diff options
Diffstat (limited to 'Linear_Integrated_Circuit_by_M_S_Sivakumar/14-Special_Function_ICs.ipynb')
-rw-r--r-- | Linear_Integrated_Circuit_by_M_S_Sivakumar/14-Special_Function_ICs.ipynb | 559 |
1 files changed, 559 insertions, 0 deletions
diff --git a/Linear_Integrated_Circuit_by_M_S_Sivakumar/14-Special_Function_ICs.ipynb b/Linear_Integrated_Circuit_by_M_S_Sivakumar/14-Special_Function_ICs.ipynb new file mode 100644 index 0000000..4f96f1d --- /dev/null +++ b/Linear_Integrated_Circuit_by_M_S_Sivakumar/14-Special_Function_ICs.ipynb @@ -0,0 +1,559 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 14: Special Function ICs" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 14.10: Design_a_video_amplifier_of_IC_1550_circuit.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"\n", +"// Example14.10 // Design a video amplifier of IC 1550 circuit\n", +"clc;\n", +"clear;\n", +"close;\n", +"Vcc = 12 ; // V\n", +"Av = -10 ;\n", +"Vagc = 0 ; // at bandwidth of 20 MHz\n", +"hfe = 50 ; // forward emitter parameter\n", +"rbb = 25 ; // ohm // base resistor\n", +"Cs = 1*10^-12 ; // F // source capacitor\n", +"Cl = 1*10^-12 ; // F // load capacitor\n", +"Ie1 = 1*10^-3 ; // A // emitter current of Q1\n", +"f = 1000*10^6 ; // Hz\n", +"Vt = 52*10^-3 ;\n", +"Vt1 = 0.026 ;\n", +"\n", +"// When Vagc =0 the transistor Q2 is cut-off and the collector current of transistor Q2 flow through the transistor Q3\n", +"// i.e Ic1=Ie1=Ie3\n", +"Ie3 = 1*10^-3 ; // A // emitter current of Q3\n", +"Ic1 = 1*10^-3 ; // A // collector current of the transistor Q1\n", +"\n", +"// it indicates that the emitter current of Q2 is zero Ie2 = 0 then the emitter resistor of Q2 is infinite\n", +"re2 = %inf ;\n", +"\n", +"// emitter resistor of Q3 \n", +"re3 = (Vt/Ie1);\n", +"disp('The emitter resistor of Q3 is = '+string(re3)+' ohm ( at temperature 25 degree celsius) ');\n", +"\n", +"// the trans conductance of transistor is\n", +"gm = (Ie1/Vt1);\n", +"disp('The trans conductance of transistor is = '+string(gm*1000)+' mA/V '); // Round Off Error\n", +"\n", +"// the base emitter resistor rbe\n", +"rbe = (hfe/gm);\n", +"disp('The base emitter resistor rbe is = '+string(rbe/1000)+' K ohm '); // Round Off Error\n", +"\n", +"// the emitter capacitor Ce \n", +"Ce = (gm/(2*%pi*f));\n", +"disp('The emitter capacitor Ce = '+string(Ce)+' F '); // Round Off Error\n", +"\n", +"// the voltage gain of video amplifier is\n", +"// Av = (Vo/Vin) ;\n", +"// Av = -((alpha3*gm)/(rbb*re3)*((1/rbb)+(1/rbe)+sCe)*((1/re2)+(1/re3)+sC3)*((1/Rl)+(s(Cs+Cl)))) \n", +" // At Avgc = 0 i.e s=0 in the above Av equation\n", +"alpha3 = 1 ;\n", +"s = 0 ;\n", +"// Rl = -((alpha3*gm)/(rbb*re3)*(((1/rbb)+(1/rbe))*((1/re2)+(1/re3))*(Av))); \n", +"\n", +"// After solving above equation for Rl We get Rl Equation as\n", +"Rl = 10/(37.8*10^-3);\n", +"disp('The value of resistance RL is = '+string(Rl)+' ohm ');\n", +"\n", +"// there are three poles present in the transfer function of video amplifier each pole generate one 3-db frequency \n", +"Rl = 675 ;\n", +"// fa = 1/(2*%pi*Rl*(Cs+Cl));\n", +"// after putting value of Rl ,Cs and Cl we get\n", +"fa = 1/(2*3.14*264.55*1*10^-12);\n", +"disp('The pole frequency fa is = '+string(fa*10^-3/1000)+' M Hz '); // Round Off Error\n", +"\n", +"\n", +"//fb = 1/(2*%pi*Ce*((rbb*rbe)/(rbb+rbe)));\n", +"// after putting value of Ce rbb and rbe we get\n", +"fb = 1/(2*%pi*6.05*10^-12*24.5);\n", +"disp('The pole frequency fb is = '+string(fb*10^-3/1000)+' M Hz ');\n", +"\n", +"fc = 1/(2*%pi*Cs*re3);\n", +"disp('The pole frequency fc is = '+string(fc*10^-3/1000)+' M Hz ');\n", +"\n", +"disp(' Hence fa is a dominant pole frequency ');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 14.11: Design_a_video_amplifier_of_IC_1550_circuit.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Example14.11 // Design a video amplifier of IC 1550 circuit\n", +"clc;\n", +"clear;\n", +"close;\n", +"Vcc = 12 ; // V\n", +"Av = -10 ;\n", +"Vagc = 0 ; // at bandwidth of 20 MHz\n", +"hfe = 50 ; // forward emitter parameter\n", +"rbb = 25 ; // ohm // base resistor\n", +"Cs = 1*10^-12 ; // F // source capacitor\n", +"Cl = 1*10^-12 ; // F // load capacitor\n", +"Ie1 = 1*10^-3 ; // A // emitter current of Q1\n", +"f = 1000*10^6 ; // Hz\n", +"Vt = 52*10^-3 ;\n", +"Vt1 = 0.026 ;\n", +"\n", +"// When Vagc =0 the transistor Q2 is cut-off and the collector current of transistor Q2 flow through the transistor Q3\n", +"// i.e Ic1=Ie1=Ie3\n", +"Ie3 = 1*10^-3 ; // A // emitter current of Q3\n", +"Ic1 = 1*10^-3 ; // A // collector current of the transistor Q1\n", +"\n", +"// it indicates that the emitter current of Q2 is zero Ie2 = 0 then the emitter resistor of Q2 is infinite\n", +"re2 = %inf ;\n", +"\n", +"// emitter resistor of Q3 \n", +"re3 = (Vt/Ie1);\n", +"disp('The emitter resistor of Q3 is = '+string(re3)+' ohm ');\n", +"\n", +"// the trans conductance of transistor is\n", +"gm = (Ie1/Vt1);\n", +"disp('The trans conductance of transistor is = '+string(gm)+' A/V ');\n", +"\n", +"// the base emitter resistor rbe\n", +"rbe = (hfe/gm);\n", +"disp('The base emitter resistor rbe is = '+string(rbe)+' ohm ');\n", +"\n", +"// the emitter capacitor Ce \n", +"Ce = (gm/(2*%pi*f));\n", +"disp('The emitter capacitor is = '+string(Ce)+' F ');\n", +"\n", +"// the voltage gain of video amplifier is\n", +"// Av = (Vo/Vin) ;\n", +"// Av = -((alpha3*gm)/(rbb*re3)*((1/rbb)+(1/rbe)+sCe)*((1/re2)+(1/re3)+sC3)*((1/Rl)+(s(Cs+Cl)))) \n", +" // At Avgc = 0 i.e s=0 in the above Av equation\n", +"alpha3 = 1 ;\n", +"s = 0 ;\n", +"Av =-10 ;\n", +"Rl = -((alpha3*gm)/((rbb*re3)*(((1/rbb)+(1/rbe))*((1/re2)+(1/re3))*(Av)))); \n", +"Rl = (1/Rl);\n", +"disp('The value of resistance RL is = '+string(Rl)+' ohm ');\n", +"\n", +"// there are three poles present in the transfer function of video amplifier each pole generate one 3-db frequency \n", +"Rl = 265\n", +"fa = 1/(2*%pi*Rl*(Cs));\n", +"disp('The pole frequency fa is = '+string(fa)+' Hz ');\n", +"\n", +"\n", +"fb = 1/(2*%pi*Ce*((rbb*rbe)/(rbb+rbe)));\n", +"disp('The pole frequency fb is = '+string(fb)+' Hz ');\n", +"\n", +"fc = 1/(2*%pi*Cs*re3);\n", +"disp('The pole frequency fc is = '+string(fc)+' Hz ');\n", +"\n", +"disp(' Hence fa is a dominant pole frequency ');\n", +"" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 14.12: Determine_the_output_voltage_of_an_isolation_amplifier_IC_ISO100.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Example14.12 // Determine the output voltage of an isolation amplifier IC ISO100\n", +"clc;\n", +"clear;\n", +"close;\n", +"Vin = 5 ; // V\n", +"Rin = 10*10^3 ; \n", +"Rf = 55*10^3 ; // ohm // feedback resistance\n", +"\n", +"// the input voltage of an amplifier 1\n", +"// Vin = Rin*Iin\n", +"Iin = Vin/Rin ; \n", +"disp('The input current is = '+string(Iin)+' A ');\n", +"\n", +"// In isolation amplifier ISO 100 the input current Iin is equal to the output current Iout , but both are opposite in direction\n", +"// Iin = -Iout\n", +"// the output of an op-amp\n", +"// Vo = -Rf*Iout\n", +"Vo = Rf*Iin;\n", +"disp('The output of an op-amp is = '+string(Vo)+' V ');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 14.13: Determine_the_output_voltage_of_an_isolation_amplifier_IC_ISO100.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Example14.13 // Determine the output voltage of an isolation amplifier IC ISO100\n", +"clc;\n", +"clear;\n", +"close;\n", +"Vin = 12 ; // V\n", +"Rin = 1*10^3 ; \n", +"Rf = 17*10^3 ; // ohm // feedback resistance\n", +"\n", +"// the input voltage of an amplifier 1\n", +"// Vin = Rin*Iin\n", +"Iin = Vin/Rin ; \n", +"disp('The input current is = '+string(Iin)+' A ');\n", +"\n", +"// In isolation amplifier ISO 100 the input current Iin is equal to the output current Iout , but both are opposite in direction\n", +"// Iin = -Iout\n", +"// the output of an op-amp\n", +"// Vo = -Rf*Iout\n", +"Vo = Rf*Iin;\n", +"disp('The output of an op-amp is = '+string(Vo)+' V ');\n", +"" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 14.1: to_determine_the_regulated_voltage.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Example14.1 // to determine the regulated voltage \n", +"clc;\n", +"clear;\n", +"close;\n", +"R1 = 250 ; //ohm \n", +"R2 = 2500 ; // ohm \n", +"Vref = 2 ; //V //reference voltage\n", +"Iadj = 100*10^-6; // A // adjacent current\n", +"\n", +"//the output voltage of the adjustable voltage regulator is defined by\n", +"Vo = (Vref*((R2/R1)+1)+(Iadj*R2)) ;\n", +"disp('the output voltage of the adjustable voltage regulator is = '+string(Vo)+' V ');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 14.2: to_determine_the_current_drawn_from_the_dual_power_supply.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Example14.2 // to determine the current drawn from the dual power supply \n", +"clc;\n", +"clear;\n", +"close;\n", +"V = 10 ; // V\n", +"P = 500 ; // mW\n", +"\n", +"// we assume that each power supply provides half power supply to IC\n", +"P1 = (P/2);\n", +"\n", +"// the total power dissipation of the IC\n", +"// P1 = V*I ;\n", +"I = P1/V ;\n", +"disp('the total power dissipation of the IC is = '+string(I)+' mA ');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 14.3: to_determine_the_output_voltage.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Example14.3 // to determine the output voltage \n", +"clc;\n", +"clear;\n", +"close;\n", +"R1 = 100*10^3 ; //ohm \n", +"R2 = 500*10^3 ; // ohm \n", +"Vref = 1.25 ; //V //reference voltage\n", +"\n", +"//the output voltage of the adjustable voltage regulator is defined by\n", +"Vo = Vref*(R1+R2)/R1;\n", +"disp('the output voltage of the adjustable voltage regulator is = '+string(Vo)+' V ');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 14.4: determine_the_output_voltage_of_the_switching_regulator_circuit.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Example14.4 // determine the output voltage of the switching regulator circuit\n", +"clc;\n", +"clear;\n", +"close;\n", +"d = 0.7 ; // duty cycle\n", +"Vin = 5 ; // V // input voltage\n", +"\n", +"// The output voltage of switching regulator circuit is given by\n", +"Vo = d*Vin ;\n", +"disp('The output voltage of switching regulator circuit is = '+string(Vo)+' V ');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 14.5: determine_the_duty_cycle_of_the_switching_regulator_circuit.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Example14.5 // determine the duty cycle of the switching regulator circuit\n", +"clc;\n", +"clear;\n", +"close;\n", +"Vo = 4.8 ; // V // output voltage\n", +"Vin = 5 ; // V // input voltage\n", +"\n", +"// The output voltage of switching regulator circuit is given by\n", +"// Vo = d*Vin ;\n", +"\n", +"// Duty cycle is given as\n", +"d =Vo/Vin ;\n", +"disp('The output voltage of switching regulator circuit is = '+string(d)+' ');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 14.6: determine_the_duty_cycle_of_the_switching_regulator_circuit.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Example14.6 // determine the duty cycle of the switching regulator circuit\n", +"clc;\n", +"clear;\n", +"close;\n", +"T =120 ; //msec // total pulse time\n", +"// T = ton + toff ;\n", +"ton = T/2 ;\n", +"\n", +"// The duty cycle of switching regulator circuit is given by\n", +"d = ton/T;\n", +"disp('The output voltage of switching regulator circuit is = '+string(d)+' ');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 14.7: determine_the_duty_cycle_of_the_switching_regulator_circuit.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Example14.7 // determine the duty cycle of the switching regulator circuit\n", +"clc;\n", +"clear;\n", +"close;\n", +"ton = 12 ; //msec // on time of pulse\n", +"// ton = 2*toff ; given\n", +"// T = ton + toff ;\n", +"toff = ton/2 ;\n", +"T = ton+toff ; // total time\n", +"\n", +"// The duty cycle of switching regulator circuit is given by\n", +"d = ton/T;\n", +"disp('The output voltage of switching regulator circuit is = '+string(d)+' ');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 14.8: determine_the_output_voltage_of_the_audio_power_amplifier_IC_LM380.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Example14.8 // determine the output voltage of the audio power amplifier IC LM380\n", +"clc;\n", +"clear;\n", +"close;\n", +"Vcc = 12 ; // V\n", +"Ic3 = 12*10^-6 ; // A // collector current of the transistor Q3\n", +"Ic4 = 12*10^-6 ; // A // collector current of the transistor Q4\n", +"R11 = 25*10^3 ; // ohm\n", +"R12 = 25*10^3 ; // ohm\n", +"\n", +"// the collector current of Q3 is defined as\n", +" // Ic3 = (Vcc-3*Veb)/(R11+R12);\n", +"Veb = (Vcc-(R11+R12)*Ic3)/3 ;\n", +"disp('The emitter bias voltage is = '+string(Veb)+' V ');\n", +"\n", +"// the output voltage of the IC LM380\n", +"Vo = (1/2)*Vcc+(1/2)*Veb;\n", +"disp('The output voltage of the IC LM380 is = '+string(Vo)+' V ');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 14.9: determine_the_output_voltage_of_the_audio_power_amplifier_IC_LM380.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Example14.9 // determine the output voltage of the audio power amplifier IC LM380\n", +"clc;\n", +"clear;\n", +"close;\n", +"Vcc = 10 ; // V\n", +"Ic3 = 0.01*10^-6 ; // A // collector current of the transistor Q3\n", +"Ic4 = 0.01*10^-6 ; // A // collector current of the transistor Q4\n", +"R11 = 25*10^3 ; // ohm\n", +"R12 = 25*10^3 ; // ohm\n", +"\n", +"// the collector current of Q3 is defined as\n", +" // Ic3 = (Vcc-3*Veb)/(R11+R12);\n", +"Veb = (Vcc-(R11+R12)*Ic3)/3 ;\n", +"disp('The emitter bias voltage is = '+string(Veb)+' V ');\n", +"\n", +"// the output voltage of the IC LM380\n", +"Vo = (1/2)*Vcc+(1/2)*Veb;\n", +"disp('The output voltage of the IC LM380 is = '+string(Vo)+' V ');" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} |