diff options
Diffstat (limited to 'Introduction_to_Electric_Drives_by_V_Singhal/3-Inverters.ipynb')
-rw-r--r-- | Introduction_to_Electric_Drives_by_V_Singhal/3-Inverters.ipynb | 344 |
1 files changed, 344 insertions, 0 deletions
diff --git a/Introduction_to_Electric_Drives_by_V_Singhal/3-Inverters.ipynb b/Introduction_to_Electric_Drives_by_V_Singhal/3-Inverters.ipynb new file mode 100644 index 0000000..f2600f7 --- /dev/null +++ b/Introduction_to_Electric_Drives_by_V_Singhal/3-Inverters.ipynb @@ -0,0 +1,344 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 3: Inverters" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.1: Maximum_output_frequency.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Example 3_1\n", +"clc;\n", +"clear;close;\n", +"\n", +"//Given data: \n", +"R=80;//ohm\n", +"L=8;///mH\n", +"C=1.2;// micro F\n", +"\n", +"//Solution :\n", +"if R^2<4*(L*10^-3)/(C*10^-6) then\n", +" disp('As R^2<4*L/C, Circuit will work as a series inverter.');\n", +"else\n", +" disp('As R^2>4*L/C, Circuit will not work as a series inverter.');\n", +"end\n", +"omega_m=sqrt(1/(L*10^-3*C*10^-6)-R^2/4/(L*10^-3)^2);//rad/s\n", +"fm=omega_m/2/%pi;//Hz\n", +"disp(fm,'Maximum frequency in Hz : ');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.2: Frequency_of_output.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Example 3_2\n", +"clc;\n", +"clear;close;\n", +"\n", +"//Given data: \n", +"R=80;//ohm\n", +"L=8;///mH\n", +"C=1.2;// micro F\n", +"Toff=14;//micro sec\n", +"\n", +"//Solution :\n", +"omega_m=sqrt(1/(L*10^-3*C*10^-6)-R^2/4/(L*10^-3)^2);//rad/s\n", +"fm=omega_m/2/%pi;//Hz\n", +"T=1/fm;//sec\n", +"f=1/(T+2*Toff*10^-6);//Hz\n", +"disp(f,'Frequency of output in Hz : ');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.3: Voltage_power_and_current.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Example 3_3\n", +"clc;\n", +"clear;close;\n", +"\n", +"//Given data: \n", +"RL=3;//in ohm\n", +"V=30;//in V\n", +"\n", +"//Solution :\n", +"Vpeak=2*V/%pi;//V\n", +"Vrms=Vpeak/sqrt(2);//V\n", +"disp(Vrms,'(a) RMS value of output voltage(V) : ');\n", +"//VL=sqrt(2/T*integrate('(V/2)^2','t',0,T/2));//V\n", +"VL=V/2;//V\n", +"Pout=VL^2/RL;//W\n", +"disp(Pout,'(b) Output power(W) : ');\n", +"Ipeak=VL/RL;//A\n", +"disp(Ipeak,'(c) Peak current in thyristor(A) : ');\n", +"Iavg=Ipeak*50/100;//A\n", +"disp(Iavg,'(d) Average current of each thyristor(A) : ');\n", +"Vprb=2*VL;//V\n", +"disp(Vprb,'(e) Peak reverse braking voltage(V) : ');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.4: Voltage_power_and_current.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Example 3_4\n", +"clc;\n", +"clear;close;\n", +"\n", +"//Given data: \n", +"RL=3;//in ohm\n", +"V=30;//in V\n", +"\n", +"//Solution :\n", +"Vpeak=4*V/%pi;//V\n", +"Vrms=Vpeak/sqrt(2);//V\n", +"disp(Vrms,'(a) RMS value of output voltage in volt : ');\n", +"//VL=sqrt(2/T*integrate('V^2','t',0,T/2));//V\n", +"VL=V;//V\n", +"Pout=VL^2/RL;//W\n", +"disp(Pout,'(b) Output power(W) : ');\n", +"Ipeak=VL/RL;//A\n", +"disp(Ipeak,'(c) Peak current in thyristor(A) : ');\n", +"Iavg=Ipeak*50/100;//A\n", +"disp(Iavg,'(d) Average current of each thyristor(A) : ');\n", +"Vprb=VL;//V\n", +"disp(Vprb,'(e) Peak reverse braking voltage(V) : ');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.5: Current_Distortion_and_power.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Example 3_5\n", +"clc;\n", +"clear;close;\n", +"\n", +"//Given data: \n", +"V=200;//V\n", +"R=10;//in ohm\n", +"L=20;//mH\n", +"C=100;//pF\n", +"f=50;//Hz\n", +"\n", +"//Solution :\n", +"Z1=R+%i*(2*%pi*f*L*10^-3-1/(2*%pi*f*C*10^-6));//ohm\n", +"Z3=R+%i*(3*2*%pi*f*L*10^-3-1/(3*2*%pi*f*C*10^-6));//ohm\n", +"Z5=R+%i*(5*2*%pi*f*L*10^-3-1/(5*2*%pi*f*C*10^-6));//ohm\n", +"Z7=R+%i*(7*2*%pi*f*L*10^-3-1/(7*2*%pi*f*C*10^-6));//ohm\n", +"Z9=R+%i*(9*2*%pi*f*L*10^-3-1/(9*2*%pi*f*C*10^-6));//ohm\n", +"I=4*V/%pi/abs(Z1);//A\n", +"Irms=I/sqrt(2);//A\n", +"disp(Irms,'RMS load current(A)');\n", +"Ip=sqrt((4*V/%pi/abs(Z1))^2+(4*V/3/%pi/abs(Z3))^2+(4*V/5/%pi/abs(Z5))^2+(4*V/7/%pi/abs(Z7))^2+(4*V/9/%pi/abs(Z9))^2);//A\n", +"disp(Ip,'Peak value of load current(A)');\n", +"Ih=sqrt(Ip^2-I^2)/sqrt(2);//A\n", +"disp(Ih,'RMS harmonic current(A)');\n", +"hd=sqrt(Ip^2-I^2)/I;//harmonic distortion\n", +"disp(hd*100,'Harmonic distortion(%)');\n", +"Irms_load=Ip/sqrt(2);//A\n", +"Pout=Irms_load^2*R;//W\n", +"disp(Pout,'Total output power(W)');\n", +"Pout_com=Irms^2*R;//W(fundamental component)\n", +"disp(Pout_com,'Fundamental component of power(W)');\n", +"Iavg_in=Pout/V;//A\n", +"disp(Iavg_in,'Average input current(A)');\n", +"Ip_thy=Ip;//A\n", +"disp(Ip_thy,'Peak thyristor current(A)');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.6: Find_value_of_C.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Example 3_6\n", +"clc;\n", +"clear;close;\n", +"\n", +"//Given data: \n", +"R=2;//in ohm\n", +"XL=10;//ohm\n", +"f=4;//kHz\n", +"Toff=12;//micro sec\n", +"\n", +"//Solution :\n", +"Toff_time=Toff*1.5;//micro sec\n", +"theta=2*%pi*f*10^3*Toff_time*10^-6;//radians\n", +"Xc=tan(theta)*R+XL;//ohm\n", +"C=1/(2*%pi*f*1000*Xc);//F\n", +"disp(C,'Value of Capacitance in F : ');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.7: Current_and_power.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Example 3_7\n", +"clc;\n", +"clear;close;\n", +"\n", +"//Given data: \n", +"V=400;//V\n", +"R=10;//in ohm/phase\n", +"\n", +"//Solution :\n", +"Ipeak=V/2/R;//A\n", +"Irms=sqrt(Ipeak^2*2/3);//A\n", +"disp(Irms,'RMS load current in A : ');\n", +"Pout=Irms^2*R*3;//W\n", +"disp(Pout,'Power output(W) : ');\n", +"Iavg=Ipeak/3;//A\n", +"disp(Iavg,'Average thyristor current(A) : ');\n", +"Irms_thyristor=sqrt(Ipeak^2/3);//A\n", +"disp(Irms_thyristor,'RMS value of thyristor current(A) : ');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.8: Current_and_power.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Example 3_8\n", +"clc;\n", +"clear;close;\n", +"\n", +"//Given data: \n", +"V=400;//V\n", +"R=10;//in ohm/phase\n", +"\n", +"//Solution :\n", +"RL=R+R/2;//ohm\n", +"i1=V/RL;//A\n", +"i2=V/RL;//A\n", +"i3=V/RL;//A\n", +"Irms_load=sqrt(1/2/%pi*(integrate('i1^2','theta',0,2*%pi/3)+integrate('(i1/2)^2','theta',2*%pi/3,2*%pi)));//A\n", +"disp(Irms_load,'RMS load current in A : ');\n", +"Pout=Irms_load^2*R*3;//W\n", +"disp(Pout,'Power output(W): ');\n", +"Ipeak=i1;//A\n", +"Iavg=1/2/%pi*[Ipeak*%pi/3+Ipeak/2*2*%pi/3];//A\n", +"disp(Iavg,'Average thyristor current(A) : ');\n", +"Irms_thyristor=sqrt(1/2/%pi*[Ipeak^2*%pi/3+(Ipeak/2)^2*2*%pi/3]);//A\n", +"disp(Irms_thyristor,'RMS value of thyristor current(A) : ');" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} |