summaryrefslogtreecommitdiff
path: root/Mass_Transfer_Operations_by_R_E_Treybal/3-Mass_Transfer_Coeffecients.ipynb
diff options
context:
space:
mode:
Diffstat (limited to 'Mass_Transfer_Operations_by_R_E_Treybal/3-Mass_Transfer_Coeffecients.ipynb')
-rw-r--r--Mass_Transfer_Operations_by_R_E_Treybal/3-Mass_Transfer_Coeffecients.ipynb537
1 files changed, 537 insertions, 0 deletions
diff --git a/Mass_Transfer_Operations_by_R_E_Treybal/3-Mass_Transfer_Coeffecients.ipynb b/Mass_Transfer_Operations_by_R_E_Treybal/3-Mass_Transfer_Coeffecients.ipynb
new file mode 100644
index 0000000..04d9756
--- /dev/null
+++ b/Mass_Transfer_Operations_by_R_E_Treybal/3-Mass_Transfer_Coeffecients.ipynb
@@ -0,0 +1,537 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 3: Mass Transfer Coeffecients"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.1: Mass_Transfer_Coeffecient_in_Laminar_Flow.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clear;\n",
+"clc;\n",
+"\n",
+"// Illustration 3.1\n",
+"// Page: 53\n",
+"\n",
+"printf('Illustration 3.1 - Page: 53\n\n');\n",
+"\n",
+"// solution\n",
+"\n",
+"//****Data*****//\n",
+"// a = CO2 b = H2O\n",
+"Ca0 = 0;//[kmol/cubic m]\n",
+"Cai = 0.0336;//[kmol/cubic m]\n",
+"Dab = 1.96*10^(-9);// [square m/s]\n",
+"//*******//\n",
+"\n",
+"density = 998;// [kg/cubic m]\n",
+"viscosity = 8.94*10^(-4);//[kg/m.s]\n",
+"rate = 0.05;//[kg/m.s] mass flow rate of liquid\n",
+"L = 1;//[m]\n",
+"g = 9.81;//[m/square s]\n",
+"// From Eqn. 3.10\n",
+"del = ((3*viscosity*rate)/((density^2)*g))^(1/3);// [m]\n",
+"Re = 4*rate/viscosity;\n",
+"// Flow comes out to be laminar\n",
+"// From Eqn. 3.19\n",
+"Kl_avg = ((6*Dab*rate)/(3.141*density*del*L))^(1/2);//[kmol/square m.s.(kmol/cubic m)]\n",
+"bulk_avg_velocity = rate/(density*del);//[m/s]\n",
+"// At the top: Cai-Ca = Cai_Ca0 = Cai\n",
+"//At the bottom: Cai-Cal\n",
+"// From Eqn. 3.21 & 3.22\n",
+"Cal = Cai*(1-(1/(exp(Kl_avg/(bulk_avg_velocity*del)))));// [kmol/cubic m]\n",
+"rate_absorption = bulk_avg_velocity*del*(Cal-Ca0);// [kmol/s].(m of width)\n",
+"printf('The rate of absorption is %e',rate_absorption);\n",
+"// The actual value may be substantially larger."
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.2: Eddy_Diffusio.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clear;\n",
+"clc;\n",
+"\n",
+"// Illustration 3.2\n",
+"// Page: 56\n",
+"\n",
+"printf('Illustration 3.2 - Page: 56\n\n');\n",
+"\n",
+"// solution\n",
+"\n",
+"//***Data****//\n",
+"d = 0.025;// [m]\n",
+"avg_velocity = 3;// [m/s]\n",
+"viscosity = 8.937*10^(-4);// [kg/m.s]\n",
+"density = 997;// [kg/m^3]\n",
+"//*********//\n",
+"\n",
+"kinematic_viscosity = viscosity/density;// [square m/s]\n",
+"Re = d*avg_velocity*density/viscosity;\n",
+"// Reynold's number comes out to be 83670\n",
+"// At this Reynold's number fanning factor = 0.0047\n",
+"f = 0.0047;\n",
+"L = 1;// [m]\n",
+"press_drop = 2*density*f*L*(avg_velocity^2)/(d);// [N/square m]\n",
+"P = 3.141*(d^2)*avg_velocity*press_drop/4;// [N.m/s] for 1m pipe\n",
+"m = 3.141*(d^2)*L*density/4;\n",
+"// From Eqn. 3.24\n",
+"Ld = ((kinematic_viscosity^3)*m/P)^(1/4);// [m]\n",
+"// From Eqn. 3.25\n",
+"Ud = (kinematic_viscosity*P/m)^(1/4);// [m/s]\n",
+"printf('Velocity of small eddies is %f m/s\n',Ud);\n",
+"printf('Length scale of small eddies is %e m',Ld);"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.3: Mass_Heat_And_Momentum_Transfer_Analogies.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clear;\n",
+"clc;\n",
+"\n",
+"// Illustration 3.3\n",
+"// Page: 69\n",
+"\n",
+"printf('Illustration 3.3 - Page: 69\n\n');\n",
+"\n",
+"// solution\n",
+"\n",
+"// Heat transfer analog to Eqn. 3.12\n",
+"// The Eqn. remains the same with the dimensionless conc. ratio replaced by ((tl-to)/(ti-to))\n",
+"\n",
+"// The dimensionless group:\n",
+"// eta = 2*Dab*L/(3*del^2*velocity);\n",
+"// eta = (2/3)*(Dab/(del*velocity))*(L/del);\n",
+"// Ped = Peclet no. for mass transfer\n",
+"// eta = (2/3)*(1/Ped)*(L/del);\n",
+"\n",
+"// For heat transfer is replaced by\n",
+"// Peh = Peclet no. for heat transfer\n",
+"// eta = (2/3)*(1/Peh)*(L/del);\n",
+"// eta = (2/3)*(alpha/(del*velocity))*(L/del);\n",
+"// eta = (2*alpha*L)/(3*del^2*velocity);\n",
+"printf('Heat transfer analog to Eqn. 3.21 is eta = (2*alpha*L)/(3*del^2*velocity)');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.4: Mass_Heat_And_Momentum_Transfer_Analogies.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clear;\n",
+"clc;\n",
+"\n",
+"// Illustration 3.4\n",
+"// Page: 69\n",
+"\n",
+"printf('Illustration 3.4 - Page: 69\n\n');\n",
+"\n",
+"// solution\n",
+"\n",
+"//***Data****//\n",
+"// a = UF6 b = air\n",
+"// The average heat transfer coefficient: Nu_avg = 0.43+0.532(Re^0.5)(Pr^0.31)\n",
+"// The analogus expression for mass transfer coefficient: Sh_avg = 0.43+0.532(Re^0.5)(Sc^0.31)\n",
+"d = 0.006;// [m]\n",
+"velocity = 3;// [m/s]\n",
+"surf_temp = 43;// [C]\n",
+"bulk_temp = 60;// [C]\n",
+"avg_temp = (surf_temp+bulk_temp)/2; //[C]\n",
+"density = 4.10;// [kg/cubic m]\n",
+"viscosity = 2.7*10^(-5);// [kg/m.s]\n",
+"Dab = 9.04*10^(-6);// [square m/s]\n",
+"press = 53.32;// [kN/square m]\n",
+"tot_press = 101.33;// [kN/square m]\n",
+"//******//\n",
+"\n",
+"avg_press = press/2; // [kN/square m]\n",
+"Xa = avg_press/tot_press;\n",
+"Xb = 1-Xa;\n",
+"Re = d*velocity*density/viscosity;\n",
+"Sc = viscosity/(density*Dab);\n",
+"Sh_avg = 0.43+(0.532*(2733^0.5)*(0.728^0.5));\n",
+"c = 273.2/(22.41*(273.2+avg_temp));// [kmol/cubic m]\n",
+"F_avg = Sh_avg*c*Dab/d;//[kmol/cubic m]\n",
+"Nb = 0;\n",
+"Ca1_by_C = press/tot_press;\n",
+"Ca2_by_C = 0;\n",
+"Flux_a = 1;\n",
+"// Using Eqn. 3.1\n",
+"Na = Flux_a*F_avg*log((Flux_a-Ca2_by_C)/(Flux_a-Ca1_by_C));//[kmol UF6/square m.s]\n",
+"printf('Rate of sublimation is %e kmol UF6/square m.s',Na);"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.5: Flux_Variation_with_Concentration.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clear;\n",
+"clc;\n",
+"\n",
+"// Illustration 3.5\n",
+"// Page: 73\n",
+"\n",
+"printf('Illustration 3.5 - Page: 73\n\n');\n",
+"\n",
+"// solution\n",
+"\n",
+"//****Data****//\n",
+"velocity = 15;// [m/s]\n",
+"G = 21.3;// [kg/square m.s]\n",
+"//******//\n",
+"\n",
+"// Since the experimental data do not include the effects of changing Prandtl number.\n",
+"\n",
+"// Jh = (h/(Cp*density*viscosity)) = (h/Cp*G)*(Pr^(2/3)) = Shi(Re);\n",
+"\n",
+"// Shi(Re) must be compatible with 21.3*(G^0.6);\n",
+"// Let Shi(Re) = b*(Re^n);\n",
+"// Re = (l*G)/viscosity;\n",
+"\n",
+"// h = (Cp*G/(Pr^(2/3)))*b*(Re^n);\n",
+"// h = (Cp*G/(Pr^(2/3)))*b*((l*b/viscosity)^n) = 21.3*(G^0.6);\n",
+"\n",
+"n = 0.6-1;\n",
+"// b = 21.3*((Pr^(2/3))/Cp)*((l/viscosity)^(-n));\n",
+"\n",
+"// Using data for air at 38 C & 1 std atm.\n",
+"Cp1 = 1002;// [kJ/kg.K]\n",
+"viscosity1 = 1.85*10^(-5);//[kg/m.s]\n",
+"k1 = 0.0273;//[W/m.K]\n",
+"Pr1 = (Cp1*viscosity1)/k1;\n",
+"b_prime = 21.3*(Pr1^(2/3)/Cp1)*((1/viscosity1)^0.4);\n",
+"// b = b_prime*l^(0.4);\n",
+"// Jh = (h/(Cp*G))*Pr^(2/3) = b_prime*((l/Re)^(0.4)) = Shi(Re);\n",
+"\n",
+"// The heat mass transfer analogy will be used to estimate the mass transfer coefficient. (Jd = Jh)\n",
+"\n",
+"// Jd = (KG*Pbm*Mav*Sc^(2/3))/(density*viscosity) = Shi(Re) = b_prime*((l/Re)^0.4);\n",
+"\n",
+"// KG*Pbm = F = (b_prime*density*viscosity)/(Re^0.4*Mav*Sc^(2/3)) = (b_prime*(density*velocity)^0.6*(viscosity^0.4))/(Mav*Sc^(2/3));\n",
+"\n",
+"// For H2-H20, 38 C, 1std atm\n",
+"viscosity2 = 9*10^(-6);// [kg/m.s]\n",
+"density2 = 0.0794;// [kg/cubic m]\n",
+"Dab = 7.75*10^(-5);// [square m/s]\n",
+"Sc = viscosity2/(density2*Dab);\n",
+"\n",
+"// Assuming desity, Molecular weight and viscosity of the gas are essentially those of H2\n",
+"\n",
+"Mav = 2.02;// [kg/kmol]\n",
+"F = (b_prime*(density2*velocity)^0.6*(viscosity2^0.4))/(Mav*Sc^(2/3));// [kmol/square m.s]\n",
+"printf('The required mass transfer: %f kmol/square m.s',F);"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.6: Calculation_of_Bed_depth.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clear;\n",
+"clc;\n",
+"\n",
+"// Illustration 3.6\n",
+"// Page: 77\n",
+"\n",
+"printf('Illustration 3.6 - Page: 77\n\n');\n",
+"\n",
+"// solution\n",
+"\n",
+"//***Data***//\n",
+"Dp = 0.0125;// [m]\n",
+"viscosity = 2.4*10^(-5);// [kg/m.s]\n",
+"Sc = 2;\n",
+"E = 0.3;\n",
+"Go = (2*10^(-3))/0.1;// molar superficial mass velocity [kmol/square m.s]\n",
+"//********//\n",
+"\n",
+"// a = CO b = Ni(CO)4\n",
+"// Nb = -(Na/4);\n",
+"Flux_a = 4/3;\n",
+"Ca2_by_C = 0;// At the metal interface\n",
+"// Ca1_by_C = Ya //mole fraction of CO in the bulk\n",
+"\n",
+"// Eqn. 3.1 becomes: Na = (4/3)*F*log((4/3)/((4/3)-Ya));\n",
+"\n",
+"// Let G = kmol gas/(square m bed cross section).s\n",
+"// a = specific metal surface\n",
+"// z = depth \n",
+"// Therefore, Na = -(diff(Ya*G))/(a*diff(z));// [kmol/((square m metal surface).s)];\n",
+"// For each kmol of CO consumed, (1/4)kmol Ni(CO)4 forms, representing a loss of (3/4) kmol per kmol of CO consumed.\n",
+"// The CO consumed through bed depth dz is therefore (Go-G)(4/3) kmol;\n",
+"// Ya = (Go-(Go-G)*(4/3))/G;\n",
+"// G = Go/(4-(3*Ya));\n",
+"// diff(YaG) = ((4*Go)/(4-3*Ya)^2)*diff(Ya);\n",
+"\n",
+"// Substituting in Eqn. 3.64\n",
+"// -(4*Go/((4-3*Ya)^2*a))*(diff(Ya)/diff(z)) = (4/3)*F*log(4/(4-3*Ya));\n",
+"\n",
+"// At depth z:\n",
+"// Mass velocity of CO = (Go-(Go-G)/(4/3))*28;\n",
+"// Mass velocity of Ni(CO)4 = ((Go-G)*(1/3))*170.7;\n",
+"// G_prime = 47.6*Go-19.6G; // total mass velocity [kg/square m.s]\n",
+"// Substituting G leads to:\n",
+"// G_prime = Go*(47.6-19.6*(4-3*Ya));// [kg/m.s]\n",
+"// Re = (Dp*G')/viscosity\n",
+"\n",
+"// With Go = 0.002 kmol/square m.s & Ya in the range 1-0.005, the range of Re is 292-444;\n",
+"// From table 3.3:\n",
+"// Jd = (F/G)*(Sc^(2/3)) = (2.06/E)*Re^(-0.575);\n",
+"// F = (2.06/E*(Sc)^(2/3))*(Go/(4-3*Ya))*Re^(-0.575);\n",
+"\n",
+"a = 6*(1-E)/Dp;\n",
+"\n",
+"// Result after arrangement:\n",
+"Z = integrate('-((4*Go)/((4-(3*Ya))^2*a))*(3/4)*(E*(Sc^(2/3))*(4-(3*Ya))/(2.06*Go)*(1/log(4/(4-(3*Ya)))))*(((Dp/viscosity)*(Go*(47.6-(19.6/(4-(3*Ya))))))^0.575)','Ya',1,0.005);// [m]\n",
+"printf('The bed depth required to reduce the CO content to 0.005 is %f m', Z);"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.7: Local_rate_of_condensation.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clear;\n",
+"clc;\n",
+"\n",
+"// Illustration 3.7\n",
+"// Page: 80\n",
+"\n",
+"printf('Illustration 3.7 - Page: 80\n\n');\n",
+"\n",
+"// solution\n",
+"\n",
+"//****Data*****//\n",
+"// a = water b = air\n",
+"out_dia = 0.0254;// [m]\n",
+"wall_thick = 0.00165;// [m]\n",
+"avg_velocity = 4.6;// [m/s]\n",
+"T1 = 66;// [C]\n",
+"P = 1;// [atm]\n",
+"Pa1 = 0.24;// [atm]\n",
+"k1 = 11400;// [W/(square m.K)]\n",
+"T2 = 24;// [C]\n",
+"k2 = 570;// [W/square m.K]\n",
+"k_Cu = 381;// [w/square m.K]\n",
+"//******//\n",
+"\n",
+"// For the metal tube\n",
+"int_dia = out_dia-(2*wall_thick);// [m]\n",
+"avg_dia = (out_dia+int_dia)/2;// [mm]\n",
+"Nb = 0;\n",
+"Flux_a = 1;\n",
+"Ya1 = 0.24;\n",
+"Yb1 = 1-Ya1;\n",
+"Mav = (Ya1*18.02)+(Yb1*29);// [kg/kmol]\n",
+"density = (Mav/22.41)*(273/(273+T1));// [kg/cubic m]\n",
+"viscosity = 1.75*10^(-5);// [kg/m.s]\n",
+"Cpa = 1880;// [J/kg.K]\n",
+"Cpmix = 1145;// [J/kg.K]\n",
+"Sc = 0.6;\n",
+"Pr = 0.75;\n",
+"G_prime = avg_velocity*density;// [kg/square m.s]\n",
+"G = G_prime/Mav;// [kmol/square m.s]\n",
+"Re = avg_dia*G_prime/viscosity;\n",
+"// From Table 3.3:\n",
+"// Jd = Std*Sc^(2/3) = (F/G)*Sc^(2/3) = 0.023*Re^(-0.17);\n",
+"Jd = 0.023*Re^(-0.17);\n",
+"F = (0.023*G)*(Re^(-0.17)/Sc^(2/3));\n",
+"\n",
+"// The heat transfer coeffecient in the absence of mass transfer will be estimated through Jd = Jh\n",
+"// Jh = Sth*Pr^(2/3) = (h/Cp*G_prime)*(Pr^(2/3)) = Jd\n",
+"h = Jd*Cpmix*G_prime/(Pr^(2/3));\n",
+"\n",
+"U = 1/((1/k1)+((wall_thick/k_Cu)*(int_dia/avg_dia))+((1/k2)*(int_dia/out_dia)));// W/square m.K\n",
+"\n",
+"// Using Eqn. 3.70 & 3.71 with Nb = 0\n",
+"// Qt = (Na*18.02*Cpa/1-exp(-(Na*18.02*Cpa/h)))*(T1-Ti)+(Lambda_a*Na);\n",
+"// Qt = 618*(Ti-T2);\n",
+"// Using Eqn. 3.67, with Nb = 0, Cai/C = pai, Ca1/C = Ya1 = 0.24;\n",
+"// Na = F*log(((Flux_a)-(pai))/((Flux_a)-(Ya1));\n",
+"\n",
+"// Solving above three Eqn. simultaneously:\n",
+"Ti = 42.2;// [C]\n",
+"pai = 0.0806;// [atm]\n",
+"Lambda_a = 43.4*10^6;// [J/kmol]\n",
+"Na = F*log(((Flux_a)-(pai))/((Flux_a)-(Ya1)));// [kmol/square m.s]\n",
+"Qt1 = 618*(Ti-T2);// [W/square m]\n",
+"Qt2 = ((Na*18.02*Cpa/(1-exp(-(Na*18.02*Cpa/h))))*(T1-Ti))+(Lambda_a*Na);// [W/square m]\n",
+"\n",
+"// since the value of Qt1 & Qt2 are relatively close\n",
+"printf('The local rate of condensation of water is %e kmol/square m.s',Na);"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.8: Simultaneous_Heat_and_Mass_Transfer.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clear;\n",
+"clc;\n",
+"\n",
+"// Illustration 3.8\n",
+"// Page: 81\n",
+"printf('Illustration 3.8 - Page: 81\n\n');\n",
+"printf('Illustration 3.8 (a)\n\n');\n",
+"\n",
+"// Solution (a)\n",
+"\n",
+"//***Data****//\n",
+"// a = water b = air\n",
+"Nb = 0;\n",
+"h = 1100;// [W/square m]\n",
+"//*****//\n",
+"\n",
+"Ma = 18.02;// [kg/kmol]\n",
+"Cpa = 2090;// [J/kg.K]\n",
+"T1 = 600;// [C]\n",
+"Ti = 260;// [C]\n",
+"// The positive dirn. is taken to be from the bulk gas to the surface.\n",
+"Has = 2.684*(10^6);// enthapy of saturated steam at 1.2 std atm, rel. to the liquid at 0 C in [J/kg]\n",
+"Hai = 2.994*(10^6);// enthalpy of steam at 1 std atm, 260 C in [J/kg]\n",
+"\n",
+"// Radiation contributions to the heat transfer from the gas to the surface are negligible. Eqn. 3.70 reduces to\n",
+"Na = -((h/(Ma*Cpa))*log(1-((Cpa*(T1-Ti))/(Has-Hai))));// [kmol/square m.s]\n",
+"printf('The rate of steam flow reqd. is %f kmol/square m.s\n\n',Na);\n",
+"// negative sign indicates that the mass flux is into the gas\n",
+"\n",
+"printf('Illustration 3.8 (b)\n\n');\n",
+" \n",
+"// Solution (b)\n",
+"\n",
+"//***Data****//\n",
+"// a = water b = air\n",
+"h = 572;// [W/square m]\n",
+"T1 = 25;// [C]\n",
+"//******//\n",
+"\n",
+"Ti = 260;// [C]\n",
+"// The positive dirn. is taken to be from the bulk gas to the surface.\n",
+"Has = 1.047*10^(5);// enthapy of saturated steam at 1.2 std atm, rel. to the liquid at 0 C in [J/kg]\n",
+"Hai = 2.994*(10^6);// enthalpy of steam at 1 std atm, 260 C in [J/kg]\n",
+"\n",
+"// Radiation contributions to the heat transfer from the gas to the surface are negligible. Eqn. 3.70 reduces to\n",
+"Na = -((h/(Ma*Cpa))*log(1-((Cpa*(T1-Ti))/(Has-Hai))));// [kmol/square m.s]\n",
+"printf('The rate of steam flow reqd. is %f kmol/square m.s',Na);\n",
+"// negative sign indicates that the mass flux is into "
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}