('Dew point Of the Sample is %f Oc\n',dew_point);\n",
+"\n",
+"// Humid Volume\n",
+"// At 55 OC\n",
+"vB = 0.93;// [specific volume of dry air,cubic m/kg]\n",
+"vsB = 1.10;// [specific volume of saturated air,cubic m/kg]\n",
+"vH = vB+((vsB-vB)*(percent_Humidity/100));// [cubic m/kg]\n",
+"printf('The Humid Volume of the Sample is %f cubic m/kg\n',vH);\n",
+"\n",
+"// Humid Heat\n",
+"CB = 1005;// [J/kg.K]\n",
+"CA = 1884;// [J/kg.K]\n",
+"Cs = CB+(Y_prime*CA);// [J/kg]\n",
+"printf('The Humid Heat is %f J/kg dry air.K\n',Cs);\n",
+"\n",
+"// Enthalpy\n",
+"HA = 56000;// [J/kg dry air]\n",
+"HsA = 352000;// [J/kg dry air]\n",
+"H_prime = HA+((HsA-HA)*(percent_Humidity/100));// [J/kg dry air]\n",
+"printf('The Enthalphy of the sample is %f J/kg dry air\n',H_prime);"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.7: Air_Water_System.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clear;\n",
+"clc;\n",
+"\n",
+"// Illustration 7.7\n",
+"// Page: 236\n",
+"\n",
+"printf('Illustration 7.7 - Page: 236\n\n');\n",
+"\n",
+"// solution\n",
+"\n",
+"//****Data****//\n",
+"// A = water vapour; B = air\n",
+"V = 100;// [m^3]\n",
+"Tempi = 55;// [OC]\n",
+"Tempf = 110;// [OC]\n",
+"//*****//\n",
+"\n",
+"// From Illustration 7.6\n",
+"vH = 0.974;// [m^3/kg]\n",
+"Cs = 1061.5;// [J/kg]\n",
+"WB = V/vH;// [kg]\n",
+"Q = WB*Cs*(Tempf-Tempi);// [J]\n",
+"printf('Heat recquired is %e J\n',Q);"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.8: Adiabatic_Saturation_Curves.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clear;\n",
+"clc;\n",
+"\n",
+"// Illustration 7.8\n",
+"// Page: 237\n",
+"\n",
+"printf('Illustration 7.8 - Page: 237\n\n');\n",
+"\n",
+"// solution\n",
+"\n",
+"//****Data****//\n",
+"Y_prime1 = 0.030;// [kg water/kg dry air]\n",
+"Temp1 = 83;// [OC]\n",
+"//*******//\n",
+"\n",
+"// From the psychrometric chart, the condition at 90 OC\n",
+"Temp2 = 41.5;// [OC]\n",
+"Y_prime2 = 0.0485;// [kg water/kg dry air]\n",
+"printf('The Outlet Air condition are:\n');\n",
+"printf('Temp. = %f OC\n',Temp2);\n",
+"printf('Absolute Humidity = %f kg water/kg dry air\n',Y_prime2);"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.9: Lewis_Relatio.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clear;\n",
+"clc;\n",
+"\n",
+"// Illustration 7.9\n",
+"// Page:240\n",
+"\n",
+"printf('Illustration 7.9 - Page:240\n\n');\n",
+"\n",
+"// solution\n",
+"\n",
+"//****Data****//\n",
+"Tempw = 35;// [OC]\n",
+"Tempg = 65;// [OC]\n",
+"//******//\n",
+"\n",
+"// From psychrometric chart\n",
+"lambda_w = 2419300;// [J/kg]\n",
+"Y_prime_w = 0.0365;// [kg H2O/kg dry air]\n",
+"// From fig 7.5(a)\n",
+"hG_by_kY = 950;// [J/kg]\n",
+"// From Eqn. 7.26\n",
+"deff('[y] = f13(Y_prime)','y = (Tempg-Tempw)-((lambda_w*(Y_prime_w-Y_prime))/hG_by_kY)');\n",
+"Y_prime = fsolve(2,f13);// [kg H2O/kg dry air]\n",
+"printf('Humidity of air is %f kg H2O/kg dry air\n',Y_prime);"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}