diff options
Diffstat (limited to 'Manufacturing_Engineering_Technology_by_S_Kalpakjian_and_S_R_Schmid')
16 files changed, 1465 insertions, 0 deletions
diff --git a/Manufacturing_Engineering_Technology_by_S_Kalpakjian_and_S_R_Schmid/10-Fundamental_of_Metal_Casting.ipynb b/Manufacturing_Engineering_Technology_by_S_Kalpakjian_and_S_R_Schmid/10-Fundamental_of_Metal_Casting.ipynb new file mode 100644 index 0000000..30af21a --- /dev/null +++ b/Manufacturing_Engineering_Technology_by_S_Kalpakjian_and_S_R_Schmid/10-Fundamental_of_Metal_Casting.ipynb @@ -0,0 +1,79 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 10: Fundamental of Metal Casting" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 10.1: solidification_time_for_various_shapes.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc \n", +"// Given that\n", +"//three metal piece being cast have the same volume but different shapes\n", +"//shapes are sphere,cube,cylinder(height=diameter)\n", +"\n", +"// Sample Problem on page no. 252\n", +"\n", +"printf('\n #solidification time for various shapes# \n')\n", +"\n", +"//solidification time is inversely proportional to the square of surface area\n", +"\n", +"//for sphere\n", +"r=(3/(4*3.14))^(1/3)//radius of the sphere from volume of sphere v=(4*3.14*r^3)/3\n", +"A=4*3.14*((r)^2)\n", +"time1=1/(A)^2\n", +"printf('\n the solidification time for the sphere is %fC',time1)\n", +"\n", +"//for cube\n", +"a=1//edge of the cube\n", +"A=6*a^2\n", +"time2=1/(A)^2\n", +"printf('\n the solidification time for the cube is %fC',time2)\n", +"\n", +"//for cylinder\n", +"//given height =diameter \n", +"//radius=2*height\n", +"r=(1/(2*3.14))^(1/3)//radius of the cylinder from volume of the cylinder v=3.14*r^2*h\n", +"A=(6*3.14*(r^2)) //area of the cylinder = (2*3.14*radius^2) + (2*3.14*radius*height)\n", +"time3=1/(A)^2\n", +"printf('\n the solidification time for the sphere is %fC',time3)" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Manufacturing_Engineering_Technology_by_S_Kalpakjian_and_S_R_Schmid/13-Rolling_of_Metals.ipynb b/Manufacturing_Engineering_Technology_by_S_Kalpakjian_and_S_R_Schmid/13-Rolling_of_Metals.ipynb new file mode 100644 index 0000000..b96dfe5 --- /dev/null +++ b/Manufacturing_Engineering_Technology_by_S_Kalpakjian_and_S_R_Schmid/13-Rolling_of_Metals.ipynb @@ -0,0 +1,82 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 13: Rolling of Metals" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 13.1: Calculation_of_Roll_Force_and_Torque.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc \n", +"// Given that\n", +"w=9 //in inch width of thee strip\n", +"ho=1 //in inch initial thickness of the strip\n", +"hf=0.80 //in inch thickness of the strip after one pass\n", +"r=12 //in inch roll radius\n", +"N=100 //in rpm\n", +"\n", +"// Sample Problem on page no. 323\n", +"\n", +"printf('\n #Calculation of roll force and torque# \n')\n", +"\n", +"L=(r*(ho-hf))^(1/2)\n", +"\n", +"E=log(1/hf)//absolute value of true strain\n", +"\n", +"Y=26000 //in psi average stress from the data in the book \n", +"F=L*w*Y // roll force\n", +"F1=F*4.448/(10^6)//in mega newton\n", +"printf('\n\nRoll force = %f MN ',F1)\n", +"\n", +"//answer in the book is round off and given 363000lb\n", +"\n", +"P=(2*3.14*F*L*N)/(33000*12)\n", +"P1=P*7.457*(10^2)/(10^3)//in KW\n", +"printf('\n\npower per roll = %f KW ',P1)\n", +"\n", +"//answer in the book is 670 KW due to round off of the roll force\n", +"\n", +"Tp=2*P1//total power\n", +"printf('\n\nTotal power = %f KW ',Tp)\n", +"\n", +"//answer in the book is 1340KW due to round off of the roll force" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Manufacturing_Engineering_Technology_by_S_Kalpakjian_and_S_R_Schmid/14-Forging_of_Metals.ipynb b/Manufacturing_Engineering_Technology_by_S_Kalpakjian_and_S_R_Schmid/14-Forging_of_Metals.ipynb new file mode 100644 index 0000000..f467c5b --- /dev/null +++ b/Manufacturing_Engineering_Technology_by_S_Kalpakjian_and_S_R_Schmid/14-Forging_of_Metals.ipynb @@ -0,0 +1,71 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 14: Forging of Metals" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 14.1: Calculation_of_Forging_Force.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc \n", +"// Given that\n", +"d=150//in mm Diameter of the solid cylinder \n", +"Hi=100 //in mm Height of the cylinder\n", +"u=0.2 // Cofficient of friction\n", +"\n", +"// Sample Problem on page no. 344\n", +"\n", +"printf('\n # Calculation of forging force # \n')\n", +"\n", +"//cylinder is reduced in height by 50%\n", +"Hf=100/2\n", +"//Volume before deformation= Volume after deformation\n", +"r=sqrt((3.14*75^2*100)/(3.14*50))//r is the final radius of the cylinder\n", +"E=log(Hi/Hf)//absolute value of true strain\n", +"//given that cylinder is made of 304 stainless steel\n", +"Yf=1000 //in Mpa flow stress of the material from data in the book\n", +"F = Yf*(10^6)*3.14*(r^2)*10^-6*(1+((2*u*r)/(3*Hf)))//Forging Force\n", +"F1=F/(10^6)\n", +"printf('\n\n Forging force = %d MN',F1)\n", +"\n", +"" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Manufacturing_Engineering_Technology_by_S_Kalpakjian_and_S_R_Schmid/15-Extrusion_and_Drawing_of_Metals.ipynb b/Manufacturing_Engineering_Technology_by_S_Kalpakjian_and_S_R_Schmid/15-Extrusion_and_Drawing_of_Metals.ipynb new file mode 100644 index 0000000..1283cd6 --- /dev/null +++ b/Manufacturing_Engineering_Technology_by_S_Kalpakjian_and_S_R_Schmid/15-Extrusion_and_Drawing_of_Metals.ipynb @@ -0,0 +1,65 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 15: Extrusion and Drawing of Metals" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 15.1: Calculation_of_Force_in_Hot_Extrusion.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc \n", +"// Given that\n", +"di=5//in inch Diameter of the round billet\n", +"df=2//in inch Diameter of the round billet after extrusion\n", +"\n", +"// Sample Problem on page no. 372\n", +"\n", +"printf('\n # Calculation of force in Hot Extrusion# \n')\n", +"\n", +"//As 70-30 Brass is given, so the value of the extrusion constant is 35000psi from the diagram given in the book\n", +"k=35000//in psi\n", +"F=3.14*(di/2)^2*k*log((3.14*(di^2))/(3.14*(df^2)))\n", +"F1=F*4.448/(10^6)\n", +"printf('\n\n Extrusion force=%f MN',F1)\n", +"\n", +"//Answer in the book is approximated to 5.5MN" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Manufacturing_Engineering_Technology_by_S_Kalpakjian_and_S_R_Schmid/16-Sheet_Metal_Forming_Processes.ipynb b/Manufacturing_Engineering_Technology_by_S_Kalpakjian_and_S_R_Schmid/16-Sheet_Metal_Forming_Processes.ipynb new file mode 100644 index 0000000..3d42cbd --- /dev/null +++ b/Manufacturing_Engineering_Technology_by_S_Kalpakjian_and_S_R_Schmid/16-Sheet_Metal_Forming_Processes.ipynb @@ -0,0 +1,65 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 16: Sheet Metal Forming Processes" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 16.1: Calculation_of_Punch_Force.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc \n", +"// Given that\n", +"d=1//in inch Diameter of the hole\n", +"T=(1/8)//in inch thickness of the sheet\n", +"\n", +"// Sample Problem on page no. 396\n", +"\n", +"printf('\n # Calculation of Punch Force# \n')\n", +"\n", +"UTS=140000//in psi Ultimate Tensile Strength of the titanium alloy Ti-6Al-4V\n", +"L=3.14*d//total length sheared which is the perimeter of the hole\n", +"F=0.7*T*L*UTS\n", +"F1=F*4.448/(10^6)\n", +"printf('\n\n Extrusion force=%f MN',F1)\n", +"\n", +"//Answer in the book is approximated to 0.17MN" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Manufacturing_Engineering_Technology_by_S_Kalpakjian_and_S_R_Schmid/17-Processing_of_Powder_Metals_Ceramics_Glass_and_Superconductors.ipynb b/Manufacturing_Engineering_Technology_by_S_Kalpakjian_and_S_R_Schmid/17-Processing_of_Powder_Metals_Ceramics_Glass_and_Superconductors.ipynb new file mode 100644 index 0000000..6317b65 --- /dev/null +++ b/Manufacturing_Engineering_Technology_by_S_Kalpakjian_and_S_R_Schmid/17-Processing_of_Powder_Metals_Ceramics_Glass_and_Superconductors.ipynb @@ -0,0 +1,76 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 17: Processing of Powder Metals Ceramics Glass and Superconductors" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 17.1: Calculation_of_Dimensional_Changes_During_Shaping_of_Ceramic_Components.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc \n", +"// Given that\n", +"L=20//in mm Final length of the ceramic part\n", +"//Linear shrinkage during drying and firing is 7% and 6% respectively\n", +"Sd=0.070//Linear shrinkage during drying\n", +"Sf=0.06//Linear shrinkage during firing\n", +"\n", +"// Sample Problem on page no. 466\n", +"\n", +"printf('\n # Dimensional changes during the shaping of ceramic components # \n')\n", +"\n", +"//part (a)\n", +"\n", +"Ld=L/(1-Sf)//dried length\n", +"Lo=(1+Sd)*Ld//initial length\n", +"printf('\n\n Initial Length=%f mm',Lo)\n", +"\n", +"//Answer in the book is approximated to 22.77mm\n", +"\n", +"//part(b)\n", +"\n", +"Pf=0.03//Fired Porosity\n", +"r = (1-Pf)// Where r = Va/Vf\n", +"R = 1/((1-Sf)^3)// Where R = Vd/Vf\n", +"Pd = (1-r/R)\n", +"printf('\n\nDried porosity is %d percent',Pd*100)\n", +"" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Manufacturing_Engineering_Technology_by_S_Kalpakjian_and_S_R_Schmid/18-Forming_and_Shaping_Plastics_And_Composite_Materials.ipynb b/Manufacturing_Engineering_Technology_by_S_Kalpakjian_and_S_R_Schmid/18-Forming_and_Shaping_Plastics_And_Composite_Materials.ipynb new file mode 100644 index 0000000..42dc297 --- /dev/null +++ b/Manufacturing_Engineering_Technology_by_S_Kalpakjian_and_S_R_Schmid/18-Forming_and_Shaping_Plastics_And_Composite_Materials.ipynb @@ -0,0 +1,105 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 18: Forming and Shaping Plastics And Composite Materials" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 18.1: Calculation_of_Diameter_of_Die_in_Extrusion.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc \n", +"// Given that\n", +"W=400//in mm Lateral(width) Dimension of a plastic shopping bag \n", +"\n", +"// Sample Problem on page no. 484\n", +"\n", +"printf('\n # Blown Film # \n')\n", +"\n", +"//part(a)\n", +"\n", +"P=2*W//in mm Perimeter of bag\n", +"D=P/3.14//in mm blown diameter calculated from Permeter=3.14*diameter\n", +"//Given in this process, a tube is expanded to form 1.5 to 2.5 in times the extrusion die diameter, so take maximum value 2.5\n", +"Dd=D/2.5//Extrusion die diameter\n", +"printf('\n\n Extrusion Die Diameter =%d mm',Dd)\n", +"\n", +"//Answer in the book is approximated to 100mm\n", +"\n", +"//part(b) is theoritical" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 18.2: Calculation_of_number_of_Gears_In_Injection_Moulding.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc \n", +"// Given that\n", +"W=250//in ton Weight of injection moulding machine\n", +"d=4.5//in inch diameter of spur gear\n", +"t=0.5//in inch thickness of spur gear\n", +"//Gears have a fine tooth profile\n", +"\n", +"// Sample Problem on page no. 488\n", +"\n", +"printf('\n # Injection Molding of Parts # \n')\n", +"\n", +"//because of fine tooth profile pressure required in the mould cavity is assumed to be of the order 100MPa or 15Ksi\n", +"p=15//inKsi\n", +"A=(3.14*(d^2))/4//in inch^2 area of the gear\n", +"F=A*15*1000\n", +"n=(W*2000)/F //weight is converted into lb by multiplying it by 2000\n", +"printf('\n\n Number of gears that can be injected =%d',n)\n", +"\n", +"// Second part of this question is theoritical" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Manufacturing_Engineering_Technology_by_S_Kalpakjian_and_S_R_Schmid/2-Mechanical_Behavior_Testing_and_Manufacturing_Properties_of_Materials.ipynb b/Manufacturing_Engineering_Technology_by_S_Kalpakjian_and_S_R_Schmid/2-Mechanical_Behavior_Testing_and_Manufacturing_Properties_of_Materials.ipynb new file mode 100644 index 0000000..488dbf7 --- /dev/null +++ b/Manufacturing_Engineering_Technology_by_S_Kalpakjian_and_S_R_Schmid/2-Mechanical_Behavior_Testing_and_Manufacturing_Properties_of_Materials.ipynb @@ -0,0 +1,73 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 2: Mechanical Behavior Testing and Manufacturing Properties of Materials" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.1: Calculation_of_Ultimate_Tensile_Strength.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"\n", +"clc \n", +"// Given that\n", +"//True stress=100000*(True strain)^0.5\n", +"\n", +"// Sample Problem on page no. 63\n", +"\n", +"printf('\n # Calculation of Ultimate Tensile Strength # \n')\n", +"//from the data given\n", +"n=0.5\n", +"E=0.5\n", +"K=100000\n", +"Truestress=K*((E)^n)\n", +"//let An(area of neck)/Ao=t\n", +"//from log(Ao/An)=n\n", +"t=exp(-n)\n", +"UTS=Truestress*exp(-n)//from the expression UTS= P/Ao where P(Maximum Load)=Truestress*An\n", +"printf('\n\n Ultimate Tensile Strength = %f psi',UTS)\n", +"//answer in the book is approximated to 42850 psi \n", +"\n", +"\n", +"\n", +"\n", +"" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Manufacturing_Engineering_Technology_by_S_Kalpakjian_and_S_R_Schmid/20-Machining_Processes_Used_to_Produce_Round_Shape.ipynb b/Manufacturing_Engineering_Technology_by_S_Kalpakjian_and_S_R_Schmid/20-Machining_Processes_Used_to_Produce_Round_Shape.ipynb new file mode 100644 index 0000000..276e8f6 --- /dev/null +++ b/Manufacturing_Engineering_Technology_by_S_Kalpakjian_and_S_R_Schmid/20-Machining_Processes_Used_to_Produce_Round_Shape.ipynb @@ -0,0 +1,106 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 20: Machining Processes Used to Produce Round Shape" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 20.1: Calculation_of_Energy_used_as_friction_In_cutting.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc \n", +"// Given that\n", +"to=0.005//in inch depth of cut\n", +"V=400//in ft/min cutting speed\n", +"X=10//in degree rake angle\n", +"w=0.25//in inch width of cut\n", +"tc=0.009//in inch chip thickness\n", +"Fc=125//in lb Cutting force\n", +"Ft=50//in lb thrust force\n", +"\n", +"// Sample Problem on page no. 548\n", +"\n", +"printf('\n # Relative Energies in cutting # \n')\n", +"\n", +"r=to/tc//cutting ratio\n", +"R=sqrt((Ft^2)+(Fc^2))\n", +"B=acosd(Fc/R)+X//friction angle\n", +"F=R*sind(B)\n", +"P=((F*r)/Fc)*100\n", +"printf('\n\n Percentage of total energy going into overcoming friction =%d pecrent',P)\n", +"\n", +"//Answer in the book is approximated to 32 due to approximation in calculation of R and B" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 20.2: Change_in_Tool_Life_by_Changing_the_Cutting_Speed.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc \n", +"// Given that\n", +"n=0.5//exponent that depends on tool and workpiece material\n", +"C=400//constant\n", +"\n", +"// Sample Problem on page no. 555\n", +"\n", +"printf('\n # Increasing tool life by Reducing the Cutting Speed # \n')\n", +"\n", +"V1=poly(0,'V1')\n", +"r=0.5// it is the ratio of V2/V1 where V1 and V2 are the initial and final cutting speed of the tool\n", +"//let t=T2/T1 where T1 and T2 are the initial and final tool life\n", +"t=1/(r^(1/n))//from the relation V1*(T1^n)=V2*(T2^n)\n", +"P=(t-1)*100\n", +"printf('\n\n Percent increase in tool life =%d Percent',P)\n", +"\n", +"" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Manufacturing_Engineering_Technology_by_S_Kalpakjian_and_S_R_Schmid/22-Machining_Processes_Used_to_Produce_Round_Shape.ipynb b/Manufacturing_Engineering_Technology_by_S_Kalpakjian_and_S_R_Schmid/22-Machining_Processes_Used_to_Produce_Round_Shape.ipynb new file mode 100644 index 0000000..4b356ef --- /dev/null +++ b/Manufacturing_Engineering_Technology_by_S_Kalpakjian_and_S_R_Schmid/22-Machining_Processes_Used_to_Produce_Round_Shape.ipynb @@ -0,0 +1,123 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 22: Machining Processes Used to Produce Round Shape" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 22.1: Calculation_of_Material_Removal_Rate_and_Cutting_Force_in_Turning.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc \n", +"// Given that\n", +"l=6//in inch Length of rod \n", +"di=1/2//in inch initial diameter of rod\n", +"df=0.480//in inch final diameter of rod\n", +"N=400//in rpm spindle rotation\n", +"Vt=8//in inch/minute axial speed of the tool\n", +"\n", +"// Sample Problem on page no. 600\n", +"\n", +"printf('\n # Material Removal Rate and Cutting Force in Turning # \n')\n", +"\n", +"V=3.14*di*N\n", +"printf('\n\n Cutting speed=%d in/min',V)\n", +"\n", +"v1=3.14*df*N//cutting speed from machined diameter\n", +"d=(di-df)/2//depth of cut\n", +"f=Vt/N//feed\n", +"Davg=(di+df)/2\n", +"MRR=3.14*Davg*d*f*N \n", +"printf('\n\n Material Removal Rate %f=in^3/min',MRR)\n", +"\n", +"t=l/(f*N)\n", +"printf('\n\n Cutting time=%f min',t)\n", +"\n", +"P=(4/2.73)*MRR//average value of stainless steel is taken as 4 ws/mm3 or 4/2.73 hpmin/mm3\n", +"printf('\n\n Cutting power=%f hp',P)\n", +"\n", +"Fc=((P*396000)/(N*2*3.14))/(Davg/2)\n", +"printf('\n\n Cutting force=%d lb',Fc)\n", +"\n", +"//answer in the book is given 118 lb due to approximation\n", +"\n", +"\n", +"\n", +"" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 22.2: Calculation_of_Material_Removal_Rate_and_Torque_in_Drlling.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc \n", +"// Given that \n", +"d=10//in mm diameter of drill bit\n", +"f=0.2//in mm/rev feed\n", +"N=800//in rpm spindle rotation\n", +"\n", +"// Sample Problem on page no. 632\n", +"\n", +"printf('\n # Material Removal Rate and Torque in Drilling # \n')\n", +"\n", +"MRR=[((3.14*(d^2))/4)*f*N]/60\n", +"printf('\n\n Material Removal Rate %d=mm^3/sec',MRR)\n", +"\n", +"//Answer in the book is given 210 mm^3/sec\n", +"\n", +"//from the book data an average unit power of 0.5Ws/mm2 for magnesium is taken\n", +"T=(MRR*0.5)/((N*2*3.14)/60)\n", +"printf('\n\n Torque on the drill %f=Nm',T)\n", +"\n", +"" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Manufacturing_Engineering_Technology_by_S_Kalpakjian_and_S_R_Schmid/23-Machining_Processes_Used_to_Produce_Various_Shape.ipynb b/Manufacturing_Engineering_Technology_by_S_Kalpakjian_and_S_R_Schmid/23-Machining_Processes_Used_to_Produce_Various_Shape.ipynb new file mode 100644 index 0000000..9fad354 --- /dev/null +++ b/Manufacturing_Engineering_Technology_by_S_Kalpakjian_and_S_R_Schmid/23-Machining_Processes_Used_to_Produce_Various_Shape.ipynb @@ -0,0 +1,135 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 23: Machining Processes Used to Produce Various Shape" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 23.1: EX23_1.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc \n", +"// Given that\n", +"l=12//in inch Length of block\n", +"w=4//in inch width\n", +"f=0.01//in inch/tooth feed \n", +"d=1/8//in inch depth of cut\n", +"D=2//in inch diameter of cutter\n", +"n=20//no. of teeth\n", +"N=100//in rpm spindle rotation\n", +"Vt=8//in inch/minute axial speed of the tool\n", +"\n", +"// Sample Problem on page no. 600\n", +"\n", +"printf('\n # Material Removal Rate , Power required and Cutting Time in slab milling # \n')\n", +"\n", +"v=f*N*n\n", +"MRR=w*d*v \n", +"printf('\n\n Material Removal Rate = %d in^3/min',MRR)\n", +"\n", +"//for annealed mild steel unit power is taken as 1.1 hp min/in3\n", +"P=1.1*MRR\n", +"printf('\n\n Cutting power=%d hp',P)\n", +"\n", +"T=P*33000/(N*2*3.14)\n", +"printf('\n\n Cutting torque=%d lb-ft',T)\n", +"\n", +"lc=sqrt(d*D)\n", +"t=((l+lc)/20)*60\n", +"printf('\n\n Cutting time=%f sec',t)\n", +"\n", +"\n", +"\n", +"\n", +"" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 23.2: EX23_2.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc \n", +"// Given that\n", +"l=500//in mm Length\n", +"w=60//in mm width\n", +"v=0.6//in m/min \n", +"d=3//in mm depth of cut\n", +"D=150//in mm diameter of cutter\n", +"n=10//no. of inserts\n", +"N=100//in rpm spindle rotation\n", +"\n", +"// Sample Problem on page no. 655\n", +"\n", +"printf('\n # Material Removal Rate , Power Required and Cutting Time in Face Milling # \n')\n", +"\n", +"MRR=w*d*v*1000 \n", +"printf('\n\n Material Removal Rate = %d mm3/min',MRR)\n", +"\n", +"lc=D/2\n", +"t=((l+(2*lc))/((v*1000)/60)) // velocity is converted into mm/sec\n", +"t1=t/60\n", +"printf('\n\n Cutting time= %ff min',t1)\n", +"\n", +"f=(v*1000*60)/(60*N*n) // N is converted into rev/sec by dividing by 60 , velocity is converted into mm/sec\n", +"printf('\n\n Feed per Tooth= %f mm/tooth',f)\n", +"\n", +"//for high strength aluminium alloy unit power is taken as 1.1 W s/mm3\n", +"P=(1.1*MRR)/60 // MRR is converted into mm3/sec by dividing by 60\n", +"P1=P/(1000)//in KW\n", +"printf('\n\n Cutting power=%f KW',P1)\n", +"\n", +"\n", +"\n", +"\n", +"" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Manufacturing_Engineering_Technology_by_S_Kalpakjian_and_S_R_Schmid/25-Abrasive_Machining_and_Finishing_Operations.ipynb b/Manufacturing_Engineering_Technology_by_S_Kalpakjian_and_S_R_Schmid/25-Abrasive_Machining_and_Finishing_Operations.ipynb new file mode 100644 index 0000000..1148aef --- /dev/null +++ b/Manufacturing_Engineering_Technology_by_S_Kalpakjian_and_S_R_Schmid/25-Abrasive_Machining_and_Finishing_Operations.ipynb @@ -0,0 +1,127 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 25: Abrasive Machining and Finishing Operations" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 25.1: Calculation_of_Chip_Dimensions_in_Surface_Grinding.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc \n", +"// Given that\n", +"D=200//in mm Grinding Wheel diameter \n", +"d=0.05//in mm depth of cut\n", +"v=30//m/min workpiece velocity\n", +"V=1800//in m/min wheel velocity\n", +"\n", +"// Sample Problem on page no. 713\n", +"\n", +"printf('\n # Chip Dimensions in Surface Grinding # \n')\n", +"\n", +"l=sqrt(D*d)\n", +"l1=l/2.54*(10^-1)\n", +"printf('\n\n Undeformed Chip Length = %f mm',l1)\n", +"\n", +"//the answer in the book is approximated to 0.13 in\n", +"\n", +"//assume\n", +"C=2//in mm\n", +"r=15\n", +"t=sqrt(((4*v)/(V*C*r))*sqrt(d/D))\n", +"t1=t/2.54*(10^-1)\n", +"printf('\n\n Undeformed chip Thickness = %f in',t1)\n", +"\n", +"//the answer in the book is approximated to 0.00023in\n", +"\n", +"\n", +"" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 25.2: Calculation_of_Force_in_Surface_Grinding.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc \n", +"// Given that\n", +"D=10//in inch Grinding Wheel diameter\n", +"N=4000//in rpm \n", +"w=1//in inch \n", +"d=0.002//in inch depth of cut\n", +"v=60//inch/min feed rate of the workpiece\n", +"\n", +"// Sample Problem on page no. 715\n", +"\n", +"printf('\n # force in Surface Grinding # \n')\n", +"\n", +"Mrr=d*w*v//material removal rate\n", +"//for low carbon steel , the specific energy is 15hp min/in3\n", +"u=15//in hp min/in3\n", +"P=u*Mrr*396000//in lb/min\n", +"Fc = P/(2*3.14*N*(D/2))\n", +"\n", +"printf('\n\n Cutting Force = %f lb',Fc)\n", +"// Answer in the book is approximated to 5.7 lb\n", +"\n", +"// from the experimental data in book thrust force is taken as 30% higher than cutting force\n", +"Fn = Fc+(30/100)*Fc\n", +"\n", +"printf('\n\n Thrust Force = %f lb',Fn)\n", +"// Answer in the book is approximated to 7.4 lb\n", +"\n", +"\n", +"\n", +"\n", +"\n", +"" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Manufacturing_Engineering_Technology_by_S_Kalpakjian_and_S_R_Schmid/28-Solid_State_Welding_Processes.ipynb b/Manufacturing_Engineering_Technology_by_S_Kalpakjian_and_S_R_Schmid/28-Solid_State_Welding_Processes.ipynb new file mode 100644 index 0000000..0c85691 --- /dev/null +++ b/Manufacturing_Engineering_Technology_by_S_Kalpakjian_and_S_R_Schmid/28-Solid_State_Welding_Processes.ipynb @@ -0,0 +1,83 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 28: Solid State Welding Processes" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 28.1: Calculation_of_Heat_Generated_in_Spot_Welding.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc \n", +"// Given that\n", +"t=1//in mm thickness of chip\n", +"I=5000//in Ampere current\n", +"T=0.1//in sec\n", +"d=5//in mm diameter of electrode\n", +"\n", +"\n", +"// Sample Problem on page no. 805\n", +"\n", +"printf('\n # Heat Generated in Spot Welding # \n')\n", +"\n", +"//It is assumed in the book that effective restiance = 200 micro ohm\n", +"R=200*(10^-6)\n", +"H=(I^2)*R*T\n", +"\n", +"printf('\n\n Heat Generated = %d J',H)\n", +"\n", +"// It is assumed in the book that \n", +"V=30//in mm3 volume\n", +"D=0.008//in g/mm3 density\n", +"M=D*V\n", +"//Heat required to melt 1 g of steel is about 1400J\n", +"m1=1400*M\n", +"printf('\n\n Heat Required to melt weld nugget = %d J',m1)\n", +"\n", +"m2=H-m1\n", +"printf('\n\n Heat Dissipitated into the metal surrounding the nugget = %d J',m2)\n", +"\n", +"\n", +"\n", +"\n", +"\n", +"" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Manufacturing_Engineering_Technology_by_S_Kalpakjian_and_S_R_Schmid/32-Tribology_Friction_Wear_and_Lubrication.ipynb b/Manufacturing_Engineering_Technology_by_S_Kalpakjian_and_S_R_Schmid/32-Tribology_Friction_Wear_and_Lubrication.ipynb new file mode 100644 index 0000000..4472190 --- /dev/null +++ b/Manufacturing_Engineering_Technology_by_S_Kalpakjian_and_S_R_Schmid/32-Tribology_Friction_Wear_and_Lubrication.ipynb @@ -0,0 +1,71 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 32: Tribology Friction Wear and Lubrication" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 32.1: Calculation_of_Cofficient_of_Friction.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc \n", +"// Given that\n", +"hi=10//in mm height of specimen\n", +"ODi=30//in mm outside diameter \n", +"IDi=15//in mm inside diameter \n", +"ODf=38//in mm outside diameter after deformaton\n", +"//Specimen is reduced in thickness by 50%\n", +"hf=(50/100)*hi\n", +"\n", +"// Sample Problem on page no. 886\n", +"\n", +"printf('\n # Determination of Cofficient of Friction # \n')\n", +"\n", +"IDf=sqrt((ODf^2)-((((ODi^2)-(IDi^2))*hi)/hf)) //new internal diameter calculated , by comparing the volume before and after deformation (3.14/4)*(ODi^2-IDi^2)*hi=(3.14/4)*(ODf^2-IDf^2)*hf\n", +"ID=((IDi-IDf)/IDi)*100//change in internal diameter \n", +"\n", +"printf('\n\n With a 50 percent reduction in height and a %d reduction in internal diameter, from the book data Cofficient of Friction = 0.21',ID) \n", +"\n", +"\n", +"\n", +"\n", +"" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Manufacturing_Engineering_Technology_by_S_Kalpakjian_and_S_R_Schmid/36-Quality_Assurance_Testing_And_Inspection.ipynb b/Manufacturing_Engineering_Technology_by_S_Kalpakjian_and_S_R_Schmid/36-Quality_Assurance_Testing_And_Inspection.ipynb new file mode 100644 index 0000000..2419694 --- /dev/null +++ b/Manufacturing_Engineering_Technology_by_S_Kalpakjian_and_S_R_Schmid/36-Quality_Assurance_Testing_And_Inspection.ipynb @@ -0,0 +1,138 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 36: Quality Assurance Testing And Inspection" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 36.1: Calculation_of_Loss_Function_and_Payback_Period_in_Polymer_Tubing.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"\n", +"clc \n", +"// Given that\n", +"T=2.6//in mm wall thickness\n", +"USL=3.2//in mm upper specification limit \n", +"LSL=2//in mm lower specification limit \n", +"Y=2.6//in mm mean\n", +"s=0.2//in mm standard deviation\n", +"C1=10//in dollar shipping included cost\n", +"C2=50000//in dollars improvement cost\n", +"n=10000//sections of tube per month\n", +"// Sample Problem on page no. 978\n", +"\n", +"printf('\n # Production of Polymer Tubing # \n')\n", +"\n", +"k=C1/(USL-T)^2\n", +"LossCost=k*(((Y-T)^2)+(s^2))\n", +"//after improvement the variation is half\n", +"s1=0.2/2\n", +"LossCost1=k*(((Y-T)^2)+(s1^2))\n", +"printf('\n\n Taguchi Loss Function = $ %f per unit ',LossCost1)\n", +"//answer in the book is approximated to $0.28 per unit \n", +"\n", +"savings=(LossCost-LossCost1)*n\n", +"paybackperiod=C2/savings\n", +"printf('\n\n Payback Period = %f months',paybackperiod)\n", +"//answer in the book is 6.02 months due to approximation savings \n", +"\n", +"\n", +"\n", +"\n", +"" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 36.2: Calculation_of_Control_Limits_and_Standard_Deviation.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc \n", +"// Given that\n", +"n=5// in inch sample size\n", +"m=10// in inch number of samples\n", +"// The table of the queston is given of page no.990 Table 36.3\n", +"\n", +"// Sample Problem on page no. 990\n", +"\n", +"printf('\n # Calculation of Control Limits and Standard Deviation# \n')\n", +"avgx=44.296 //from the table 36.3 by adding values of mean of x\n", +"x = avgx/m\n", +"avgR=1.03 //from the table 36.3 by adding values of R\n", +"R = avgR/m\n", +"//from the data in the book \n", +"A2=0.577\n", +"D4=2.115\n", +"D3=0\n", +"UCLx = x+(A2*R)\n", +"LCLx = x-(A2*R)\n", +"printf('\n\n Control Limits for Averages are =\n UCLx = %f in \n UCLy = %f in',UCLx,LCLx) \n", +"\n", +"UCLR =D3*R\n", +"LCLR =D4*R\n", +"\n", +"printf('\n\n Control Limits for Ranges are =\n UCLR = %f in \n UCLR = %f in',UCLR,LCLR) \n", +"\n", +"//from table\n", +"d2=2.326\n", +"sigma= R/d2\n", +"printf('\n\n Standard Deviation = %f in',sigma) \n", +"\n", +"\n", +"\n", +"\n", +"\n", +"\n", +"\n", +"\n", +"" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Manufacturing_Engineering_Technology_by_S_Kalpakjian_and_S_R_Schmid/9-Composite_Materials_Structure_General_Properties_and_Applicatons.ipynb b/Manufacturing_Engineering_Technology_by_S_Kalpakjian_and_S_R_Schmid/9-Composite_Materials_Structure_General_Properties_and_Applicatons.ipynb new file mode 100644 index 0000000..9b10f4b --- /dev/null +++ b/Manufacturing_Engineering_Technology_by_S_Kalpakjian_and_S_R_Schmid/9-Composite_Materials_Structure_General_Properties_and_Applicatons.ipynb @@ -0,0 +1,66 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 9: Composite Materials Structure General Properties and Applicatons" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 9.1: Calculation_of_fraction_of_load_supported_by_fibre.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc \n", +"// Given that\n", +"x=0.2// Area fraction of the fibre in the composite \n", +"Ef= 300 // Elastic modulus of the fibre in GPa\n", +"Em= 100 // Elastic modulus of the matrix in GPa\n", +"// Sample Problem on page no. 229\n", +"printf('\n # application of reinforced plastics # \n')\n", +"Ec = x*Ef + (1-x)*Em\n", +"printf('\n\n The Elastic Modulus of the composite is = %d GPa',Ec)\n", +"//Let Pf/Pm be r\n", +"r=x*Ef/((1-x)*Em) \n", +" \n", +"//Let Pc/Pf be R\n", +"R=1+(1/r) // from the relation Pc = Pf + Pm\n", +"P=(1*100)/R\n", +"printf('\n\n The Fraction of load supported by Fibre is = %f Percent',P)\n", +"// Answer in the book is approximated to 43 %" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} |