summaryrefslogtreecommitdiff
path: root/Manufacturing_Engineering_Technology_by_S_Kalpakjian_and_S_R_Schmid
diff options
context:
space:
mode:
Diffstat (limited to 'Manufacturing_Engineering_Technology_by_S_Kalpakjian_and_S_R_Schmid')
-rw-r--r--Manufacturing_Engineering_Technology_by_S_Kalpakjian_and_S_R_Schmid/10-Fundamental_of_Metal_Casting.ipynb79
-rw-r--r--Manufacturing_Engineering_Technology_by_S_Kalpakjian_and_S_R_Schmid/13-Rolling_of_Metals.ipynb82
-rw-r--r--Manufacturing_Engineering_Technology_by_S_Kalpakjian_and_S_R_Schmid/14-Forging_of_Metals.ipynb71
-rw-r--r--Manufacturing_Engineering_Technology_by_S_Kalpakjian_and_S_R_Schmid/15-Extrusion_and_Drawing_of_Metals.ipynb65
-rw-r--r--Manufacturing_Engineering_Technology_by_S_Kalpakjian_and_S_R_Schmid/16-Sheet_Metal_Forming_Processes.ipynb65
-rw-r--r--Manufacturing_Engineering_Technology_by_S_Kalpakjian_and_S_R_Schmid/17-Processing_of_Powder_Metals_Ceramics_Glass_and_Superconductors.ipynb76
-rw-r--r--Manufacturing_Engineering_Technology_by_S_Kalpakjian_and_S_R_Schmid/18-Forming_and_Shaping_Plastics_And_Composite_Materials.ipynb105
-rw-r--r--Manufacturing_Engineering_Technology_by_S_Kalpakjian_and_S_R_Schmid/2-Mechanical_Behavior_Testing_and_Manufacturing_Properties_of_Materials.ipynb73
-rw-r--r--Manufacturing_Engineering_Technology_by_S_Kalpakjian_and_S_R_Schmid/20-Machining_Processes_Used_to_Produce_Round_Shape.ipynb106
-rw-r--r--Manufacturing_Engineering_Technology_by_S_Kalpakjian_and_S_R_Schmid/22-Machining_Processes_Used_to_Produce_Round_Shape.ipynb123
-rw-r--r--Manufacturing_Engineering_Technology_by_S_Kalpakjian_and_S_R_Schmid/23-Machining_Processes_Used_to_Produce_Various_Shape.ipynb135
-rw-r--r--Manufacturing_Engineering_Technology_by_S_Kalpakjian_and_S_R_Schmid/25-Abrasive_Machining_and_Finishing_Operations.ipynb127
-rw-r--r--Manufacturing_Engineering_Technology_by_S_Kalpakjian_and_S_R_Schmid/28-Solid_State_Welding_Processes.ipynb83
-rw-r--r--Manufacturing_Engineering_Technology_by_S_Kalpakjian_and_S_R_Schmid/32-Tribology_Friction_Wear_and_Lubrication.ipynb71
-rw-r--r--Manufacturing_Engineering_Technology_by_S_Kalpakjian_and_S_R_Schmid/36-Quality_Assurance_Testing_And_Inspection.ipynb138
-rw-r--r--Manufacturing_Engineering_Technology_by_S_Kalpakjian_and_S_R_Schmid/9-Composite_Materials_Structure_General_Properties_and_Applicatons.ipynb66
16 files changed, 1465 insertions, 0 deletions
diff --git a/Manufacturing_Engineering_Technology_by_S_Kalpakjian_and_S_R_Schmid/10-Fundamental_of_Metal_Casting.ipynb b/Manufacturing_Engineering_Technology_by_S_Kalpakjian_and_S_R_Schmid/10-Fundamental_of_Metal_Casting.ipynb
new file mode 100644
index 0000000..30af21a
--- /dev/null
+++ b/Manufacturing_Engineering_Technology_by_S_Kalpakjian_and_S_R_Schmid/10-Fundamental_of_Metal_Casting.ipynb
@@ -0,0 +1,79 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 10: Fundamental of Metal Casting"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 10.1: solidification_time_for_various_shapes.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc \n",
+"// Given that\n",
+"//three metal piece being cast have the same volume but different shapes\n",
+"//shapes are sphere,cube,cylinder(height=diameter)\n",
+"\n",
+"// Sample Problem on page no. 252\n",
+"\n",
+"printf('\n #solidification time for various shapes# \n')\n",
+"\n",
+"//solidification time is inversely proportional to the square of surface area\n",
+"\n",
+"//for sphere\n",
+"r=(3/(4*3.14))^(1/3)//radius of the sphere from volume of sphere v=(4*3.14*r^3)/3\n",
+"A=4*3.14*((r)^2)\n",
+"time1=1/(A)^2\n",
+"printf('\n the solidification time for the sphere is %fC',time1)\n",
+"\n",
+"//for cube\n",
+"a=1//edge of the cube\n",
+"A=6*a^2\n",
+"time2=1/(A)^2\n",
+"printf('\n the solidification time for the cube is %fC',time2)\n",
+"\n",
+"//for cylinder\n",
+"//given height =diameter \n",
+"//radius=2*height\n",
+"r=(1/(2*3.14))^(1/3)//radius of the cylinder from volume of the cylinder v=3.14*r^2*h\n",
+"A=(6*3.14*(r^2)) //area of the cylinder = (2*3.14*radius^2) + (2*3.14*radius*height)\n",
+"time3=1/(A)^2\n",
+"printf('\n the solidification time for the sphere is %fC',time3)"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Manufacturing_Engineering_Technology_by_S_Kalpakjian_and_S_R_Schmid/13-Rolling_of_Metals.ipynb b/Manufacturing_Engineering_Technology_by_S_Kalpakjian_and_S_R_Schmid/13-Rolling_of_Metals.ipynb
new file mode 100644
index 0000000..b96dfe5
--- /dev/null
+++ b/Manufacturing_Engineering_Technology_by_S_Kalpakjian_and_S_R_Schmid/13-Rolling_of_Metals.ipynb
@@ -0,0 +1,82 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 13: Rolling of Metals"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 13.1: Calculation_of_Roll_Force_and_Torque.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc \n",
+"// Given that\n",
+"w=9 //in inch width of thee strip\n",
+"ho=1 //in inch initial thickness of the strip\n",
+"hf=0.80 //in inch thickness of the strip after one pass\n",
+"r=12 //in inch roll radius\n",
+"N=100 //in rpm\n",
+"\n",
+"// Sample Problem on page no. 323\n",
+"\n",
+"printf('\n #Calculation of roll force and torque# \n')\n",
+"\n",
+"L=(r*(ho-hf))^(1/2)\n",
+"\n",
+"E=log(1/hf)//absolute value of true strain\n",
+"\n",
+"Y=26000 //in psi average stress from the data in the book \n",
+"F=L*w*Y // roll force\n",
+"F1=F*4.448/(10^6)//in mega newton\n",
+"printf('\n\nRoll force = %f MN ',F1)\n",
+"\n",
+"//answer in the book is round off and given 363000lb\n",
+"\n",
+"P=(2*3.14*F*L*N)/(33000*12)\n",
+"P1=P*7.457*(10^2)/(10^3)//in KW\n",
+"printf('\n\npower per roll = %f KW ',P1)\n",
+"\n",
+"//answer in the book is 670 KW due to round off of the roll force\n",
+"\n",
+"Tp=2*P1//total power\n",
+"printf('\n\nTotal power = %f KW ',Tp)\n",
+"\n",
+"//answer in the book is 1340KW due to round off of the roll force"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Manufacturing_Engineering_Technology_by_S_Kalpakjian_and_S_R_Schmid/14-Forging_of_Metals.ipynb b/Manufacturing_Engineering_Technology_by_S_Kalpakjian_and_S_R_Schmid/14-Forging_of_Metals.ipynb
new file mode 100644
index 0000000..f467c5b
--- /dev/null
+++ b/Manufacturing_Engineering_Technology_by_S_Kalpakjian_and_S_R_Schmid/14-Forging_of_Metals.ipynb
@@ -0,0 +1,71 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 14: Forging of Metals"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 14.1: Calculation_of_Forging_Force.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc \n",
+"// Given that\n",
+"d=150//in mm Diameter of the solid cylinder \n",
+"Hi=100 //in mm Height of the cylinder\n",
+"u=0.2 // Cofficient of friction\n",
+"\n",
+"// Sample Problem on page no. 344\n",
+"\n",
+"printf('\n # Calculation of forging force # \n')\n",
+"\n",
+"//cylinder is reduced in height by 50%\n",
+"Hf=100/2\n",
+"//Volume before deformation= Volume after deformation\n",
+"r=sqrt((3.14*75^2*100)/(3.14*50))//r is the final radius of the cylinder\n",
+"E=log(Hi/Hf)//absolute value of true strain\n",
+"//given that cylinder is made of 304 stainless steel\n",
+"Yf=1000 //in Mpa flow stress of the material from data in the book\n",
+"F = Yf*(10^6)*3.14*(r^2)*10^-6*(1+((2*u*r)/(3*Hf)))//Forging Force\n",
+"F1=F/(10^6)\n",
+"printf('\n\n Forging force = %d MN',F1)\n",
+"\n",
+""
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Manufacturing_Engineering_Technology_by_S_Kalpakjian_and_S_R_Schmid/15-Extrusion_and_Drawing_of_Metals.ipynb b/Manufacturing_Engineering_Technology_by_S_Kalpakjian_and_S_R_Schmid/15-Extrusion_and_Drawing_of_Metals.ipynb
new file mode 100644
index 0000000..1283cd6
--- /dev/null
+++ b/Manufacturing_Engineering_Technology_by_S_Kalpakjian_and_S_R_Schmid/15-Extrusion_and_Drawing_of_Metals.ipynb
@@ -0,0 +1,65 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 15: Extrusion and Drawing of Metals"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 15.1: Calculation_of_Force_in_Hot_Extrusion.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc \n",
+"// Given that\n",
+"di=5//in inch Diameter of the round billet\n",
+"df=2//in inch Diameter of the round billet after extrusion\n",
+"\n",
+"// Sample Problem on page no. 372\n",
+"\n",
+"printf('\n # Calculation of force in Hot Extrusion# \n')\n",
+"\n",
+"//As 70-30 Brass is given, so the value of the extrusion constant is 35000psi from the diagram given in the book\n",
+"k=35000//in psi\n",
+"F=3.14*(di/2)^2*k*log((3.14*(di^2))/(3.14*(df^2)))\n",
+"F1=F*4.448/(10^6)\n",
+"printf('\n\n Extrusion force=%f MN',F1)\n",
+"\n",
+"//Answer in the book is approximated to 5.5MN"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Manufacturing_Engineering_Technology_by_S_Kalpakjian_and_S_R_Schmid/16-Sheet_Metal_Forming_Processes.ipynb b/Manufacturing_Engineering_Technology_by_S_Kalpakjian_and_S_R_Schmid/16-Sheet_Metal_Forming_Processes.ipynb
new file mode 100644
index 0000000..3d42cbd
--- /dev/null
+++ b/Manufacturing_Engineering_Technology_by_S_Kalpakjian_and_S_R_Schmid/16-Sheet_Metal_Forming_Processes.ipynb
@@ -0,0 +1,65 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 16: Sheet Metal Forming Processes"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 16.1: Calculation_of_Punch_Force.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc \n",
+"// Given that\n",
+"d=1//in inch Diameter of the hole\n",
+"T=(1/8)//in inch thickness of the sheet\n",
+"\n",
+"// Sample Problem on page no. 396\n",
+"\n",
+"printf('\n # Calculation of Punch Force# \n')\n",
+"\n",
+"UTS=140000//in psi Ultimate Tensile Strength of the titanium alloy Ti-6Al-4V\n",
+"L=3.14*d//total length sheared which is the perimeter of the hole\n",
+"F=0.7*T*L*UTS\n",
+"F1=F*4.448/(10^6)\n",
+"printf('\n\n Extrusion force=%f MN',F1)\n",
+"\n",
+"//Answer in the book is approximated to 0.17MN"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Manufacturing_Engineering_Technology_by_S_Kalpakjian_and_S_R_Schmid/17-Processing_of_Powder_Metals_Ceramics_Glass_and_Superconductors.ipynb b/Manufacturing_Engineering_Technology_by_S_Kalpakjian_and_S_R_Schmid/17-Processing_of_Powder_Metals_Ceramics_Glass_and_Superconductors.ipynb
new file mode 100644
index 0000000..6317b65
--- /dev/null
+++ b/Manufacturing_Engineering_Technology_by_S_Kalpakjian_and_S_R_Schmid/17-Processing_of_Powder_Metals_Ceramics_Glass_and_Superconductors.ipynb
@@ -0,0 +1,76 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 17: Processing of Powder Metals Ceramics Glass and Superconductors"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 17.1: Calculation_of_Dimensional_Changes_During_Shaping_of_Ceramic_Components.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc \n",
+"// Given that\n",
+"L=20//in mm Final length of the ceramic part\n",
+"//Linear shrinkage during drying and firing is 7% and 6% respectively\n",
+"Sd=0.070//Linear shrinkage during drying\n",
+"Sf=0.06//Linear shrinkage during firing\n",
+"\n",
+"// Sample Problem on page no. 466\n",
+"\n",
+"printf('\n # Dimensional changes during the shaping of ceramic components # \n')\n",
+"\n",
+"//part (a)\n",
+"\n",
+"Ld=L/(1-Sf)//dried length\n",
+"Lo=(1+Sd)*Ld//initial length\n",
+"printf('\n\n Initial Length=%f mm',Lo)\n",
+"\n",
+"//Answer in the book is approximated to 22.77mm\n",
+"\n",
+"//part(b)\n",
+"\n",
+"Pf=0.03//Fired Porosity\n",
+"r = (1-Pf)// Where r = Va/Vf\n",
+"R = 1/((1-Sf)^3)// Where R = Vd/Vf\n",
+"Pd = (1-r/R)\n",
+"printf('\n\nDried porosity is %d percent',Pd*100)\n",
+""
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Manufacturing_Engineering_Technology_by_S_Kalpakjian_and_S_R_Schmid/18-Forming_and_Shaping_Plastics_And_Composite_Materials.ipynb b/Manufacturing_Engineering_Technology_by_S_Kalpakjian_and_S_R_Schmid/18-Forming_and_Shaping_Plastics_And_Composite_Materials.ipynb
new file mode 100644
index 0000000..42dc297
--- /dev/null
+++ b/Manufacturing_Engineering_Technology_by_S_Kalpakjian_and_S_R_Schmid/18-Forming_and_Shaping_Plastics_And_Composite_Materials.ipynb
@@ -0,0 +1,105 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 18: Forming and Shaping Plastics And Composite Materials"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 18.1: Calculation_of_Diameter_of_Die_in_Extrusion.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc \n",
+"// Given that\n",
+"W=400//in mm Lateral(width) Dimension of a plastic shopping bag \n",
+"\n",
+"// Sample Problem on page no. 484\n",
+"\n",
+"printf('\n # Blown Film # \n')\n",
+"\n",
+"//part(a)\n",
+"\n",
+"P=2*W//in mm Perimeter of bag\n",
+"D=P/3.14//in mm blown diameter calculated from Permeter=3.14*diameter\n",
+"//Given in this process, a tube is expanded to form 1.5 to 2.5 in times the extrusion die diameter, so take maximum value 2.5\n",
+"Dd=D/2.5//Extrusion die diameter\n",
+"printf('\n\n Extrusion Die Diameter =%d mm',Dd)\n",
+"\n",
+"//Answer in the book is approximated to 100mm\n",
+"\n",
+"//part(b) is theoritical"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 18.2: Calculation_of_number_of_Gears_In_Injection_Moulding.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc \n",
+"// Given that\n",
+"W=250//in ton Weight of injection moulding machine\n",
+"d=4.5//in inch diameter of spur gear\n",
+"t=0.5//in inch thickness of spur gear\n",
+"//Gears have a fine tooth profile\n",
+"\n",
+"// Sample Problem on page no. 488\n",
+"\n",
+"printf('\n # Injection Molding of Parts # \n')\n",
+"\n",
+"//because of fine tooth profile pressure required in the mould cavity is assumed to be of the order 100MPa or 15Ksi\n",
+"p=15//inKsi\n",
+"A=(3.14*(d^2))/4//in inch^2 area of the gear\n",
+"F=A*15*1000\n",
+"n=(W*2000)/F //weight is converted into lb by multiplying it by 2000\n",
+"printf('\n\n Number of gears that can be injected =%d',n)\n",
+"\n",
+"// Second part of this question is theoritical"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Manufacturing_Engineering_Technology_by_S_Kalpakjian_and_S_R_Schmid/2-Mechanical_Behavior_Testing_and_Manufacturing_Properties_of_Materials.ipynb b/Manufacturing_Engineering_Technology_by_S_Kalpakjian_and_S_R_Schmid/2-Mechanical_Behavior_Testing_and_Manufacturing_Properties_of_Materials.ipynb
new file mode 100644
index 0000000..488dbf7
--- /dev/null
+++ b/Manufacturing_Engineering_Technology_by_S_Kalpakjian_and_S_R_Schmid/2-Mechanical_Behavior_Testing_and_Manufacturing_Properties_of_Materials.ipynb
@@ -0,0 +1,73 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 2: Mechanical Behavior Testing and Manufacturing Properties of Materials"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.1: Calculation_of_Ultimate_Tensile_Strength.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"\n",
+"clc \n",
+"// Given that\n",
+"//True stress=100000*(True strain)^0.5\n",
+"\n",
+"// Sample Problem on page no. 63\n",
+"\n",
+"printf('\n # Calculation of Ultimate Tensile Strength # \n')\n",
+"//from the data given\n",
+"n=0.5\n",
+"E=0.5\n",
+"K=100000\n",
+"Truestress=K*((E)^n)\n",
+"//let An(area of neck)/Ao=t\n",
+"//from log(Ao/An)=n\n",
+"t=exp(-n)\n",
+"UTS=Truestress*exp(-n)//from the expression UTS= P/Ao where P(Maximum Load)=Truestress*An\n",
+"printf('\n\n Ultimate Tensile Strength = %f psi',UTS)\n",
+"//answer in the book is approximated to 42850 psi \n",
+"\n",
+"\n",
+"\n",
+"\n",
+""
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Manufacturing_Engineering_Technology_by_S_Kalpakjian_and_S_R_Schmid/20-Machining_Processes_Used_to_Produce_Round_Shape.ipynb b/Manufacturing_Engineering_Technology_by_S_Kalpakjian_and_S_R_Schmid/20-Machining_Processes_Used_to_Produce_Round_Shape.ipynb
new file mode 100644
index 0000000..276e8f6
--- /dev/null
+++ b/Manufacturing_Engineering_Technology_by_S_Kalpakjian_and_S_R_Schmid/20-Machining_Processes_Used_to_Produce_Round_Shape.ipynb
@@ -0,0 +1,106 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 20: Machining Processes Used to Produce Round Shape"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 20.1: Calculation_of_Energy_used_as_friction_In_cutting.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc \n",
+"// Given that\n",
+"to=0.005//in inch depth of cut\n",
+"V=400//in ft/min cutting speed\n",
+"X=10//in degree rake angle\n",
+"w=0.25//in inch width of cut\n",
+"tc=0.009//in inch chip thickness\n",
+"Fc=125//in lb Cutting force\n",
+"Ft=50//in lb thrust force\n",
+"\n",
+"// Sample Problem on page no. 548\n",
+"\n",
+"printf('\n # Relative Energies in cutting # \n')\n",
+"\n",
+"r=to/tc//cutting ratio\n",
+"R=sqrt((Ft^2)+(Fc^2))\n",
+"B=acosd(Fc/R)+X//friction angle\n",
+"F=R*sind(B)\n",
+"P=((F*r)/Fc)*100\n",
+"printf('\n\n Percentage of total energy going into overcoming friction =%d pecrent',P)\n",
+"\n",
+"//Answer in the book is approximated to 32 due to approximation in calculation of R and B"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 20.2: Change_in_Tool_Life_by_Changing_the_Cutting_Speed.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc \n",
+"// Given that\n",
+"n=0.5//exponent that depends on tool and workpiece material\n",
+"C=400//constant\n",
+"\n",
+"// Sample Problem on page no. 555\n",
+"\n",
+"printf('\n # Increasing tool life by Reducing the Cutting Speed # \n')\n",
+"\n",
+"V1=poly(0,'V1')\n",
+"r=0.5// it is the ratio of V2/V1 where V1 and V2 are the initial and final cutting speed of the tool\n",
+"//let t=T2/T1 where T1 and T2 are the initial and final tool life\n",
+"t=1/(r^(1/n))//from the relation V1*(T1^n)=V2*(T2^n)\n",
+"P=(t-1)*100\n",
+"printf('\n\n Percent increase in tool life =%d Percent',P)\n",
+"\n",
+""
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Manufacturing_Engineering_Technology_by_S_Kalpakjian_and_S_R_Schmid/22-Machining_Processes_Used_to_Produce_Round_Shape.ipynb b/Manufacturing_Engineering_Technology_by_S_Kalpakjian_and_S_R_Schmid/22-Machining_Processes_Used_to_Produce_Round_Shape.ipynb
new file mode 100644
index 0000000..4b356ef
--- /dev/null
+++ b/Manufacturing_Engineering_Technology_by_S_Kalpakjian_and_S_R_Schmid/22-Machining_Processes_Used_to_Produce_Round_Shape.ipynb
@@ -0,0 +1,123 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 22: Machining Processes Used to Produce Round Shape"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 22.1: Calculation_of_Material_Removal_Rate_and_Cutting_Force_in_Turning.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc \n",
+"// Given that\n",
+"l=6//in inch Length of rod \n",
+"di=1/2//in inch initial diameter of rod\n",
+"df=0.480//in inch final diameter of rod\n",
+"N=400//in rpm spindle rotation\n",
+"Vt=8//in inch/minute axial speed of the tool\n",
+"\n",
+"// Sample Problem on page no. 600\n",
+"\n",
+"printf('\n # Material Removal Rate and Cutting Force in Turning # \n')\n",
+"\n",
+"V=3.14*di*N\n",
+"printf('\n\n Cutting speed=%d in/min',V)\n",
+"\n",
+"v1=3.14*df*N//cutting speed from machined diameter\n",
+"d=(di-df)/2//depth of cut\n",
+"f=Vt/N//feed\n",
+"Davg=(di+df)/2\n",
+"MRR=3.14*Davg*d*f*N \n",
+"printf('\n\n Material Removal Rate %f=in^3/min',MRR)\n",
+"\n",
+"t=l/(f*N)\n",
+"printf('\n\n Cutting time=%f min',t)\n",
+"\n",
+"P=(4/2.73)*MRR//average value of stainless steel is taken as 4 ws/mm3 or 4/2.73 hpmin/mm3\n",
+"printf('\n\n Cutting power=%f hp',P)\n",
+"\n",
+"Fc=((P*396000)/(N*2*3.14))/(Davg/2)\n",
+"printf('\n\n Cutting force=%d lb',Fc)\n",
+"\n",
+"//answer in the book is given 118 lb due to approximation\n",
+"\n",
+"\n",
+"\n",
+""
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 22.2: Calculation_of_Material_Removal_Rate_and_Torque_in_Drlling.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc \n",
+"// Given that \n",
+"d=10//in mm diameter of drill bit\n",
+"f=0.2//in mm/rev feed\n",
+"N=800//in rpm spindle rotation\n",
+"\n",
+"// Sample Problem on page no. 632\n",
+"\n",
+"printf('\n # Material Removal Rate and Torque in Drilling # \n')\n",
+"\n",
+"MRR=[((3.14*(d^2))/4)*f*N]/60\n",
+"printf('\n\n Material Removal Rate %d=mm^3/sec',MRR)\n",
+"\n",
+"//Answer in the book is given 210 mm^3/sec\n",
+"\n",
+"//from the book data an average unit power of 0.5Ws/mm2 for magnesium is taken\n",
+"T=(MRR*0.5)/((N*2*3.14)/60)\n",
+"printf('\n\n Torque on the drill %f=Nm',T)\n",
+"\n",
+""
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Manufacturing_Engineering_Technology_by_S_Kalpakjian_and_S_R_Schmid/23-Machining_Processes_Used_to_Produce_Various_Shape.ipynb b/Manufacturing_Engineering_Technology_by_S_Kalpakjian_and_S_R_Schmid/23-Machining_Processes_Used_to_Produce_Various_Shape.ipynb
new file mode 100644
index 0000000..9fad354
--- /dev/null
+++ b/Manufacturing_Engineering_Technology_by_S_Kalpakjian_and_S_R_Schmid/23-Machining_Processes_Used_to_Produce_Various_Shape.ipynb
@@ -0,0 +1,135 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 23: Machining Processes Used to Produce Various Shape"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 23.1: EX23_1.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc \n",
+"// Given that\n",
+"l=12//in inch Length of block\n",
+"w=4//in inch width\n",
+"f=0.01//in inch/tooth feed \n",
+"d=1/8//in inch depth of cut\n",
+"D=2//in inch diameter of cutter\n",
+"n=20//no. of teeth\n",
+"N=100//in rpm spindle rotation\n",
+"Vt=8//in inch/minute axial speed of the tool\n",
+"\n",
+"// Sample Problem on page no. 600\n",
+"\n",
+"printf('\n # Material Removal Rate , Power required and Cutting Time in slab milling # \n')\n",
+"\n",
+"v=f*N*n\n",
+"MRR=w*d*v \n",
+"printf('\n\n Material Removal Rate = %d in^3/min',MRR)\n",
+"\n",
+"//for annealed mild steel unit power is taken as 1.1 hp min/in3\n",
+"P=1.1*MRR\n",
+"printf('\n\n Cutting power=%d hp',P)\n",
+"\n",
+"T=P*33000/(N*2*3.14)\n",
+"printf('\n\n Cutting torque=%d lb-ft',T)\n",
+"\n",
+"lc=sqrt(d*D)\n",
+"t=((l+lc)/20)*60\n",
+"printf('\n\n Cutting time=%f sec',t)\n",
+"\n",
+"\n",
+"\n",
+"\n",
+""
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 23.2: EX23_2.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc \n",
+"// Given that\n",
+"l=500//in mm Length\n",
+"w=60//in mm width\n",
+"v=0.6//in m/min \n",
+"d=3//in mm depth of cut\n",
+"D=150//in mm diameter of cutter\n",
+"n=10//no. of inserts\n",
+"N=100//in rpm spindle rotation\n",
+"\n",
+"// Sample Problem on page no. 655\n",
+"\n",
+"printf('\n # Material Removal Rate , Power Required and Cutting Time in Face Milling # \n')\n",
+"\n",
+"MRR=w*d*v*1000 \n",
+"printf('\n\n Material Removal Rate = %d mm3/min',MRR)\n",
+"\n",
+"lc=D/2\n",
+"t=((l+(2*lc))/((v*1000)/60)) // velocity is converted into mm/sec\n",
+"t1=t/60\n",
+"printf('\n\n Cutting time= %ff min',t1)\n",
+"\n",
+"f=(v*1000*60)/(60*N*n) // N is converted into rev/sec by dividing by 60 , velocity is converted into mm/sec\n",
+"printf('\n\n Feed per Tooth= %f mm/tooth',f)\n",
+"\n",
+"//for high strength aluminium alloy unit power is taken as 1.1 W s/mm3\n",
+"P=(1.1*MRR)/60 // MRR is converted into mm3/sec by dividing by 60\n",
+"P1=P/(1000)//in KW\n",
+"printf('\n\n Cutting power=%f KW',P1)\n",
+"\n",
+"\n",
+"\n",
+"\n",
+""
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Manufacturing_Engineering_Technology_by_S_Kalpakjian_and_S_R_Schmid/25-Abrasive_Machining_and_Finishing_Operations.ipynb b/Manufacturing_Engineering_Technology_by_S_Kalpakjian_and_S_R_Schmid/25-Abrasive_Machining_and_Finishing_Operations.ipynb
new file mode 100644
index 0000000..1148aef
--- /dev/null
+++ b/Manufacturing_Engineering_Technology_by_S_Kalpakjian_and_S_R_Schmid/25-Abrasive_Machining_and_Finishing_Operations.ipynb
@@ -0,0 +1,127 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 25: Abrasive Machining and Finishing Operations"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 25.1: Calculation_of_Chip_Dimensions_in_Surface_Grinding.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc \n",
+"// Given that\n",
+"D=200//in mm Grinding Wheel diameter \n",
+"d=0.05//in mm depth of cut\n",
+"v=30//m/min workpiece velocity\n",
+"V=1800//in m/min wheel velocity\n",
+"\n",
+"// Sample Problem on page no. 713\n",
+"\n",
+"printf('\n # Chip Dimensions in Surface Grinding # \n')\n",
+"\n",
+"l=sqrt(D*d)\n",
+"l1=l/2.54*(10^-1)\n",
+"printf('\n\n Undeformed Chip Length = %f mm',l1)\n",
+"\n",
+"//the answer in the book is approximated to 0.13 in\n",
+"\n",
+"//assume\n",
+"C=2//in mm\n",
+"r=15\n",
+"t=sqrt(((4*v)/(V*C*r))*sqrt(d/D))\n",
+"t1=t/2.54*(10^-1)\n",
+"printf('\n\n Undeformed chip Thickness = %f in',t1)\n",
+"\n",
+"//the answer in the book is approximated to 0.00023in\n",
+"\n",
+"\n",
+""
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 25.2: Calculation_of_Force_in_Surface_Grinding.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc \n",
+"// Given that\n",
+"D=10//in inch Grinding Wheel diameter\n",
+"N=4000//in rpm \n",
+"w=1//in inch \n",
+"d=0.002//in inch depth of cut\n",
+"v=60//inch/min feed rate of the workpiece\n",
+"\n",
+"// Sample Problem on page no. 715\n",
+"\n",
+"printf('\n # force in Surface Grinding # \n')\n",
+"\n",
+"Mrr=d*w*v//material removal rate\n",
+"//for low carbon steel , the specific energy is 15hp min/in3\n",
+"u=15//in hp min/in3\n",
+"P=u*Mrr*396000//in lb/min\n",
+"Fc = P/(2*3.14*N*(D/2))\n",
+"\n",
+"printf('\n\n Cutting Force = %f lb',Fc)\n",
+"// Answer in the book is approximated to 5.7 lb\n",
+"\n",
+"// from the experimental data in book thrust force is taken as 30% higher than cutting force\n",
+"Fn = Fc+(30/100)*Fc\n",
+"\n",
+"printf('\n\n Thrust Force = %f lb',Fn)\n",
+"// Answer in the book is approximated to 7.4 lb\n",
+"\n",
+"\n",
+"\n",
+"\n",
+"\n",
+""
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Manufacturing_Engineering_Technology_by_S_Kalpakjian_and_S_R_Schmid/28-Solid_State_Welding_Processes.ipynb b/Manufacturing_Engineering_Technology_by_S_Kalpakjian_and_S_R_Schmid/28-Solid_State_Welding_Processes.ipynb
new file mode 100644
index 0000000..0c85691
--- /dev/null
+++ b/Manufacturing_Engineering_Technology_by_S_Kalpakjian_and_S_R_Schmid/28-Solid_State_Welding_Processes.ipynb
@@ -0,0 +1,83 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 28: Solid State Welding Processes"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 28.1: Calculation_of_Heat_Generated_in_Spot_Welding.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc \n",
+"// Given that\n",
+"t=1//in mm thickness of chip\n",
+"I=5000//in Ampere current\n",
+"T=0.1//in sec\n",
+"d=5//in mm diameter of electrode\n",
+"\n",
+"\n",
+"// Sample Problem on page no. 805\n",
+"\n",
+"printf('\n # Heat Generated in Spot Welding # \n')\n",
+"\n",
+"//It is assumed in the book that effective restiance = 200 micro ohm\n",
+"R=200*(10^-6)\n",
+"H=(I^2)*R*T\n",
+"\n",
+"printf('\n\n Heat Generated = %d J',H)\n",
+"\n",
+"// It is assumed in the book that \n",
+"V=30//in mm3 volume\n",
+"D=0.008//in g/mm3 density\n",
+"M=D*V\n",
+"//Heat required to melt 1 g of steel is about 1400J\n",
+"m1=1400*M\n",
+"printf('\n\n Heat Required to melt weld nugget = %d J',m1)\n",
+"\n",
+"m2=H-m1\n",
+"printf('\n\n Heat Dissipitated into the metal surrounding the nugget = %d J',m2)\n",
+"\n",
+"\n",
+"\n",
+"\n",
+"\n",
+""
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Manufacturing_Engineering_Technology_by_S_Kalpakjian_and_S_R_Schmid/32-Tribology_Friction_Wear_and_Lubrication.ipynb b/Manufacturing_Engineering_Technology_by_S_Kalpakjian_and_S_R_Schmid/32-Tribology_Friction_Wear_and_Lubrication.ipynb
new file mode 100644
index 0000000..4472190
--- /dev/null
+++ b/Manufacturing_Engineering_Technology_by_S_Kalpakjian_and_S_R_Schmid/32-Tribology_Friction_Wear_and_Lubrication.ipynb
@@ -0,0 +1,71 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 32: Tribology Friction Wear and Lubrication"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 32.1: Calculation_of_Cofficient_of_Friction.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc \n",
+"// Given that\n",
+"hi=10//in mm height of specimen\n",
+"ODi=30//in mm outside diameter \n",
+"IDi=15//in mm inside diameter \n",
+"ODf=38//in mm outside diameter after deformaton\n",
+"//Specimen is reduced in thickness by 50%\n",
+"hf=(50/100)*hi\n",
+"\n",
+"// Sample Problem on page no. 886\n",
+"\n",
+"printf('\n # Determination of Cofficient of Friction # \n')\n",
+"\n",
+"IDf=sqrt((ODf^2)-((((ODi^2)-(IDi^2))*hi)/hf)) //new internal diameter calculated , by comparing the volume before and after deformation (3.14/4)*(ODi^2-IDi^2)*hi=(3.14/4)*(ODf^2-IDf^2)*hf\n",
+"ID=((IDi-IDf)/IDi)*100//change in internal diameter \n",
+"\n",
+"printf('\n\n With a 50 percent reduction in height and a %d reduction in internal diameter, from the book data Cofficient of Friction = 0.21',ID) \n",
+"\n",
+"\n",
+"\n",
+"\n",
+""
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Manufacturing_Engineering_Technology_by_S_Kalpakjian_and_S_R_Schmid/36-Quality_Assurance_Testing_And_Inspection.ipynb b/Manufacturing_Engineering_Technology_by_S_Kalpakjian_and_S_R_Schmid/36-Quality_Assurance_Testing_And_Inspection.ipynb
new file mode 100644
index 0000000..2419694
--- /dev/null
+++ b/Manufacturing_Engineering_Technology_by_S_Kalpakjian_and_S_R_Schmid/36-Quality_Assurance_Testing_And_Inspection.ipynb
@@ -0,0 +1,138 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 36: Quality Assurance Testing And Inspection"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 36.1: Calculation_of_Loss_Function_and_Payback_Period_in_Polymer_Tubing.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"\n",
+"clc \n",
+"// Given that\n",
+"T=2.6//in mm wall thickness\n",
+"USL=3.2//in mm upper specification limit \n",
+"LSL=2//in mm lower specification limit \n",
+"Y=2.6//in mm mean\n",
+"s=0.2//in mm standard deviation\n",
+"C1=10//in dollar shipping included cost\n",
+"C2=50000//in dollars improvement cost\n",
+"n=10000//sections of tube per month\n",
+"// Sample Problem on page no. 978\n",
+"\n",
+"printf('\n # Production of Polymer Tubing # \n')\n",
+"\n",
+"k=C1/(USL-T)^2\n",
+"LossCost=k*(((Y-T)^2)+(s^2))\n",
+"//after improvement the variation is half\n",
+"s1=0.2/2\n",
+"LossCost1=k*(((Y-T)^2)+(s1^2))\n",
+"printf('\n\n Taguchi Loss Function = $ %f per unit ',LossCost1)\n",
+"//answer in the book is approximated to $0.28 per unit \n",
+"\n",
+"savings=(LossCost-LossCost1)*n\n",
+"paybackperiod=C2/savings\n",
+"printf('\n\n Payback Period = %f months',paybackperiod)\n",
+"//answer in the book is 6.02 months due to approximation savings \n",
+"\n",
+"\n",
+"\n",
+"\n",
+""
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 36.2: Calculation_of_Control_Limits_and_Standard_Deviation.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc \n",
+"// Given that\n",
+"n=5// in inch sample size\n",
+"m=10// in inch number of samples\n",
+"// The table of the queston is given of page no.990 Table 36.3\n",
+"\n",
+"// Sample Problem on page no. 990\n",
+"\n",
+"printf('\n # Calculation of Control Limits and Standard Deviation# \n')\n",
+"avgx=44.296 //from the table 36.3 by adding values of mean of x\n",
+"x = avgx/m\n",
+"avgR=1.03 //from the table 36.3 by adding values of R\n",
+"R = avgR/m\n",
+"//from the data in the book \n",
+"A2=0.577\n",
+"D4=2.115\n",
+"D3=0\n",
+"UCLx = x+(A2*R)\n",
+"LCLx = x-(A2*R)\n",
+"printf('\n\n Control Limits for Averages are =\n UCLx = %f in \n UCLy = %f in',UCLx,LCLx) \n",
+"\n",
+"UCLR =D3*R\n",
+"LCLR =D4*R\n",
+"\n",
+"printf('\n\n Control Limits for Ranges are =\n UCLR = %f in \n UCLR = %f in',UCLR,LCLR) \n",
+"\n",
+"//from table\n",
+"d2=2.326\n",
+"sigma= R/d2\n",
+"printf('\n\n Standard Deviation = %f in',sigma) \n",
+"\n",
+"\n",
+"\n",
+"\n",
+"\n",
+"\n",
+"\n",
+"\n",
+""
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Manufacturing_Engineering_Technology_by_S_Kalpakjian_and_S_R_Schmid/9-Composite_Materials_Structure_General_Properties_and_Applicatons.ipynb b/Manufacturing_Engineering_Technology_by_S_Kalpakjian_and_S_R_Schmid/9-Composite_Materials_Structure_General_Properties_and_Applicatons.ipynb
new file mode 100644
index 0000000..9b10f4b
--- /dev/null
+++ b/Manufacturing_Engineering_Technology_by_S_Kalpakjian_and_S_R_Schmid/9-Composite_Materials_Structure_General_Properties_and_Applicatons.ipynb
@@ -0,0 +1,66 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 9: Composite Materials Structure General Properties and Applicatons"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 9.1: Calculation_of_fraction_of_load_supported_by_fibre.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc \n",
+"// Given that\n",
+"x=0.2// Area fraction of the fibre in the composite \n",
+"Ef= 300 // Elastic modulus of the fibre in GPa\n",
+"Em= 100 // Elastic modulus of the matrix in GPa\n",
+"// Sample Problem on page no. 229\n",
+"printf('\n # application of reinforced plastics # \n')\n",
+"Ec = x*Ef + (1-x)*Em\n",
+"printf('\n\n The Elastic Modulus of the composite is = %d GPa',Ec)\n",
+"//Let Pf/Pm be r\n",
+"r=x*Ef/((1-x)*Em) \n",
+" \n",
+"//Let Pc/Pf be R\n",
+"R=1+(1/r) // from the relation Pc = Pf + Pm\n",
+"P=(1*100)/R\n",
+"printf('\n\n The Fraction of load supported by Fibre is = %f Percent',P)\n",
+"// Answer in the book is approximated to 43 %"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}