diff options
Diffstat (limited to 'Machine_Design_by_U_C_Jindal/22-FRICTION_CLUTCHES.ipynb')
-rw-r--r-- | Machine_Design_by_U_C_Jindal/22-FRICTION_CLUTCHES.ipynb | 486 |
1 files changed, 486 insertions, 0 deletions
diff --git a/Machine_Design_by_U_C_Jindal/22-FRICTION_CLUTCHES.ipynb b/Machine_Design_by_U_C_Jindal/22-FRICTION_CLUTCHES.ipynb new file mode 100644 index 0000000..fc59fac --- /dev/null +++ b/Machine_Design_by_U_C_Jindal/22-FRICTION_CLUTCHES.ipynb @@ -0,0 +1,486 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 22: FRICTION CLUTCHES" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 22.10: FC2210.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// 22-10\n", +"clc;\n", +"clear;\n", +"w2=2*%pi*1400/60;\n", +"w1=0.8*w2;\n", +"P=40*10^3;\n", +"T=P/w2;\n", +"n=4;\n", +"T1=T/4;\n", +"R=0.16;//Inner radius of drum\n", +"r=0.13;//radial distance of each shoe from axis of rotation\n", +"u=0.22;//coefficient of friction\n", +"x=u*r*R*((w2^2)-(w1^2))\n", +"m =T1/x;\n", +"l=R*%pi/3;\n", +"N=T1/(R*u);\n", +"p=1*10^5;\n", +"b=N/(p*l)*10^3;\n", +"\n", +" // printing data in scilab o/p window\n", +"printf('\nThe full speed is %0.1f rad/sec',w2);\n", +"printf('\nThe engagement speed is %0.2f rad/sec',w1);\n", +"printf('\nThe number of shoes is %0.0f ',n);\n", +"printf('\nThe Torque is %0.1f Nm',T);\n", +"printf('\nThe Torque per shoe is %0.1f Nm',T1);\n", +"printf('\nThe mass per shoe is %0.2f kg',m);\n", +"printf('\nThe length of friction lining is %0.5f m',l);\n", +"printf('\nThe width is %0.1f mm',b);" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 22.1: FC221.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// 22-1\n", +"clc;\n", +"clear;\n", +"u=0.28 //(coefficient of friction)\n", +"N=300 //(Engine rpm)\n", +"I=7.2 \n", +"Pmax= 0.1; \n", +"R1=70;\n", +"R2=110;\n", +"n=2; //(Both sides of the plate are effective)\n", +"//Using Uniform Wear Theory\n", +"//Axial Force W\n", +"W=n*%pi*Pmax*R1*(R2-R1);\n", +"//Frictional Torque Tf\n", +"Tf=u*W*(R1+R2)/2*(10^-3);\n", +"w=2*%pi*N/60;\n", +"//Power P\n", +"P=Tf*w;\n", +"//Torque = Mass moment of inertia*angular acceleration\n", +"a=Tf/I;\n", +"t=w/a; \n", +"//Angle turned by driving shaft theta1 through which slipping takes place\n", +"theta1=w*t;\n", +"//angle turned by driven shaft theta2\n", +"theta2=a*(t^2)/2;\n", +"E=Tf*(theta1-theta2);\n", +"\n", +" // printing data in scilab o/p window\n", +"printf('\nThe force is %0.1f N',W);\n", +"printf('\nThe Torque is %0.2f Nm',Tf);\n", +"printf('\nThe Power is %0.0f W',P);\n", +"printf('\nThe angular acceleration is %0.2f rad/sec^2',a);\n", +"printf('\nThe time taken is %0.1f sec',t);\n", +"printf('\nThe energy is %0.2f Nm',E);\n", +"\n", +"//The difference in the answer of energy 'E' is due to rounding-off of values.\n", +"\n", +"\n", +"\n", +"\n", +"\n", +"" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 22.2: FC222.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// 22-2\n", +"clc;\n", +"clear;\n", +"//Power P\n", +"P=80*10^3; //(Watt)\n", +"N=3000; //(Engine rpm)\n", +"w=2*%pi*3*10^3/60\n", +"Tf=8*10^4/w;\n", +"Rm=100;//(mm)\n", +"p=0.2 //N/mm^2\n", +"u=0.22 \n", +"// let width b= (R1-R2). \n", +"//Axial force W=2*pi*Rm*b*p\n", +"//Torque T=u*W*Rm\n", +"b=Tf/(u*2*%pi*(Rm^2)*p);\n", +"b=50; \n", +"R2=Rm+b;\n", +"R1=Rm-b;\n", +"Di=2*R1; //inner diameter\n", +"W=2*%pi*Rm*b*p;\n", +"n=8; //n is number of springs\n", +"//Axial force per spring W1\n", +"W1=W/n;\n", +"W1=W1+15;\n", +"//axial deflection del\n", +"del=10; \n", +"//stiffness k\n", +"k=W1/del;\n", +"// Spring index C\n", +"C=6;\n", +"//number of coils n1\n", +"n1=6; //Assumption\n", +"d=k*n*n1*(C^3)/(80*10^3);\n", +"d=11; // Rounding off to nearest standard value\n", +"D=C*d;\n", +"clearance=2;\n", +"FL=((n1+2)*d)+(2*del)+clearance; // two end coils, therefore (2*del)\n", +"\n", +" // printing data in scilab o/p window\n", +"\n", +"printf('\nThe Torque is %0.2f Nm',Tf);\n", +"printf('\nThe width is %0.0f mm',b);\n", +"printf('\nThe force is %0.0f N',W);\n", +"printf('\nThe Axial force per spring is %0.0f N',W1);\n", +"printf('\nThe Spring stiffness is %0.0f N/mm',k);\n", +"printf('\nThe Spring wire diameter is %0.0f mm',d);\n", +"printf('\nThe Mean coil diameter is %0.0f mm',D);\n", +"printf('\nThe Free length is %0.0f mm',FL);\n", +"" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 22.3: FC223.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// 22-3\n", +"clc;\n", +"clear;\n", +"//Power P\n", +"P=40*10^3 //Watt\n", +"n1=100; //rpm\n", +"n2=400; //rpm\n", +"//Speed factor Ks\n", +"Ks=0.9+0.001*n2;\n", +"//Clutch power Pc\n", +"Pc=P*n2/(n1*Ks)*10^-3;\n", +"\n", +" // printing data in scilab o/p window\n", +"printf('\nThe Speed factor is %0.1f ',Ks);\n", +"printf('\nThe clutch poweris %0.0f KW',Pc);" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 22.4: FC224.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//22-4\n", +"clc;\n", +"clear;\n", +"// plot Torque vs Ro/Ri\n", +"//x=Ro/Ri\n", +"//According to Uniform Wear theory\n", +"x=[0 0.2 0.4 0.577 0.6 0.8 1.0];\n", +"n=length(x);\n", +"for i=1:n\n", +" Tf(i)=(x(i)-(x(i)^3));\n", +"end\n", +"plot (x,Tf);\n", +"xtitle('','Ro/Ri');\n", +"ylabel('Tf');\n", +"xgrid(2);" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 22.5: FC225.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// 22-5\n", +"clc;\n", +"clear;\n", +"n1=4;\n", +"n2=3;\n", +"n=(n1+n2-1);\n", +"R2=80;\n", +"R1=50;\n", +"//According to Uniform Pressure Theory\n", +"//W=p*pi*((R2^2)-(R1^2)) T=n*2*u*W*((R2^3)-(R1^3))/(((R2^2)-(R1^2))*3)\n", +"P=15*10^3;\n", +"N=1400;\n", +"u=0.25;\n", +"w=2*%pi*N/60;\n", +"T=P/w;\n", +"W=T*3*((R2^2)-(R1^2))/(n*2*u*((R2^3)-(R1^3)))*10^3;\n", +"p=W/(%pi*((R2^2)-(R1^2)));\n", +"\n", +" // printing data in scilab o/p window\n", +"printf('\nThe angular speed is %0.2f rad/sec',w);\n", +"printf('\nThe Torque is %0.3f Nm',T);\n", +"printf('\nThe uniform pressure is %0.3f N/mm^2',p);\n", +"printf('\nThe Force is %0.1f N',W);\n", +"\n", +"\n", +"\n", +"" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 22.6: FC226.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//FRICTION CLUTCHES\n", +"// PAGE 584, 22-6\n", +"clc;\n", +"P=5*10^3;\n", +"N=1000;\n", +"w=2*%pi*N/60;\n", +"Rm=50;\n", +"pm=0.3;\n", +"Tf=P/w;\n", +"u=0.1;\n", +"R2=50*2/(0.6+1);\n", +"R1=0.6*R2;\n", +"//According to uniform Wear theory\n", +"W=pm*Rm*(R2-R1)*2*%pi;\n", +"n=Tf*(10^3)/(u*W*Rm);\n", +"pmax=pm*Rm/R1;\n", +"\n", +" // printing data in scilab o/p window\n", +"printf('\nThe angular speed is %0.2f rad/sec',w);\n", +"printf('\nThe Torque is %0.3f Nm',Tf);\n", +"printf('\nThe Inner radius is %0.1f mm',R1);\n", +"printf('\nThe Outer radius is %0.1f mm',R2);\n", +"printf('\nThe number of contacting surfaces is %0.0f ',n);\n", +"printf('\nThe max. pressure is %0.1f N/mm^2',pmax);" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 22.7: FC227.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// 22-7\n", +"clc;\n", +"clear;\n", +"P=12*10^3;\n", +"N=750 //Speed=N\n", +"w=2*%pi*N/60;\n", +"Tf=P/w;\n", +"p1=0.12;\n", +"a=12.5;//Semi-cone angle\n", +"u=0.3;\n", +"k=u*0.18246*1.121/0.21644;\n", +"R1=(Tf*(10^3)/k)^(1/3);\n", +"R2=R1*1.242;\n", +"Rm=1.121*R1;\n", +"W=2*%pi*p1*R1*(R2-R1);\n", +"\n", +" // printing data in scilab o/p window\n", +"printf('\nThe angular speed is %0.2f rad/sec',w);\n", +"printf('\nThe Torque is %0.1f Nm',Tf);\n", +"printf('\nThe Inner radius is %0.1f mm',R1);\n", +"printf('\nThe Outer radius is %0.1f mm',R2);\n", +"printf('\nThe mean radius is %0.2f mm',Rm);\n", +"printf('\nThe axial force is %0.0f N',W);\n", +"\n", +"//The difference in the answer is due to rounding-off of values." + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 22.8: FC228.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//22-8\n", +"clc;\n", +"clear;\n", +"//semi-cone angle is given as 15 degree\n", +"k=sin(15*%pi/180);\n", +"u=0.3;\n", +"W=300;\n", +"Rm=90/2;\n", +"Tf=u*W*Rm/k;\n", +"Tf=Tf*(10^-3);\n", +"I=0.4;\n", +"a=Tf/I;\n", +"N=1440;\n", +"w=2*%pi*N/60;\n", +"t=w/a;\n", +"//During Slipping\n", +"theta1=w*t;\n", +"theta2=theta1/2;\n", +"U=Tf*(theta1-theta2);\n", +"\n", +" // printing data in scilab o/p window\n", +"printf('\nThe Torque is %0.3f Nm',Tf);\n", +"printf('\nThe angular acceleration is %0.3f rad/sec^2',a);\n", +"printf('\nThe angular speed is %0.1f rad/sec',w);\n", +"printf('\nThe time taken is %0.2f sec',t);\n", +"printf('\nThe Energy lost in friction is %0.0f Nm',U);" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 22.9: FC229.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// 22-9\n", +"clc;\n", +"clear;\n", +"P=15*10^3;\n", +"Ka=1.25;\n", +"N=1500;\n", +"w=2*%pi*N/60;\n", +"Tf=P/w;\n", +"d=(Tf*16/(50*%pi))^(1/3);\n", +"d=25;\n", +"Rm=5*d;\n", +"Pav=0.12;\n", +"u=0.22;\n", +"b=Tf/(%pi*u*Pav*(Rm^2));\n", +"b=40;\n", +"R1=Rm-(b*sin(15*%pi/180)/2);\n", +"R2=Rm+(b*sin(15*%pi/180)/2);\n", +"\n", +" // printing data in scilab o/p window\n", +"printf('\nThe Torque is %0.2f Nm',Tf);\n", +"printf('\nThe shaft diameter is %0.0f mm',d);\n", +"printf('\nThe width is %0.0f mm',b);\n", +"printf('\nThe Inner radius is %0.1f mm',R1);\n", +"printf('\nThe Outer radius is %0.1f mm',R2);" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} |