summaryrefslogtreecommitdiff
path: root/Linear_Integrated_Circuit_by_M_S_Sivakumar/14-Special_Function_ICs.ipynb
diff options
context:
space:
mode:
Diffstat (limited to 'Linear_Integrated_Circuit_by_M_S_Sivakumar/14-Special_Function_ICs.ipynb')
-rw-r--r--Linear_Integrated_Circuit_by_M_S_Sivakumar/14-Special_Function_ICs.ipynb559
1 files changed, 559 insertions, 0 deletions
diff --git a/Linear_Integrated_Circuit_by_M_S_Sivakumar/14-Special_Function_ICs.ipynb b/Linear_Integrated_Circuit_by_M_S_Sivakumar/14-Special_Function_ICs.ipynb
new file mode 100644
index 0000000..4f96f1d
--- /dev/null
+++ b/Linear_Integrated_Circuit_by_M_S_Sivakumar/14-Special_Function_ICs.ipynb
@@ -0,0 +1,559 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 14: Special Function ICs"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 14.10: Design_a_video_amplifier_of_IC_1550_circuit.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"\n",
+"// Example14.10 // Design a video amplifier of IC 1550 circuit\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"Vcc = 12 ; // V\n",
+"Av = -10 ;\n",
+"Vagc = 0 ; // at bandwidth of 20 MHz\n",
+"hfe = 50 ; // forward emitter parameter\n",
+"rbb = 25 ; // ohm // base resistor\n",
+"Cs = 1*10^-12 ; // F // source capacitor\n",
+"Cl = 1*10^-12 ; // F // load capacitor\n",
+"Ie1 = 1*10^-3 ; // A // emitter current of Q1\n",
+"f = 1000*10^6 ; // Hz\n",
+"Vt = 52*10^-3 ;\n",
+"Vt1 = 0.026 ;\n",
+"\n",
+"// When Vagc =0 the transistor Q2 is cut-off and the collector current of transistor Q2 flow through the transistor Q3\n",
+"// i.e Ic1=Ie1=Ie3\n",
+"Ie3 = 1*10^-3 ; // A // emitter current of Q3\n",
+"Ic1 = 1*10^-3 ; // A // collector current of the transistor Q1\n",
+"\n",
+"// it indicates that the emitter current of Q2 is zero Ie2 = 0 then the emitter resistor of Q2 is infinite\n",
+"re2 = %inf ;\n",
+"\n",
+"// emitter resistor of Q3 \n",
+"re3 = (Vt/Ie1);\n",
+"disp('The emitter resistor of Q3 is = '+string(re3)+' ohm ( at temperature 25 degree celsius) ');\n",
+"\n",
+"// the trans conductance of transistor is\n",
+"gm = (Ie1/Vt1);\n",
+"disp('The trans conductance of transistor is = '+string(gm*1000)+' mA/V '); // Round Off Error\n",
+"\n",
+"// the base emitter resistor rbe\n",
+"rbe = (hfe/gm);\n",
+"disp('The base emitter resistor rbe is = '+string(rbe/1000)+' K ohm '); // Round Off Error\n",
+"\n",
+"// the emitter capacitor Ce \n",
+"Ce = (gm/(2*%pi*f));\n",
+"disp('The emitter capacitor Ce = '+string(Ce)+' F '); // Round Off Error\n",
+"\n",
+"// the voltage gain of video amplifier is\n",
+"// Av = (Vo/Vin) ;\n",
+"// Av = -((alpha3*gm)/(rbb*re3)*((1/rbb)+(1/rbe)+sCe)*((1/re2)+(1/re3)+sC3)*((1/Rl)+(s(Cs+Cl)))) \n",
+" // At Avgc = 0 i.e s=0 in the above Av equation\n",
+"alpha3 = 1 ;\n",
+"s = 0 ;\n",
+"// Rl = -((alpha3*gm)/(rbb*re3)*(((1/rbb)+(1/rbe))*((1/re2)+(1/re3))*(Av))); \n",
+"\n",
+"// After solving above equation for Rl We get Rl Equation as\n",
+"Rl = 10/(37.8*10^-3);\n",
+"disp('The value of resistance RL is = '+string(Rl)+' ohm ');\n",
+"\n",
+"// there are three poles present in the transfer function of video amplifier each pole generate one 3-db frequency \n",
+"Rl = 675 ;\n",
+"// fa = 1/(2*%pi*Rl*(Cs+Cl));\n",
+"// after putting value of Rl ,Cs and Cl we get\n",
+"fa = 1/(2*3.14*264.55*1*10^-12);\n",
+"disp('The pole frequency fa is = '+string(fa*10^-3/1000)+' M Hz '); // Round Off Error\n",
+"\n",
+"\n",
+"//fb = 1/(2*%pi*Ce*((rbb*rbe)/(rbb+rbe)));\n",
+"// after putting value of Ce rbb and rbe we get\n",
+"fb = 1/(2*%pi*6.05*10^-12*24.5);\n",
+"disp('The pole frequency fb is = '+string(fb*10^-3/1000)+' M Hz ');\n",
+"\n",
+"fc = 1/(2*%pi*Cs*re3);\n",
+"disp('The pole frequency fc is = '+string(fc*10^-3/1000)+' M Hz ');\n",
+"\n",
+"disp(' Hence fa is a dominant pole frequency ');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 14.11: Design_a_video_amplifier_of_IC_1550_circuit.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Example14.11 // Design a video amplifier of IC 1550 circuit\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"Vcc = 12 ; // V\n",
+"Av = -10 ;\n",
+"Vagc = 0 ; // at bandwidth of 20 MHz\n",
+"hfe = 50 ; // forward emitter parameter\n",
+"rbb = 25 ; // ohm // base resistor\n",
+"Cs = 1*10^-12 ; // F // source capacitor\n",
+"Cl = 1*10^-12 ; // F // load capacitor\n",
+"Ie1 = 1*10^-3 ; // A // emitter current of Q1\n",
+"f = 1000*10^6 ; // Hz\n",
+"Vt = 52*10^-3 ;\n",
+"Vt1 = 0.026 ;\n",
+"\n",
+"// When Vagc =0 the transistor Q2 is cut-off and the collector current of transistor Q2 flow through the transistor Q3\n",
+"// i.e Ic1=Ie1=Ie3\n",
+"Ie3 = 1*10^-3 ; // A // emitter current of Q3\n",
+"Ic1 = 1*10^-3 ; // A // collector current of the transistor Q1\n",
+"\n",
+"// it indicates that the emitter current of Q2 is zero Ie2 = 0 then the emitter resistor of Q2 is infinite\n",
+"re2 = %inf ;\n",
+"\n",
+"// emitter resistor of Q3 \n",
+"re3 = (Vt/Ie1);\n",
+"disp('The emitter resistor of Q3 is = '+string(re3)+' ohm ');\n",
+"\n",
+"// the trans conductance of transistor is\n",
+"gm = (Ie1/Vt1);\n",
+"disp('The trans conductance of transistor is = '+string(gm)+' A/V ');\n",
+"\n",
+"// the base emitter resistor rbe\n",
+"rbe = (hfe/gm);\n",
+"disp('The base emitter resistor rbe is = '+string(rbe)+' ohm ');\n",
+"\n",
+"// the emitter capacitor Ce \n",
+"Ce = (gm/(2*%pi*f));\n",
+"disp('The emitter capacitor is = '+string(Ce)+' F ');\n",
+"\n",
+"// the voltage gain of video amplifier is\n",
+"// Av = (Vo/Vin) ;\n",
+"// Av = -((alpha3*gm)/(rbb*re3)*((1/rbb)+(1/rbe)+sCe)*((1/re2)+(1/re3)+sC3)*((1/Rl)+(s(Cs+Cl)))) \n",
+" // At Avgc = 0 i.e s=0 in the above Av equation\n",
+"alpha3 = 1 ;\n",
+"s = 0 ;\n",
+"Av =-10 ;\n",
+"Rl = -((alpha3*gm)/((rbb*re3)*(((1/rbb)+(1/rbe))*((1/re2)+(1/re3))*(Av)))); \n",
+"Rl = (1/Rl);\n",
+"disp('The value of resistance RL is = '+string(Rl)+' ohm ');\n",
+"\n",
+"// there are three poles present in the transfer function of video amplifier each pole generate one 3-db frequency \n",
+"Rl = 265\n",
+"fa = 1/(2*%pi*Rl*(Cs));\n",
+"disp('The pole frequency fa is = '+string(fa)+' Hz ');\n",
+"\n",
+"\n",
+"fb = 1/(2*%pi*Ce*((rbb*rbe)/(rbb+rbe)));\n",
+"disp('The pole frequency fb is = '+string(fb)+' Hz ');\n",
+"\n",
+"fc = 1/(2*%pi*Cs*re3);\n",
+"disp('The pole frequency fc is = '+string(fc)+' Hz ');\n",
+"\n",
+"disp(' Hence fa is a dominant pole frequency ');\n",
+""
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 14.12: Determine_the_output_voltage_of_an_isolation_amplifier_IC_ISO100.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Example14.12 // Determine the output voltage of an isolation amplifier IC ISO100\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"Vin = 5 ; // V\n",
+"Rin = 10*10^3 ; \n",
+"Rf = 55*10^3 ; // ohm // feedback resistance\n",
+"\n",
+"// the input voltage of an amplifier 1\n",
+"// Vin = Rin*Iin\n",
+"Iin = Vin/Rin ; \n",
+"disp('The input current is = '+string(Iin)+' A ');\n",
+"\n",
+"// In isolation amplifier ISO 100 the input current Iin is equal to the output current Iout , but both are opposite in direction\n",
+"// Iin = -Iout\n",
+"// the output of an op-amp\n",
+"// Vo = -Rf*Iout\n",
+"Vo = Rf*Iin;\n",
+"disp('The output of an op-amp is = '+string(Vo)+' V ');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 14.13: Determine_the_output_voltage_of_an_isolation_amplifier_IC_ISO100.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Example14.13 // Determine the output voltage of an isolation amplifier IC ISO100\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"Vin = 12 ; // V\n",
+"Rin = 1*10^3 ; \n",
+"Rf = 17*10^3 ; // ohm // feedback resistance\n",
+"\n",
+"// the input voltage of an amplifier 1\n",
+"// Vin = Rin*Iin\n",
+"Iin = Vin/Rin ; \n",
+"disp('The input current is = '+string(Iin)+' A ');\n",
+"\n",
+"// In isolation amplifier ISO 100 the input current Iin is equal to the output current Iout , but both are opposite in direction\n",
+"// Iin = -Iout\n",
+"// the output of an op-amp\n",
+"// Vo = -Rf*Iout\n",
+"Vo = Rf*Iin;\n",
+"disp('The output of an op-amp is = '+string(Vo)+' V ');\n",
+""
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 14.1: to_determine_the_regulated_voltage.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Example14.1 // to determine the regulated voltage \n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"R1 = 250 ; //ohm \n",
+"R2 = 2500 ; // ohm \n",
+"Vref = 2 ; //V //reference voltage\n",
+"Iadj = 100*10^-6; // A // adjacent current\n",
+"\n",
+"//the output voltage of the adjustable voltage regulator is defined by\n",
+"Vo = (Vref*((R2/R1)+1)+(Iadj*R2)) ;\n",
+"disp('the output voltage of the adjustable voltage regulator is = '+string(Vo)+' V ');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 14.2: to_determine_the_current_drawn_from_the_dual_power_supply.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Example14.2 // to determine the current drawn from the dual power supply \n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"V = 10 ; // V\n",
+"P = 500 ; // mW\n",
+"\n",
+"// we assume that each power supply provides half power supply to IC\n",
+"P1 = (P/2);\n",
+"\n",
+"// the total power dissipation of the IC\n",
+"// P1 = V*I ;\n",
+"I = P1/V ;\n",
+"disp('the total power dissipation of the IC is = '+string(I)+' mA ');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 14.3: to_determine_the_output_voltage.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Example14.3 // to determine the output voltage \n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"R1 = 100*10^3 ; //ohm \n",
+"R2 = 500*10^3 ; // ohm \n",
+"Vref = 1.25 ; //V //reference voltage\n",
+"\n",
+"//the output voltage of the adjustable voltage regulator is defined by\n",
+"Vo = Vref*(R1+R2)/R1;\n",
+"disp('the output voltage of the adjustable voltage regulator is = '+string(Vo)+' V ');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 14.4: determine_the_output_voltage_of_the_switching_regulator_circuit.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Example14.4 // determine the output voltage of the switching regulator circuit\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"d = 0.7 ; // duty cycle\n",
+"Vin = 5 ; // V // input voltage\n",
+"\n",
+"// The output voltage of switching regulator circuit is given by\n",
+"Vo = d*Vin ;\n",
+"disp('The output voltage of switching regulator circuit is = '+string(Vo)+' V ');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 14.5: determine_the_duty_cycle_of_the_switching_regulator_circuit.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Example14.5 // determine the duty cycle of the switching regulator circuit\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"Vo = 4.8 ; // V // output voltage\n",
+"Vin = 5 ; // V // input voltage\n",
+"\n",
+"// The output voltage of switching regulator circuit is given by\n",
+"// Vo = d*Vin ;\n",
+"\n",
+"// Duty cycle is given as\n",
+"d =Vo/Vin ;\n",
+"disp('The output voltage of switching regulator circuit is = '+string(d)+' ');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 14.6: determine_the_duty_cycle_of_the_switching_regulator_circuit.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Example14.6 // determine the duty cycle of the switching regulator circuit\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"T =120 ; //msec // total pulse time\n",
+"// T = ton + toff ;\n",
+"ton = T/2 ;\n",
+"\n",
+"// The duty cycle of switching regulator circuit is given by\n",
+"d = ton/T;\n",
+"disp('The output voltage of switching regulator circuit is = '+string(d)+' ');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 14.7: determine_the_duty_cycle_of_the_switching_regulator_circuit.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Example14.7 // determine the duty cycle of the switching regulator circuit\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"ton = 12 ; //msec // on time of pulse\n",
+"// ton = 2*toff ; given\n",
+"// T = ton + toff ;\n",
+"toff = ton/2 ;\n",
+"T = ton+toff ; // total time\n",
+"\n",
+"// The duty cycle of switching regulator circuit is given by\n",
+"d = ton/T;\n",
+"disp('The output voltage of switching regulator circuit is = '+string(d)+' ');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 14.8: determine_the_output_voltage_of_the_audio_power_amplifier_IC_LM380.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Example14.8 // determine the output voltage of the audio power amplifier IC LM380\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"Vcc = 12 ; // V\n",
+"Ic3 = 12*10^-6 ; // A // collector current of the transistor Q3\n",
+"Ic4 = 12*10^-6 ; // A // collector current of the transistor Q4\n",
+"R11 = 25*10^3 ; // ohm\n",
+"R12 = 25*10^3 ; // ohm\n",
+"\n",
+"// the collector current of Q3 is defined as\n",
+" // Ic3 = (Vcc-3*Veb)/(R11+R12);\n",
+"Veb = (Vcc-(R11+R12)*Ic3)/3 ;\n",
+"disp('The emitter bias voltage is = '+string(Veb)+' V ');\n",
+"\n",
+"// the output voltage of the IC LM380\n",
+"Vo = (1/2)*Vcc+(1/2)*Veb;\n",
+"disp('The output voltage of the IC LM380 is = '+string(Vo)+' V ');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 14.9: determine_the_output_voltage_of_the_audio_power_amplifier_IC_LM380.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Example14.9 // determine the output voltage of the audio power amplifier IC LM380\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"Vcc = 10 ; // V\n",
+"Ic3 = 0.01*10^-6 ; // A // collector current of the transistor Q3\n",
+"Ic4 = 0.01*10^-6 ; // A // collector current of the transistor Q4\n",
+"R11 = 25*10^3 ; // ohm\n",
+"R12 = 25*10^3 ; // ohm\n",
+"\n",
+"// the collector current of Q3 is defined as\n",
+" // Ic3 = (Vcc-3*Veb)/(R11+R12);\n",
+"Veb = (Vcc-(R11+R12)*Ic3)/3 ;\n",
+"disp('The emitter bias voltage is = '+string(Veb)+' V ');\n",
+"\n",
+"// the output voltage of the IC LM380\n",
+"Vo = (1/2)*Vcc+(1/2)*Veb;\n",
+"disp('The output voltage of the IC LM380 is = '+string(Vo)+' V ');"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}