diff options
Diffstat (limited to 'Linear_Integrated_Circuit_by_M_S_Sivakumar/4-Operational_Amplifier.ipynb')
-rw-r--r-- | Linear_Integrated_Circuit_by_M_S_Sivakumar/4-Operational_Amplifier.ipynb | 349 |
1 files changed, 349 insertions, 0 deletions
diff --git a/Linear_Integrated_Circuit_by_M_S_Sivakumar/4-Operational_Amplifier.ipynb b/Linear_Integrated_Circuit_by_M_S_Sivakumar/4-Operational_Amplifier.ipynb new file mode 100644 index 0000000..b60d6d0 --- /dev/null +++ b/Linear_Integrated_Circuit_by_M_S_Sivakumar/4-Operational_Amplifier.ipynb @@ -0,0 +1,349 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 4: Operational Amplifier" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 4.1: EX4_1.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Example 4.1 // For an op-amp circuit find a) closed loop gain Acl b) input impedance Zin c) output impedance Zo\n", +"clc ;\n", +"clear ;\n", +"close ;\n", +"ro = 85 ; // ohm\n", +"A = 150*10^3 ; // ohm\n", +"R2 = 350*10^3 ; // ohm // Feedback resistance\n", +"R1 = 10*10^3 ; // ohm // Input resistance\n", +"\n", +"// a) closed loop gain\n", +"// ACL = abs(Vo/Vin) = abs(R2/R1)\n", +"ACL = abs(R2/R1) ;\n", +"disp(' closed loop gain of an op-amp is = '+string(ACL)+' '); // 1/beta = ACL\n", +"beta = (1/ACL) ;\n", +"\n", +"// b) the input impedance Zin\n", +"Zin = R1 ;\n", +"disp(' the input impedance Zin = '+string(Zin)+' ohm ');\n", +"\n", +"// c0 the output impedance Z0\n", +"Z0 = (ro)/(1+(beta*A));\n", +"disp(' the output impedance Z0 = '+string(Z0)+' ohm ');\n", +"" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 4.2: Determine_the_differece_voltage_and_open_loop_gain_of_an_op_amp.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Example 4.2 // Determine the differece voltage and open loop gain of an op-amp\n", +"clc ;\n", +"clear ;\n", +"close ;\n", +"V1 = -5 ; // volt // input voltage\n", +"V2 = 5 ; // volt\n", +"Vo = 20 ; //volt // output voltage\n", +"\n", +"// the difference voltage is given by \n", +" Vd = V2-V1 ;\n", +"disp(' The difference voltage is = '+string(Vd)+' V ');\n", +"\n", +"// open loop gain \n", +"A = (Vo/Vd);\n", +"disp(' The open loop gain is = '+string(A)+' ');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 4.3: Determine_the_differece_voltage_and_open_loop_gain_of_an_op_amp.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Example 4.3 // Determine the differece voltage and open loop gain of an op-amp\n", +"clc ;\n", +"clear ;\n", +"close ;\n", +"V1 = -5 ; // volt // input voltage\n", +"V2 = 0 ; // volt // GND\n", +"Vo = 20 ; //volt // output voltage\n", +"\n", +"// the difference voltage is given by \n", +" Vd = V2-V1 ;\n", +"disp(' The difference voltage is = '+string(Vd)+' V ');\n", +"\n", +"// open loop gain \n", +"A = (Vo/Vd);\n", +"disp(' The open loop gain is = '+string(A)+' ');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 4.4: Determine_the_differece_voltage_and_open_loop_gain_of_an_op_amp.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Example 4.4 // Determine the differece voltage and open loop gain of an op-amp\n", +"clc ;\n", +"clear ;\n", +"close ;\n", +"V1 = 0 ; // volt // input voltage // GND\n", +"V2 = 5 ; // volt \n", +"Vo = 20 ; //volt // output voltage\n", +"\n", +"// the difference voltage is given by \n", +" Vd = V2-V1 ;\n", +"disp(' The difference voltage is = '+string(Vd)+' V ');\n", +"\n", +"// open loop gain \n", +"A = (Vo/Vd);\n", +"disp(' The open loop gain is = '+string(A)+' ');\n", +"" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 4.5: Determine_the_differece_voltage_and_open_loop_gain_of_an_op_amp.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Example 4.5 // Determine the differece voltage and open loop gain of an op-amp\n", +"clc ;\n", +"clear ;\n", +"close ;\n", +"V1 = 5 ; // volt // input voltage // GND\n", +"V2 = -5 ; // volt \n", +"Vo = -20 ; //volt // output voltage\n", +"\n", +"// the difference voltage is given by \n", +" Vd = V2-V1 ;\n", +"disp(' The difference voltage is = '+string(Vd)+' V ');\n", +"\n", +"// open loop gain \n", +"A = (Vo/Vd);\n", +"disp(' The open loop gain is = '+string(A)+' ');\n", +"\n", +"" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 4.6: To_find_closed_loop_gain_and_output_voltage_Vo_of_an_inverting_op_amp.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Example4.6 // To find closed loop gain and output voltage Vo of an inverting op-amp\n", +"clc;\n", +"clear;\n", +"close;\n", +"R1 = 10 ; //kilo ohm // input resistance\n", +"R2 = 25 ; // kilo ohm // feedback resistance\n", +"Vin = 10 ; //volt // input voltage\n", +"\n", +"// Closed loop gain of an inverting op-amp\n", +"Ac = -(R2/R1) ;\n", +"disp('The Closed loop gain of an inverting op-amp is = '+string(Ac)+' ');\n", +"Ac = abs(Ac);\n", +"disp('The |Ac| Closed loop gain of an inverting op-amp is = '+string(Ac)+' ');\n", +"\n", +"// the output voltage of an inverting op-amp\n", +"Vo = -(R2/R1)*Vin ;\n", +"disp(' The output voltage of an inverting op-amp is = '+string(Vo)+' V ');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 4.7: To_find_closed_loop_gain_and_output_voltage_Vo_of_an_non_inverting_op_amp.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Example4.7 // To find closed loop gain and output voltage Vo of an non-inverting op-amp\n", +"clc;\n", +"clear;\n", +"close;\n", +"R1 = 10 ; //kilo ohm // input resistance\n", +"R2 = 25 ; // kilo ohm // feedback resistance\n", +"Vin = 10 ; //volt // input voltage\n", +"\n", +"// Closed loop gain of an non-inverting op-amp\n", +"Ac = 1+(R2/R1) ;\n", +"Ac = abs(Ac);\n", +"disp('The Closed loop gain of an non-inverting op-amp is = '+string(Ac)+' ');\n", +"\n", +"// the output voltage of an inverting op-amp\n", +"Vo = (1+R2/R1)*Vin ;\n", +"disp(' The output voltage of an non-inverting op-amp is = '+string(Vo)+' V ');\n", +"" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 4.8: to_find_out_closed_loop_gain_and_output_voltage_Vo.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Example4.8 // to find out closed loop gain and output voltage Vo\n", +"clc;\n", +"clear;\n", +"close;\n", +"R1 = 10 ; //kilo ohm // input resistance\n", +"R3 = 10 ; //kilo ohm // input resistance\n", +"R2 = 25 ; // kilo ohm // feedback resistance\n", +"R4 = 25 ; // kilo ohm // feedback resistance\n", +"Vin2 = 10 ; //volt // input voltage\n", +"Vin1 = -10 ; //volt // input voltage\n", +"\n", +"// closed loop gain of differntial op-amp is given by\n", +"Ac = (R2/R1) ;\n", +"Ac = abs(Ac); \n", +"disp('The closed loop gain of differntial op-amp is = '+string(Ac)+' ');\n", +"\n", +"// the output voltage of an non-inverting op-amp is given by\n", +"Vo = (R2/R1)*(Vin2-Vin1) ;\n", +"disp('The output voltage of an non-inverting op-amp is= '+string(Vo)+' V ');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 4.9: Determine_the_non_inverting_input_voltage.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Example4.9 // Determine the non-inverting input voltage\n", +"clc;\n", +"clear;\n", +"close;\n", +"R1 = 10 ; //kilo ohm // input resistance\n", +"R2 = 25 ; //kilo ohm // feedback resistance\n", +"Voh = 10 ; // volt //output voltage\n", +"Vol = -10 ; // volt // output voltage\n", +"\n", +"// upper voltage\n", +"V = (R1/(R1+R2)*Voh) ;\n", +"disp(' The upper voltage is = '+string(V)+' V ');\n", +"\n", +"// Lower voltage\n", +"V = (R1/(R1+R2)*Vol) ;\n", +"disp(' The lower voltage is = '+string(V)+' V ');\n", +"" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} |